The traditional Cox-Ingersoll-Ross (CIR) interest rate model follows a stochastic differential equation that cannot obtain the closed solution while the uncertain CIR interest rate model is an uncertain differential equation. First, this paper gives the solution in terms of the distribution of the uncertain CIR interest rate model based on uncertainty theory. Second, the pricing formulas of vulnerable European call option and vulnerable European put option are obtained by using the uncertain CIR interest rate model. Finally, according to the proposed pricing formula, the corresponding numerical algorithms are designed and several numerical examples are given to verify the effectiveness of the algorithm. Our results not only enrich the option pricing theory, but they also have a certain guiding significance for the derivatives market.
Citation: Guiwen Lv, Ping Xu, Yanxue Zhang. Pricing of vulnerable options based on an uncertain CIR interest rate model[J]. AIMS Mathematics, 2023, 8(5): 11113-11130. doi: 10.3934/math.2023563
The traditional Cox-Ingersoll-Ross (CIR) interest rate model follows a stochastic differential equation that cannot obtain the closed solution while the uncertain CIR interest rate model is an uncertain differential equation. First, this paper gives the solution in terms of the distribution of the uncertain CIR interest rate model based on uncertainty theory. Second, the pricing formulas of vulnerable European call option and vulnerable European put option are obtained by using the uncertain CIR interest rate model. Finally, according to the proposed pricing formula, the corresponding numerical algorithms are designed and several numerical examples are given to verify the effectiveness of the algorithm. Our results not only enrich the option pricing theory, but they also have a certain guiding significance for the derivatives market.
[1] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062 |
[2] | X. Chen, J. Gao, Uncertain term structure model of interest rate, Soft Comput., 17 (2013), 597–604. https://doi.org/10.1007/s00500-012-0927-0 doi: 10.1007/s00500-012-0927-0 |
[3] | S. N Chen, P. P. Hsu, Pricing and hedging barrier options under a Markov-modulated double exponential jump diffusion-CIR model, Int. Rev. Econ. Financ., 56 (2018), 330–346. https://doi.org/10.1016/j.iref.2017.11.003 doi: 10.1016/j.iref.2017.11.003 |
[4] | X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Making, 9 (2010), 69–81. https://doi.org/10.1007/s10700-010-9073-2 doi: 10.1007/s10700-010-9073-2 |
[5] | X. Chen, Y. Liu, D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Making, 12 (2013), 111–123. https://doi.org/10.1007/s10700-012-9141-x doi: 10.1007/s10700-012-9141-x |
[6] | J. C. Cox, J. E. Ingersoll, S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385–407. |
[7] | J. L. Carmona, A. Len, Investment option under CIR interest rates, Financ. Res Lett., 4 (2007), 242–253. https://doi.org/10.1016/j.frl.2007.09.002 doi: 10.1016/j.frl.2007.09.002 |
[8] | L. Dai, Z. Fu, Z. Huang, Option pricing formulas for uncertain financial market based on the exponential Ornstein-Uhlenbeck model, J. Intell. Manuf., 28 (2017), 597–604. https://doi.org/10.1007/s10845-014-1017-1 doi: 10.1007/s10845-014-1017-1 |
[9] | G. H. Deng, Pricing American put option on zero-coupon bond in a jump-extended CIR model, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 186–196. https://dx.doi.org/10.1016/j.cnsns.2014.10.003 doi: 10.1016/j.cnsns.2014.10.003 |
[10] | H. Johnson, R. Stulz, The pricing of options with default risk, J. Financ., 42 (1987), 267–280. https://doi.org/10.1111/j.1540-6261.1987.tb02567.x doi: 10.1111/j.1540-6261.1987.tb02567.x |
[11] | D. Jiao, K. Yao, An interest rate model in uncertain environment, Soft Comput., 19 (2015), 775–780. https://doi.org/10.1007/s00500-014-1301-1 doi: 10.1007/s00500-014-1301-1 |
[12] | D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47 (1979), 263–292. https://doi.org/10.2307/1914185 doi: 10.2307/1914185 |
[13] | B. Liu, Uncertainty theory, 2 Eds., Berlin: Springer-Verlag, 2007. https://doi.org/10.1007/978-3-540-73165-8 |
[14] | B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16. |
[15] | B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10. |
[16] | B. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, Berlin: Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-13959-8 |
[17] | B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optim. Decis. Making, 13 (2014), 259–271. https://doi.org/10.1007/s10700-014-9181-5 doi: 10.1007/s10700-014-9181-5 |
[18] | B. Liu, Uncertainty theory, 5 Eds., China: Uncertainty Theory Laboratory, Tsinghua University, 2021. |
[19] | Y. Liu, M. Ha, Expected value of function of uncerbtain variables, J. Uncertain Syst., 4 (2010), 181–186. |
[20] | M. Lei, Research on asset liability management with CIR interest rate under Heston mode, China: Southwestern University of Finance and Economics, 2020. |
[21] | G. Liang, X. Wang, Pricing vulnerable options in a hybrid credit risk model driven by Heston-Nandi GARCH processes, Rev. Deriv. Res., 24 (2021), 1–30. https://doi.org/10.1007/s11147-020-09167-z doi: 10.1007/s11147-020-09167-z |
[22] | J. Peng, K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res., 8 (2011), 18–26. |
[23] | Y. Sun, J. Tian, Y. Chen, The discrimination to CIR interest rate model and its convergence under the fractional jump diffusion environment, J. Jiamusi Univ. (Nat. Sci. Edit.), 37 (2019), 647–650. |
[24] | E. L Tang, An empirical analysis of interest rate behavior in China's monetary market based on CIR and CKls models, J. Anqing Normal Univ. (Nat. Sci. Edit.), 21 (2015), 22–25. |
[25] | S. Wu, Application of CIR model in Chinese market, China: The University of Science and Technology of China, 2017. |
[26] | Y. Xie, G. Deng, Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate, Chaos Solitons Fract., 156 (2022), 111896. https://doi.org/10.1016/j.chaos.2022.111896 doi: 10.1016/j.chaos.2022.111896 |
[27] | K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), 1–21. https://doi.org/10.1186/2195-5468-1-2 doi: 10.1186/2195-5468-1-2 |
[28] | K. Yao, X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Syst., 25 (2013), 825–832. https://doi.org/10.3233/IFS-120688 doi: 10.3233/IFS-120688 |
[29] | X. Yu, A stock model with jumps for uncertain markets, J. Int. J. Uncertain Fuzz., 20 (2012), 421–432. https://doi.org/10.1142/S0218488512500213 doi: 10.1142/S0218488512500213 |
[30] | Q. Zhou, X. Li, Vulnerable options pricing under uncertain volatility model, J. Inequal. Appl., 2019 (2019), 315–330. https://doi.org/10.1186/s13660-019-2266-5 doi: 10.1186/s13660-019-2266-5 |
[31] | T. C. Zheng, European export-oriented barrier option pricing based on CIR model, J. Technol. Wind, 8 (2022), 148–150. https://doi.org/10.19392/j.cnki.1671-7341.202224050 doi: 10.19392/j.cnki.1671-7341.202224050 |