Research article Special Issues

Exponential stability analysis for nonlinear time-varying perturbed systems on time scales

  • Received: 27 December 2022 Revised: 19 February 2023 Accepted: 27 February 2023 Published: 09 March 2023
  • MSC : 93D05, 93D23

  • This paper is concerned with the stability of nonlinear time-varying perturbed system on time scales under the assumption that the corresponding linear time-varying nominal system is uniformly exponentially stable. Some less conservative sufficient conditions for uniform exponential stability and uniform practical exponential stability are proposed by imposing different assumptions on the perturbation term. Compared with the traditional exponential stability results of perturbed systems, the time derivatives of related Lyapunov functions in this paper are not required to be negative definite for all time. The main tools employed are two Gronwall's inequalities on time scales. Some examples are also given to illustrate the effectiveness of the theoretical results.

    Citation: Cheng-Xiu Qiang, Jian-Ping Sun, Ya-Hong Zhao. Exponential stability analysis for nonlinear time-varying perturbed systems on time scales[J]. AIMS Mathematics, 2023, 8(5): 11131-11150. doi: 10.3934/math.2023564

    Related Papers:

  • This paper is concerned with the stability of nonlinear time-varying perturbed system on time scales under the assumption that the corresponding linear time-varying nominal system is uniformly exponentially stable. Some less conservative sufficient conditions for uniform exponential stability and uniform practical exponential stability are proposed by imposing different assumptions on the perturbation term. Compared with the traditional exponential stability results of perturbed systems, the time derivatives of related Lyapunov functions in this paper are not required to be negative definite for all time. The main tools employed are two Gronwall's inequalities on time scales. Some examples are also given to illustrate the effectiveness of the theoretical results.



    加载中


    [1] W. J. Rugh, Linear system theory, 2 Eds., Prentice Hall, New Jersey, 1996.
    [2] H. K. Khalil, Nonlinear systems, 3 Eds., Prentice Hall, New Jersey, 2002.
    [3] A. BenAbdallah, M. Dlala, M. A. Hammami, A new Lyapunov function for stability of time-varying nonlinear perturbed systems, Syst. Control Lett., 56 (2007), 179–187. https://doi.org/10.1016/j.sysconle.2006.08.009 doi: 10.1016/j.sysconle.2006.08.009
    [4] X. Song, S. Li, A. Li, Practical stability of nonlinear differential equation with initial time difference, Appl. Math. Comput., 203 (2008), 157–162. https://doi.org/10.1016/j.amc.2008.04.014 doi: 10.1016/j.amc.2008.04.014
    [5] A. Benabdallah, I. Ellouze, M. A. Hammami, Practical stability of nonlinear time-varying cascade systems, J. Dyn. Control Syst., 15 (2009), 45–62. https://doi.org/10.1007/s10883-008-9057-5 doi: 10.1007/s10883-008-9057-5
    [6] B. Ghanmi, N. Hadj Taieb, M. A. Hammami, Growth conditions for exponential stability of time-varying perturbed systems, Int. J. Control, 86 (2013), 1086–1097. https://doi.org/10.1080/00207179.2013.774464 doi: 10.1080/00207179.2013.774464
    [7] B. Ben Hamed, Z. Haj Salem, M. A. Hammami, Stability of nonlinear time-varying perturbed differential equations, Nonlinear Dyn., 73 (2013), 1353–1365. https://doi.org/10.1007/s11071-013-0868-x doi: 10.1007/s11071-013-0868-x
    [8] Y. Cao, J. Sun, Practical stability of nonlinear measure differential equations, Nonlinear Anal.-Hybri., 30 (2018), 163–170. https://doi.org/10.1016/j.nahs.2018.05.010 doi: 10.1016/j.nahs.2018.05.010
    [9] G. Chen, Y. Yang, New stability conditions for a class of linear time-varying systems, Automatica, 71 (2016), 342–347. https://doi.org/10.1016/j.automatica.2016.05.005 doi: 10.1016/j.automatica.2016.05.005
    [10] B. Zhou, On asymptotic stability of linear time-varying systems, Automatica, 68 (2016), 266–276. https://doi.org/10.1016/j.automatica.2015.12.030 doi: 10.1016/j.automatica.2015.12.030
    [11] B. Zhou, T. Zhao, On asymptotic stability of discrete-time linear time-varying systems, IEEE Trans. Automat. Control, 62 (2017), 4274–4281. https://doi.org/10.1109/TAC.2017.2689499 doi: 10.1109/TAC.2017.2689499
    [12] B. Zhou, Stability analysis of non-linear time-varying systems by Lyapunov functions with indefinite derivatives, IET Control Theory Appl., 11 (2017), 1434–1442. https://doi.org/10.1049/iet-cta.2016.1538 doi: 10.1049/iet-cta.2016.1538
    [13] N. H. Taieb, Indefinite derivative for stability of time-varying nonlinear systems, IMA J. Math. Control Inf., 38 (2021), 534–551. https://doi.org/10.1093/imamci/dnaa040 doi: 10.1093/imamci/dnaa040
    [14] N. H. Taieb, Stability analysis for time-varying nonlinear systems, Int. J. Control, 95 (2022), 1497–1506. https://doi.org/10.1080/00207179.2020.1861332 doi: 10.1080/00207179.2020.1861332
    [15] G. Chen, Y. Yang, Relaxed conditions for the input-to-state stability of switched nonlinear time-varying systems, IEEE Trans. Automat. Control, 62 (2017), 4706–4712. https://doi.org/10.1109/TAC.2016.2625979 doi: 10.1109/TAC.2016.2625979
    [16] J. Lu, Z. She, W. Feng, S. S. Ge, Stabilizability of time-varying switched systems based on piecewise continuous scalar functions, IEEE Trans. Automat. Control, 64 (2019), 2637–2644. https://doi.org/10.1109/TAC.2018.2867933 doi: 10.1109/TAC.2018.2867933
    [17] T. Zhao, B. Zhou, W. Michiels, Stability analysis of linear time-varying time-delay systems by non-quadratic Lyapunov functions with indefinite derivatives, Syst. Control Lett., 122 (2018), 77–85. https://doi.org/10.1016/j.sysconle.2018.09.012 doi: 10.1016/j.sysconle.2018.09.012
    [18] G. Şahan, Stability analysis by a nonlinear upper bound on the derivative of Lyapunov function, Eur. J. Control, 56 (2020), 118–123. https://doi.org/10.1016/j.ejcon.2020.02.006 doi: 10.1016/j.ejcon.2020.02.006
    [19] M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, Boston, 2001.
    [20] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [21] C. Pötzsche, S. Siegmund, F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Cont. Dyn. Syst., 9 (2003), 1223–1241.
    [22] J. J. DaCunha, Stability for time varying linear dynamic systems on time scales, J. Comput. Appl. Math., 176 (2005), 381–410. https://doi.org/10.1016/j.cam.2004.07.026 doi: 10.1016/j.cam.2004.07.026
    [23] A. C. Peterson, Y. N. Raffoul, Exponential stability of dynamic equations on time scales, Adv. Differ. Equ., 2005 (2005), 133–144.
    [24] N. H. Du, L. H. Tien, On the exponential stability of dynamic equations on time scales, J. Math. Anal. Appl., 331 (2007), 1159–1174. https://doi.org/10.1016/j.jmaa.2006.09.033 doi: 10.1016/j.jmaa.2006.09.033
    [25] Z. Bartosiewicz, E. Piotrowska, Lyapunov functions in stability of nonlinear systems on time scales, J. Differ. Equ. Appl., 17 (2011), 309–325. https://doi.org/10.1080/10236190902932734 doi: 10.1080/10236190902932734
    [26] K. Mukdasai, P. Niamsup, An LMI approach to stability for linear time-varying system with nonlinear perturbation on time scales, Abstr. Appl. Anal., 2011 (2011), 860506. https://doi.org/10.1155/2011/860506 doi: 10.1155/2011/860506
    [27] B. Ben Nasser, K. Boukerrioua, M. A. Hammami, On stability and stabilization of perturbed time scale systems with Gronwall inequalities, J. Math. Phys. Anal. Geom., 11 (2015), 207–235. https://doi.org/10.15407/mag11.03.207 doi: 10.15407/mag11.03.207
    [28] B. Ben Nasser, K. Boukerrioua, M. Defoort, M. Djemai, M. A. Hammami, State feedback stabilization of a class of uncertain nonlinear systems on non-uniform time domains, Syst. Control Lett., 97 (2016), 18–26. http://dx.doi.org/10.1016/j.sysconle.2016.08.005 doi: 10.1016/j.sysconle.2016.08.005
    [29] A. A. Martynyuk, Stability theory for dynamic equations on time scales, Switzerland: Springer International Publishing, 2016.
    [30] A. Hamza, K. Oraby, Stability of abstract dynamic equations on time scales by Lyapunov's second method, Turk. J. Math., 42 (2018), 841–861. https://doi.org/10.3906/mat-1703-65 doi: 10.3906/mat-1703-65
    [31] B. Ben Nasser, K. Boukerrioua, M. Defoort, M. Djemai, M. A. Hammami, T. M. Laleg-Kirati, Sufficient conditions for uniform exponential stability and h-stability of some classes of dynamic equations on arbitrary time scales, Nonlinear Anal.-Hybri., 32 (2019), 54–64. https://doi.org/10.1016/j.nahs.2018.10.009 doi: 10.1016/j.nahs.2018.10.009
    [32] X. Zhang, X. Lu, On stability analysis of nonlinear time-delay systems on time scales, Systems Control Lett., 131 (2019), 104498. https://doi.org/10.1016/j.sysconle.2019.104498 doi: 10.1016/j.sysconle.2019.104498
    [33] X. Lu, X. Zhang, Z. Liu, Improved stability criteria for linear time-varying systems on time scales, Int. J. Control, 93 (2020), 1651–1658. https://doi.org/10.1080/00207179.2018.1523569 doi: 10.1080/00207179.2018.1523569
    [34] E. Akin-Bohner, M. Bohner, F. Akin, Pachpatte inequalities on time scales, J. Inequal. Pure Appl. Math., 6 (2005), 1–50.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1160) PDF downloads(98) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog