Research article

Analytic approximations for European-style Asian spread options

  • Received: 14 January 2024 Revised: 01 March 2024 Accepted: 07 March 2024 Published: 26 March 2024
  • MSC : 90A09, 91B24, 91B28, 93E20

  • Spread option is a exotic option, which allows investors to simultaneously take positions in two correlated underlying assets and profit from their price difference over some spread. This option provides stable investment opportunities for practitioners in unpredictable and complex financial markets. However, investors of the spread option may face problems caused by manipulating the two underlying assets' prices near the expiry, compared to plain vanilla options. To overcome such disadvantages, we propose Asian-spread options, which are linked to the price difference between two average prices of two underlying assets over the life of the option, and exhibit the original properties of standard spread options. In this paper, using distribution-approximating and moment-matching approaches, lower bounds of prices for the European spread option on the geometric average Asian option and arithmetic average Asian option are obtained in the classical Black-Scholes model. We verified the pricing accuracy of the proposed Asian-spread options by comparing our solutions with those obtained by Monte Carlo simulations. Finally, we analyzed the influence of stock price, maturity date, and some model parameters on option price and delta value through numerical examples. Numerical results showed that the lower bounds had a very high precision.

    Citation: Boling Chen, Guohe Deng. Analytic approximations for European-style Asian spread options[J]. AIMS Mathematics, 2024, 9(5): 11696-11717. doi: 10.3934/math.2024573

    Related Papers:

  • Spread option is a exotic option, which allows investors to simultaneously take positions in two correlated underlying assets and profit from their price difference over some spread. This option provides stable investment opportunities for practitioners in unpredictable and complex financial markets. However, investors of the spread option may face problems caused by manipulating the two underlying assets' prices near the expiry, compared to plain vanilla options. To overcome such disadvantages, we propose Asian-spread options, which are linked to the price difference between two average prices of two underlying assets over the life of the option, and exhibit the original properties of standard spread options. In this paper, using distribution-approximating and moment-matching approaches, lower bounds of prices for the European spread option on the geometric average Asian option and arithmetic average Asian option are obtained in the classical Black-Scholes model. We verified the pricing accuracy of the proposed Asian-spread options by comparing our solutions with those obtained by Monte Carlo simulations. Finally, we analyzed the influence of stock price, maturity date, and some model parameters on option price and delta value through numerical examples. Numerical results showed that the lower bounds had a very high precision.



    加载中


    [1] E. Alòs, T. Rheinlander, Pricing and hedging Margrabe options with stochastic volatilities, Department of Economics and Business, Universitat Pompeu Fabra, 2017. Available from: https://econ-papers.upf.edu/papers/1475.pdf
    [2] F. Antonelli, A. Ramponi, S. Scarlatti, Exchange option pricing under stochastic volatility: a correlation expansion, Rev. Deriv. Res., 13 (2010), 45–73. http://doi.org/10.1007/s11147-009-9043-4 doi: 10.1007/s11147-009-9043-4
    [3] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. http://doi.org/10.1086/260062 doi: 10.1086/260062
    [4] F. E. Benth, P. Kruhner, Derivatives pricing in energy markets: An infinite-dimensional approach, SIAM J. Financ. Math., 6 (2015), 825–869. http://doi.org/10.1137/15100268X doi: 10.1137/15100268X
    [5] L. P. Blenman, S. P. Clark, Power exchange options, Financ. Res. Lett., 2 (2005), 97–106. http://doi.org/10.1016/j.frl.2005.01.003
    [6] P. Bjerskund, G. Stensland, American exchange options and a put-call transformation: A note, J. Bus. Finan. Account., 20 (1993), 761–764. http://doi.org/10.1111/j.1468-5957.1993.tb00291.x doi: 10.1111/j.1468-5957.1993.tb00291.x
    [7] P. Bjerksund, G. Stensland, Closed form spread option valuation, Quant. Financ., 14 (2014), 1785–1794. http://doi.org/10.1080/14697688.2011.617775 doi: 10.1080/14697688.2011.617775
    [8] R. Brignone, I. Kyriakou, G. Fusai, Moment-matching approximations for stochastic sums in non-Gaussian Ornstein Uhlenbeck models, Insur. Math. Econ., 96 (2021), 232–247. http://doi.org/10.1016/j.insmatheco.2020.12.002 doi: 10.1016/j.insmatheco.2020.12.002
    [9] P. P. Boyle, F. Boyle, Derivatives: The tools that changed finance, London: Risk Publications, 2001.
    [10] R. Caldana, G. H. L. Cheang, C. Chiarella, G. Fusai, Correction: Exchange options under jump-diffusion dynamics, Applied Mathematical Finance, 22 (2015), 99–103. http://doi.org/10.1080/1350486X.2014.937564 doi: 10.1080/1350486X.2014.937564
    [11] R. Caldana, G. Fusai, A general closed-form spread option pricing formula, J. Bank. Financ., 37 (2013), 4893–4906. http://doi.org/10.1016/j.jbankfin.2013.08.016 doi: 10.1016/j.jbankfin.2013.08.016
    [12] R. Carmona, V. Durrleman, Pricing and hedging spread options, SIAM Rev., 45 (2003), 627–685. http://doi.org/10.1137/S0036144503424798 doi: 10.1137/S0036144503424798
    [13] P. Carr, D. Madan, Option valuation using the fast Fourier transform, J. Comput. Financ., 4 (1999), 61–73. http://doi.org/10.21314/JCF.1999.043 doi: 10.21314/JCF.1999.043
    [14] G. Castellacci, M. Siclari, Asian basket spreads and other exotic averaging options, Energy Power Risk Management, 3 (2003), 53–59.
    [15] G. H. L. Cheang, C. Chiarella, Exchange options under jump-diffusion dynamics, Applied Mathematical Finance, 18 (2011), 245–276. http://doi.org/10.1080/1350486X.2010.505390 doi: 10.1080/1350486X.2010.505390
    [16] G. H. L. Cheang, L. P. D. M. Garces, Representation of exchange option prices under stochastic volatility jump-diffusion dynamics, Quant. Financ., 20 (2020), 291–310. http://doi.org/10.1080/14697688.2019.1655785 doi: 10.1080/14697688.2019.1655785
    [17] X. Chen, J. Wan, European exchange option pricing in exponential Levy model, 2010 International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, 2010, 83–87. http://doi.org/10.1109/AICI.2010.24
    [18] J. Choi, Sum of all Black-Scholes-Merton models: An efficient pricing method for spread, basket, and Asian options, J. Futures Markets, 38 (2018), 627–644. http://doi.org/10.1002/fut.21909 doi: 10.1002/fut.21909
    [19] N. C. Petroni, P. Sabino, Pricing exchange options with correlated jump diffusion processes, Quant. Financ., 20 (2020), 1811–1823. http://doi.org/10.1080/14697688.2017.1423371 doi: 10.1080/14697688.2017.1423371
    [20] G. Deelstra, A Petkovic, M. Vanmaele, Pricing and hedging Asian basket spread options, J. Comput. Appl. Math., 233 (2010), 2814–2830. http://doi.org/10.1016/j.cam.2009.11.027 doi: 10.1016/j.cam.2009.11.027
    [21] G. Deelstra, S. Kozpinar, M. Simon, Spread and basket option pricing in a Markov-modulated Levy framework with synchronous jumps, Appl. Stoch. Model. Bus., 34 (2018), 782–802. http://doi.org/10.1002/asmb.2385 doi: 10.1002/asmb.2385
    [22] M. A. H. Dempster, S. S. G. Hong, Spread option valuation and the fast Fourier transform, In: Mathematical finance-Bachelier congress, Berlin: Springer, 2002,203–220. http://doi.org/10.1007/978-3-662-12429-1_10
    [23] M. A. H. Dempster, E. Medova, K. Tang, Long term spread option valuation and hedging, J. Bank. Financ., 32 (2008), 2530–2540. http://doi.org/10.1016/j.jbankfin.2008.04.004 doi: 10.1016/j.jbankfin.2008.04.004
    [24] M. Q. Li, S. J. Deng, J. Y. Zhoc, Closed-form approximation for spread option prices and Greeks, Journal of Derivatives, 15 (2008), 58–80. http://doi.org/10.3905/jod.2008.702506 doi: 10.3905/jod.2008.702506
    [25] A. R. Dravid, M. Richardson, T. S. Sun, Pricing foreign index contingent claims: An application to Nikkei put warrants, Journal of Derivatives, 1 (1993), 33–51. http://doi.org/10.3905/jod.1993.407872 doi: 10.3905/jod.1993.407872
    [26] G. Fusai, I. Kyriakou, General optimized lower and upper bounds for discrete and continuous arithmetic Asian options, Math. Oper. Res., 41 (2016), 377–744. http://doi.org/10.1287/moor.2015.0739 doi: 10.1287/moor.2015.0739
    [27] H. Geman, M. Yor, Bessel processes, Asian options, and perpetuities, Math. Financ., 3 (1993), 349–375. http://doi.org/10.1111/j.1467-9965.1993.tb00092.x doi: 10.1111/j.1467-9965.1993.tb00092.x
    [28] D. Hainaut, Pricing of spread and exchange options in a rough jump-diffusion market, J. Comput. Appl. Math., 419 (2023), 114752. http://doi.org/10.1016/j.cam.2022.114752 doi: 10.1016/j.cam.2022.114752
    [29] C. S. Han, C. C. Chiu, C. Y. Tsai, J. C. Chien, Financial products innovation and their pricing: moving average exchange options, in press.
    [30] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. http://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [31] T. R. Hurd, Z. W. Zhou, A Fourier transform method for spread option pricing, SIAM J. Financ. Math., 1 (2010), 142–157. http://doi.org/10.1137/090750421 doi: 10.1137/090750421
    [32] E. P. C. Kao, W. W. Xie, Pricing spread options by generalized bivariate edgeworth expansion, Int. J. Financ. Eng., 4 (2017), 1750017. http://doi.org/10.1142/S2424786317500177 doi: 10.1142/S2424786317500177
    [33] G. Kim, E. Koo, Closed-form pricing formula for exchange option with credit risk, Chaos Soliton. Fract., 91 (2016), 221–227. http://doi.org/10.1016/j.chaos.2016.06.005 doi: 10.1016/j.chaos.2016.06.005
    [34] K. H. Kim, M. G. Sin, U. H. Chong, Pricing formula for exchange option in fractional Black-Scholes model with jumps, Journal of Hyperstructures, 3 (2014), 155–164.
    [35] J. H. Kim, C. R. Park, A multiscale extension of the Margrabe formula under stochastic volatility, Chaos Soliton. Fract., 97 (2017), 59–65. http://doi.org/10.1016/j.chaos.2017.02.006 doi: 10.1016/j.chaos.2017.02.006
    [36] K. H. Kim, S. Yun, N. U. Kim, J. H. Ri, Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients, Physica A, 522 (2019), 215–231. http://doi.org/10.1016/j.physa.2019.01.145 doi: 10.1016/j.physa.2019.01.145
    [37] E. Kirk, Correlation in the energy market, In: Managing energy price risk, 1 Eds., London: Risk Publication, 1995, 71–78.
    [38] C. S. Lau, C. F. Lo, The pricing of basket-spread options, Quant. Financ., 14 (2014), 1971–1982. http://doi.org/10.1080/14697688.2014.949289 doi: 10.1080/14697688.2014.949289
    [39] E. Levy, Pricing European average rate currency options, J. Int. Money Financ., 11 (1992), 474–491. http://doi.org/10.1016/0261-5606(92)90013-N doi: 10.1016/0261-5606(92)90013-N
    [40] M. Q. Li, J. Y. Zhou, S. J. Deng, Multi-asset spread option pricing and hedging, Quant. Financ., 10 (2010), 305–324. http://doi.org/10.1080/14697680802626323 doi: 10.1080/14697680802626323
    [41] W. H. Li, L. X. Liu, G. W. Lv, C. X. Li, Exchange option pricing in jump-diffusion models based on esscher transform, Commun. Stat. Theor. M., 47 (2018), 4661–4672. http://doi.org/10.1080/03610926.2018.1444180 doi: 10.1080/03610926.2018.1444180
    [42] Z. L. Li, X. Wang, Valuing spread options with counterparty risk and jump risk, North American Journal of Economics and Finance, 54 (2020), 101269. http://doi.org/10.1016/j.najef.2020.101269 doi: 10.1016/j.najef.2020.101269
    [43] Z. L. Li, D. Tang, X. C. Wang, Valuing basket-spread options with default risk under Hawkes jump-diffusion processes, Eur. J. Financ., 29 (2023), 1406–1431. http://doi.org/10.1080/1351847X.2022.2129404 doi: 10.1080/1351847X.2022.2129404
    [44] G. H. Lian, R. J. Elliott, P. Kalev, Z. J. Yang, Approximate pricing of American exchange options with jumps, J. Futures Markets, 42 (2022), 983–1001. http://doi.org/10.1002/fut.22316 doi: 10.1002/fut.22316
    [45] C. Liu, D. F. Wang, Exchange options and spread options with stochastic interest rates, Journal of Applied Physics, 60 (1999), 332–350.
    [46] C. F. Lo, Pricing spread options by the operator splitting method, Wilmott, 79 (2015), 64–67. http://doi.org/10.1002/wilm.10449 doi: 10.1002/wilm.10449
    [47] E. Luciano, Spark spread options when commodity prices are represented as time-changed processes, In: Risk management in commodity markets: from shipping to agriculturals and energy, Hoboken: John Wiley & Sons, Inc., 2008,129–151. http://doi.org/10.1002/9781118467381.ch10
    [48] W. Margrabe, The value of an option to exchange one asset for another, J. Financ., 33 (1978), 177–186. http://doi.org/10.1111/j.1540-6261.1978.tb03397.x doi: 10.1111/j.1540-6261.1978.tb03397.x
    [49] G. Malhotra, R. Srivastava, H. Taneja, Pricing of the geometric Asian options under a multifactor stochastic volatility model, J. Comput. Appl. Math., 406 (2022), 113986. http://doi.org/10.1016/j.cam.2021.113986 doi: 10.1016/j.cam.2021.113986
    [50] P. Olivares, M. Cane, Pricing Spread options under stochastic correlation and jump-diffusion models, 2014, arXiv: 1409.1175. http://doi.org/10.48550/arXiv.1409.1175
    [51] P. Pasricha, A. Goel, Pricing vulnerable power exchange options in an intensity based framework, J. Comput. Appl. Math., 355 (2019), 106–115. http://doi.org/10.1016/j.cam.2019.01.019 doi: 10.1016/j.cam.2019.01.019
    [52] P. Pasricha, A. Goel, A closed-form pricing formula for European exchange options with stochastic volatility, Probab. Eng. Inform. Sc., 36 (2022), 606–615. http://doi.org/10.1017/S0269964820000698 doi: 10.1017/S0269964820000698
    [53] P. Pasricha, A. Goel, Pricing power exchange options with Hawkes jump diffusion processes, J. Ind. Manag. Optim., 17 (2021), 133–149. http://doi.org/10.3934/jimo.2019103 doi: 10.3934/jimo.2019103
    [54] P. Pasricha, X. J. He, Skew-Brownian motion and pricing European exchange options, Int. Rev. Financ. Anal., 82 (2022), 102120. http://doi.org/10.1016/j.irfa.2022.102120 doi: 10.1016/j.irfa.2022.102120
    [55] N. D. Pearson, An efficient approach for pricing spread options, Journal of Derivatives, 3 (1995), 76–91. http://doi.org/10.3905/jod.1995.407928 doi: 10.3905/jod.1995.407928
    [56] T. Pellegrino, P. Sabino, On the use of the moment-matching technique for pricing and hedging multi-asset spread options, Energ. Econ., 45 (2014), 172–185. http://doi.org/10.1016/j.eneco.2014.06.014 doi: 10.1016/j.eneco.2014.06.014
    [57] G. Poitras, Spread options, exchange options, and arithmetic Brownian motion, J. Futures Markets, 18 (1998), 487–517.
    [58] X. C. Wang, Pricing power exchange options with correlated jump risk, Financ. Res. Lett., 19 (2016), 90–97. http://doi.org/10.1016/j.frl.2016.06.009 doi: 10.1016/j.frl.2016.06.009
    [59] X. C. Wang, Exchange options and spread options with stochastically correlated underlyings, Appl. Econ. Lett., 29 (2022), 1060–1068. http://doi.org/10.1080/13504851.2021.1907281 doi: 10.1080/13504851.2021.1907281
    [60] G. Y. Wang, X. C. Wang, X. J. Shao, Exchange options for catastrophe risk management, N. Am. J. Econ. Financ., 59 (2022), 101580. http://doi.org/10.1016/j.najef.2021.101580 doi: 10.1016/j.najef.2021.101580
    [61] X.C. Wang, S. Y. Song, Y. J. Wang, The valuation of power exchange options with counterparty risk and jump risk, J. Futures Markets, 37 (2017), 499–521. http://doi.org/10.1002/fut.21803 doi: 10.1002/fut.21803
    [62] X. C. Wang, H. Zhang, Pricing basket spread options with default risk under Heston-Nandi GARCH models, N. Am. J. Econ. Financ., 59 (2022), 101596. http://doi.org/10.1016/j.najef.2021.101596 doi: 10.1016/j.najef.2021.101596
    [63] S. Willems, Asian option pricing with orthogonal polynomials, Quant. Financ., 19 (2019), 605–618. http://doi.org/10.1080/14697688.2018.1526396 doi: 10.1080/14697688.2018.1526396
    [64] A. Venkatramana, C. Alexander, Closed form approximations for spread options, Applied Mathematical Finance, 18 (2011), 447–472. http://doi.org/10.1080/1350486X.2011.567120 doi: 10.1080/1350486X.2011.567120
    [65] T. Vorst, Prices and Hedge ratios of average exchange rate options, Int. Rev. Financ. Anal., 1 (1992), 179–193. http://doi.org/10.1016/1057-5219(92)90003-M doi: 10.1016/1057-5219(92)90003-M
    [66] G. L. Xu, X. J. Shao, X. C. Wang, Analytical valuation of power exchange options with default risk, Financ. Res. Lett., 28 (2019), 265–274. http://doi.org/10.1016/j.frl.2018.05.007 doi: 10.1016/j.frl.2018.05.007
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(663) PDF downloads(52) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog