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Abstract: Spread option is a exotic option, which allows investors to simultaneously take positions
in two correlated underlying assets and profit from their price difference over some spread. This
option provides stable investment opportunities for practitioners in unpredictable and complex financial
markets. However, investors of the spread option may face problems caused by manipulating the
two underlying assets’ prices near the expiry, compared to plain vanilla options. To overcome such
disadvantages, we propose Asian-spread options, which are linked to the price difference between
two average prices of two underlying assets over the life of the option, and exhibit the original
properties of standard spread options. In this paper, using distribution-approximating and moment-
matching approaches, lower bounds of prices for the European spread option on the geometric average
Asian option and arithmetic average Asian option are obtained in the classical Black-Scholes model.
We verified the pricing accuracy of the proposed Asian-spread options by comparing our solutions
with those obtained by Monte Carlo simulations. Finally, we analyzed the influence of stock price,
maturity date, and some model parameters on option price and delta value through numerical examples.
Numerical results showed that the lower bounds had a very high precision.

Keywords: spread options; Asian option; closed-from approximation; distribution-approximating
method; moment-matching approach
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1. Introduction

In this paper, we extend the horizon of exotic options by incorporating an activating average
condition into the payoff of spread options. As one of the most popular exotic options, spread options
are a type of so-called rainbow option whose payoff relies on the price difference (or so-called the
spread) between two underlying assets. Spread options are widely traded nowsday both on organized
exchanges and over the counter in equity, interest rate, currency, foreign exchange, commodity markets,
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and energy markets nowadays. For instance, in the energy markets, crack spread options, which either
exchange crude oil and unleaded gasoline or exchange crude oil and heating oil, are traded on the
New York Mercantile Exchange (NYMEX). They are extensively used to speculate, hedge correlation
risks, and even evaluate real assets (see Dempster et al. [23] and Luciano [47]). For a detailed review
of different spread option types and their applications, we refer to Carmona and Durrleman [12] and
Caldana and Fusai [11].

Despite their popularity, valuation on spread options written on two underlying assets is an
especially challenging problem in quantitative finance. One of the difficulties in pricing spread options
is that the exercise boundary is non-linear when the spread is not zero. Obviously, when the spread
is zero, this spread option reduces to an exchange option, which allows the holders to exchange one
asset for another. Margrabe [48] first deduced the European exchange option pricing formula under
the bivariate geometric Brownian motion (GBM) paradigm. Bjerskund and Stensland [6] considered
the pricing of American exchange options in the GBM setting. Further analysis and extension to
power exchange options is given by Blenman and Clark [5]. The underlying asset pricing model
mentioned above assumes that the return of the asset is normally distributed and that its variance is
a constant. Recently, there have been a lot of researche on pricing the exchange options under the
modified Black-Scholes model (see Black and Scholes [3]) by incorporating with various other factors
such as a stochastic interest rate (see Liu and Wang [45]), stochastic volatility (e.g., Antonelli et al. [2],
Alos and Rheinlander [1], Kim and Park [35], and Pasricha and Goel [52]), credit risk (e.g., Kim
and Koo [33], Wang et al. [61], Pasricha and Goel [51], Xu et al. [66], and Wang et al. [60]), skew-
Brownian motion (see Pasricha and He [54]), fractional Brownian motion (e.g., Kim et al. [34] and
Kim et al. [36]), jump-diffusion and/or stochastic volatility (e.g., Chen and Wan [17], Cheang and
Chaiarella [15], Caldana et al. [10], Wang [58], Li et al. [41], Cufaro-Petroni and Sabino [19], Cheang
and Garces [16], Pasricha and Goel [53], and Lian et al. [44]), and so on.

However, when the spread is not zero, the exercise boundary is non-linear, and it is difficult
to obtain an closed-form solutions for these spread options. Instead, we have to resort to
analytical approximations or numerical methods. However, practitioners often prefer to use analytical
approximations rather than numerical methods because of their computational ease. The pricing issues
of the spread options have been investigated in the literature. For instance, Kirk [37] presented
an analytical approximation by approximating the sum of the second asset with the fixed strike
by a log normal random variable. His method can be thought of as a linear approximation of
the exercise boundary. Later, Lo [46] improved Kirk’s approximation with an operator splitting
method. Pearson [55], Poitras [57], and later Carmona and Durrleman [12], Deng et al. [24],
and Bjerksund and Stensland [7] provided lower and upper bounds for the spread option price
using suitable approximations of the corresponding discounted expected payoff in log-normal asset
models. Caldana and Fusai [11] obtained new lower and upper bounds for the spread option price
by using characteristic function and univariate Fourier inversion based on the work of Bjerksund and
Stensland [7]. Venkatrmana and Alexander [64] expressed the closed-form price of the spread option
as the sum of the prices of two compound exchange options. Kao and Xie [32] proposed a bivariate
generalized Edgeworth expansion for pricing spread options. Amongst numerical methods, approaches
based on the discrete fast Fourier transform (FFT, see Carr and Madan [13]) have met with large
success. For instance, Dempster and Hong [22] introduced a numerical integration method for spread
options based on Fourier transforms when the two assets follow Heston’s (see Heston [30]) stochastic
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volatility model. Based on the work of Dempster and Hong [22], there have been many extended
results on spread options with models, such as the exponential Levy model (see Hurd and Zhou [31]),
GARCH model (see Wang [59]), and Heston stochastic volatility model with jumps (e.g., Olivares and
Cane [50] and Hainaut [28]). Furthermore, some researchers have studied other spread option types
such as the basket spread option (e.g., Deelstra et al. [20], Pellegrino and Sabono [56], and Lau and
Lo [38]) and spread options with credit risk (see Li and Wang [42]).

As noted above, the payoff at maturity date for the spread option depends on the price at maturity
of the two underlying assets alone, which exposes the holder to the risk that the writer may manipulate
the two underlying assets’ prices such that the payoff of the spread option being benefits according
to the writer favorable way near the expiry (see, Deelstra et al. [20]). On the other hand, contracts
such as spread options are very common in energy, power, and commodity markets. Especially in
energy markets, various forms of average underlying prices are traded, often on the temporal average
or multiple underlying assets. Additionally, the average feature can smooth the randomness, or the
“noise”, inherent in the stock price so that the risk-managers can be evaluated more fundamentally.
Therefore, this paper extends the spread options to Asian-spread options using average-rate as the
underlying. The payoff of the Asian-spread option depends on the difference between two averages
of the underlying asset prices over some predetermined time interval, and has generally the effect of
decreasing the variance and offering simpler hedging strategies than regular spread options. Therefore,
the price of the spread option combined with the average-rate will be cheaper than that of the regular
spread option. That is, this combination would open a wider spectrum of spread payoffs, while making
them more accessible to investors or traders at a lower cost. Actually, Asian spread options have
recently gained more popularity in the energy market (see, e.g., Carmona and Durrleman [12], Caldana
and Fusai [11], Benth and Kruner [4], Deelstra et al. [21], Wang and Zhang [62], and Li et al. [43],
and their references therein). The spread part may, for example, be the cost of converting fuel into
energy. While the Asian part (the temporal average) avoids the problem common to the European
options, namely that speculators can increase gain from the option by manipulating the price of the
asset near maturity. The most prominent examples of such contracts is basket spread options, Asian
basket spread options, and calendar spread options. These options have been investigated in the options
pricing literature. For instance, a multi-asset spread option, such as the basket spread option, resembles
the Asian spread option with discrete sampling arithmetic average (see Deelstra et al. [20], Li et al. [40],
Pellegrino and Sabino [56], and Lau and Lo [38]) and the moving average exchange options (see, e.g.,
Han et al. [29]). Choi [18] proposed an efficient and unified method for pricing options such as the
basket, spread, and Asian options under multivariate GBM models. A simple, accurate, and efficient
method to price and hedge Asian spread options is therefore inevitable.

The average-rate options, or Asian options, are popular and commonly employed in fields like
currency, interest rate, energy, and insurance markets, among others. In general, the average considered
in option contracts can be a geometric or arithmetic one, and it can be observed continuously or
discretely. Practically, most Asian derivatives on the markets are settled on the arithmetic average
price. Usually, the geometric average option can be priced by exact analytical formulas, whereas the
arithmetic one does not have closed-form solutions. This is because the probability distribution of the
average prices of the underlying asset generally does not have a simple analytical expression. Extensive
literature investigates the pricing of the Asian options (see, for example, Levy [39], Castellacci and
Siclari [14], Fusai and Kyriakou [26], Willems [63], and Malhotra et al. [49], and their references
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therein). We refer to Boyle and Boyle [9] for a brief introduction to the development of Asian options.
In this paper, we propose a theoretical framework for pricing Asian spread options, and derive

analytical approximations, which are often preferred to use by spread option traders for their
computational ease and the availability of closed-form formulae for hedge ratios. We extend
approximation methods of Levy [39], Bjerksund and Stensland [7], and Lau and Lo [38] to the Asian
spread case. The main contribution of the present work is twofold. First, we extend spread option
to Asian spread options that help those investors who like to mitigate the adverse movements of two
underlying assets and hedge both the risk of financial assets over the periods of time. Second, we
obtain the derivation of a lower bound, as in Bjerksund and Stensland [7] and Lau and Lo [38], but for
spread options with Asian features. Indeed, the only quantity we need to know explicitly is the joint
probability density function of the log-returns of the two averages.

The remainder of this paper is organized as follows: Section 2 describes the market model and
the Asian spread options. In Section 3, the closed-form approximate formulas of the spread options
with geometric averaging and arithmetic averaging are derived respectively. Numerical examples are
presented in Section 4 to show the accuracy and efficiency of the proposed method, while the effects
of some parameters on options and their deltas are analyzed. Finally, Section 5 concludes this paper.

2. Model setup

Let (Ω,F , (F )t≥0,Q) be a complete probability space equipped with a filtration (Ft)t≥0 satisfying
the usual conditions. Moreover, denote by E(·) the expectation operator with respect to a risk neutral
equivalent martingale measure Q. A continuous-time financial market is considered with a finite time
horizon [0,T ], where T < ∞ under the complete probability space (Ft)t∈[0,T ]. Assume that there exists
two risky assets and the risk-free asset traded continuously in this financial market over a finite time
interval [0,T ]. Let the process of the risk-free asset is governed by

dBt = rBtdt, B0 = 1,

where r is the risk-free interest rate. Under the risk neutral probability Q, the two risky assets whose
prices are denoted by S 1t and S 2t are governed by the following stochastic differential equations

dS 1t

S 1t
= rdt + σ1dW1t, (2.1)

dS 2t

S 2t
= rdt + σ2dW2t, (2.2)

where σ′i s (i = 1, 2) are the volatilities of both assets. In addition, W1t and W2t are two standard
Brownian motions defined on this filtered probability space. We assume that the correlation coefficient
between W1t and W2t is given by ρ. Assume that r, σ1, σ2 and ρ are constants, and (Ft)t≥0 is produced
by the σ-algebra of the price pair (S 1t, S 2t)t≥0.

Now, we present the payoff of Asian spread options (ASO). The payoff of these options is based on
the difference between two average asset prices of two underlying assets for the period up to T . In the
following, we introduce the payoff function of the Asian spread options as follows:

h(x1, x2,K) = (x1 − x2 − K)+, (2.3)
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where xi can be either GiT or AiT depending on the geometric average price or arithmetic average price,
respectively. The notation x+ = max{x, 0} and K ≥ 0 is the strike price of this option. Additionally,
Git (i = 1, 2) is the continuously monitored geometric average of S iu (i = 1, 2) over time [0, t], that is,

Git = exp(
1
t

∫ t

0
ln S iudu),

and Ait (i = 1, 2) is the continuously monitored arithmetic average of S iu over time [0, t], i.e.,

Ait =
1
t

∫ t

0
S iudu.

There is no known closed form for this case defined in (2.3) despite the use of the more tractable
geometric average.

From (2.1) and (2.2), we have for any t ∈ [0,T ],

ln S it = ln S i0 + (r −
1
2
σ2

i )t + σiWit, i = 1, 2,

and

ln GiT =
1
T

∫ T

0
ln S itdt

= ln S i0 + (r −
1
2
σ2

i )
T
2
+
σi

T

∫ T

0
(T − t)dWit. (2.4)

Accordingly, for any constant α, one gets that

E(GαiT ) = S αi0 exp{α(r −
1
2
σ2

i )
T
2
+
α2

6
σ2

i T }, (2.5)

and from the result of Geman and Yor [27],

E(AiT ) =
S i0(erT − 1)

rT
, (2.6)

E(A2
iT ) =

2S 2
i0[re(2r+σ2

i )T − (2r + σ2
i )erT + (r + σ2

i )]

rT 2(r + σ2
i )(2r + σ2

i )
, i = 1, 2. (2.7)

In the following, we investigate the pricing problem for the Asian spread options under the payoff
functions in the geometric average and arithmetic average cases described previously.

3. Closed-form approximations for Asian spread options

Without loss of generality, we focus on the option price at the inception (t = 0). Let
GAS O(S 1, S 2,K) be the price at time t = 0 for the ASO whose payoff function is h(G1T ,G2T ,K),
and AAS O(S 1, S 2,K) be the price at time t = 0 for the ASO whose payoff function is h(A1T , A2T ,K).
According to the risk-neutral pricing theory, the option prices are thus given by

GAS O(S 1, S 2,K) = E{e−rT (G1T −G2T − K)+}, (3.1)

AIMS Mathematics Volume 9, Issue 5, 11696–11717.



11701

AAS O(S 1, S 2,K) = E{e−rT (A1T − A2T − K)+}, (3.2)

respectively. Obviously, a more difficult problem for pricing the Asian spread options defined in the
above work is the unknown joint distribution of two arithmetic average prices (A1T , A2T ) and the non-
linear exercise boundary with the spread K being not zero. In this paper, we will use approximation
approaches to solve this problem. The next result is well-known.
Proposition 1. Assume that random variables X1 and X2 satisfy X1 ∼ N(µ1, δ

2
1), X2 ∼ N(µ2, δ

2
2), and

ϱ = Corr(X1, X2). In addition, a, b, c, d, e, µ1, µ2, δ1, δ2 and ϱ are assumed to be constants, where at
least one of c and d is non-zero. Then,

E
[
eaX1+bX21(cX1+dX2≥e)

]
= exp[aµ1 + bµ2 +

1
2

(a2δ2
1 + 2ϱabδ1δ2 + b2δ2

2)]

·N
(cµ1 + dµ2 − e + acδ2

1 + ϱ(ad + cb)δ1δ2 + bdδ2
2√

c2δ2
1 + 2ϱcdδ1δ2 + d2δ2

2

)
, (3.3)

where N(·) denotes the standard normal cumulative distribution function and 1A is an indicator function
for any event A.
Proof: It is obvious that (aX1+bX2)−(aµ1+bµ2)√

a2δ21+2ϱabδ1δ2+b2δ22

∼ N(0, 1) and (cX1+dX2)−(cµ1+dµ2)√
c2δ21+2ϱcdδ1δ2+d2δ22

∼ N(0, 1). Then, it follows

from the lemma in Dravid et al. [25] that the proof is completed.
In order to value the Asian spread options defined in (2.3), we first requires to determine the linear

exercise boundary in logarithmic variables from the exercise region {G1T −G2T ≥ K} (or {A1T − A2T ≥

K}). In this paper, along with the method used in Bjerksund and Stensland [7] for options written on
the spread between two assets, and Lau and Lo [38] for multi-asset basket spread options, we derive
an approximated closed-form formula by modifying the origin exercise region slightly. Second, we
need to know the joint probability distribution of two arithmetic average prices. Here, we will apply
distribution-approximating and moment-matching (see, e.g., Brignone et al. [8]) methods to derive
the joint probability distribution and extend the work in Levy [39] from one-dimensional unknown
arithmetic average distribution by the corresponding log-normal distribution to two-dimensional cases.
Actually, our approximated formula is always a little less than the fair value of spread options so that
it can be seen as a lower bound. Now, we are in the position to state the main theoretical results of this
paper.
Proposition 2. Based on the proposed model specification (2.1) and (2.2), the price at time t = 0 for
the ASO on geometric average is given by

GAS O(S 1, S 2,K) = S 10e−(r+ 1
6σ

2
1) T

2 N(d1)
−S 20e−(r+ 1

6σ
2
2) T

2 N(d2) − Ke−rT N(d3), (3.4)

where di, i = 1, 2, 3 are given by

d1 =
ln S 10

k + [(r + 1
6σ

2
1)1

2 +
1
6α

2σ2
2 −

1
3ρασ1σ2]T

σ
√

T
,

d2 =
ln S 10

k + [1
6α

2σ2
2 −

1
3ασ

2
2 + (r − 1

2σ
2
1) 1

2 +
1
3ρσ1σ2]T

σ
√

T
,
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d3 =
ln S 10

k + [(r − 1
2σ

2
1)1

2 +
1
6α

2σ2
2]T

σ
√

T
,

in which the parameters σ, α and k are

σ =

√
1
3

(σ2
1 − 2ρασ1σ2 + α2σ2

2), α =
E(G2T )

E(G2T ) + K
, k = E(G2T ) + K.

Proof: See the Appendix.
Proposition 3. Based on the proposed model specification (2.1) and (2.2), the price at time t = 0 for
the ASO on arithmetic average is given by

AAS O(S 1, S 2,K) = e−rT
[
eµ1+

1
2 δ

2
1N(d̂1) − eµ2+

1
2 δ

2
2N(d̂2) − KN(d̂3)

]
, (3.5)

where d̂i, i = 1, 2, 3 are given by

d̂1 =
µ1 − k̂ + (δ2

1 − ρ̂βδ1δ2 +
1
2β

2δ2
2)√

δ2
1 − 2ρ̂βδ1δ2 + β2δ2

2

,

d̂2 =
µ1 − k̂ + (ρ̂δ1δ2 − βδ

2
2 +

1
2β

2δ2
2)√

δ2
1 − 2ρ̂βδ1δ2 + β2δ2

2

,

d̂3 =
µ1 − k̂ + 1

2β
2δ2

2√
δ2

1 − 2ρ̂βδ1δ2 + β2δ2
2

,

in which the parameters above are

β =
E(A2T )

E(A2T ) + K
, k̂ = ln[E(A2T ) + K],

µi = 2 ln E(AiT ) −
1
2

ln E(A2
iT ),

δ2
i = ln E(A2

iT ) − 2 ln E(AiT ), i = 1, 2,

ρ̂ =
2[ln E(A1T A2T ) − (µ1 + µ2)] − (δ2

1 + δ
2
2)

2δ1δ2
,

E(A1T A2T ) =
2S 10S 20

rT 2

[e(2r+ρσ1σ2)T − erT

(r + ρσ1σ2)
−

e(2r+ρσ1σ2)T − 1
(2r + ρσ1σ2)

]
.

Proof: See the Appendix in detail.
Remark 1. First, the formulas (3.4) and (3.5) are the lower bounds of the exact Asian spread option
prices, and in practice they are so tight that they could be seen as an accurate approximation of the
true value. These will be shown through numerical experiments in Section 4. Second, the values
of parameter α (or β) and k (or k̂) given in the above expressions are proposed by Bjerksund and
Stensland [7] in the log-normal setting within the underlying assets. They are also effective when we
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take average-rate prices into consideration (see Lau and Lo [38] for multi-asset basket spread options
whose payoff is the linear combination of several underlying assets). The above formula is very easy
to implement by the software such as Matlab. In the numerical section, we shall show the accuracy and
efficiency of the approximation pricing formulas.
Remark 2. When K < 0 by using the fact that E[X+] = E[(−X)+] + E[X], we can obtain that

E{e−rT (G1T −G2T − K)+} = E{e−rT [−(G2T −G1T − K̃)+]}
= E{e−rT (G2T −G1T − K̃)+} − E{e−rT (G2T −G1T − K̃)}

= GAS O(S 2, S 1,−K) − S 20 exp{−
1
2

(r +
1
6
σ2

2)T }

+S 10 exp{−
1
2

(r +
1
6
σ2

1)T } − Ke−rT ,

and

E{e−rT (A1T − A2T − K)+} = AAS O(S 2, S 1,−K) −
S 20(1 − e−rT )

rT

+
S 10(1 − e−rT )

rT
− Ke−rT ,

where K̃ = −K > 0.
A special case of the above formula has been extensively studied. For example, if we set σ2 = 0

and ρ = 0, we have an Asian option. In addition, the formulas (3.4) and (3.5) have two simple forms
when K = 0. In fact, when K = 0, the formulas (11) and (12) reduce to the pricing formulas for the
Asian exchange options which are similar to the works by Margrabe [48] and Han et al. [29].
Corollary 1. If we let K = 0 in (11) and (12), we obtain the following formulas for the Asian exchange
options:

GAEO(S 1, S 2) = S 10e−(r+ 1
6σ

2
1) T

2 N
( ln S 10

S 20
+ (r + 1

12σ
2
1 −

1
4σ

2
2)T√

T
3 (σ2

1 − 2ρσ1σ2 + σ
2
2)

)

−S 20e−(r+ 1
6σ

2
2) T

2 N
( ln S 10

S 20
− (1

4σ
2
1 +

1
12σ

2
2 −

1
3ρσ1σ2)T√

T
3 (σ2

1 − 2ρσ1σ2 + σ
2
2)

)
, (3.6)

and

AAEO(S 1, S 2) = e−rT
[
eµ1+

1
2 δ

2
1N
(µ1 − µ2 +

1
2 (δ2

1 − ρ̂δ1δ2)√
δ2

1 − 2ρ̂δ1δ2 + δ
2
2

)

−eµ2+
1
2 δ

2
2N
(µ1 − µ2 +

1
2 (ρ̂δ1δ2 − δ

2
2)√

δ2
1 − 2ρ̂δ1δ2 + δ

2
2

)
, (3.7)

respectively.
Proof. When K = 0, then α = 1, β = 1, k = E(G2T ), and k̂ = ln E(A2T ) defined in formulas (3.4)
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and (3.5). In this case, k = S 20 exp{(r − 1
6σ

2
2)T

2 } and k̂ = µ2 +
1
2δ

2
2. Hence, it follows that (3.6) and (3.7)

hold.
The approximation can be applied to the Greeks computation, as well. In particular, we can derive

the explicit expressions for the delta, which is defined as the rate of change of the option value with
respect to the underlying asset price, of the ASO priced by our two approximations, GASO and AASO.
Similar formulas can be computed for the other Greeks, such as Gamma, Vega, Theta, and Rho. The
following corollary summarizes our findings.
Corollary 2. The hedging parameter ∆ of the ASO, based on the GASO and AASO pricing formulas,
are respectively

∆
(g)
1 =

∂GAS O
∂S 1

= e−(r+ 1
6σ

2
1) T

2 N(d1) +
e−(r+ 1

6σ
2
1) T

2 −
d2
1
2

σ
√

2πT

−
S 2e−(r+ 1

6σ
2
2) T

2 −
d2

2
2

S 1σ
√

2πT
−

Ke−rT−
d2
3
2

S 1σ
√

2πT
, (3.8)

∆
(g)
2 =

∂GAS O
∂S 2

= −
αS 1e−(r+ 1

6σ
2
1) T

2 −
d2
1
2

S 2σ
√

2πT

{
−1 +

[
1 +

d1

σ
√

T

]
(1 − α)(ασ2

2 − ρσ1σ2)T
3

}
− e−(r+ 1

6σ
2
2) T

2 N(d2)

+
αe−(r+ 1

6σ
2
2) T

2 −
d2
2
2

σ
√

2πT

[
1 +

(1 − α)2

3
σ2

2T

+
(1 − α)(ασ2

2 − ρσ1σ2)d2
√

T
3σ

]
+
αKe−(rT+

d2
3
2 )

S 2σ
√

2πT

[
1 −
α(1 − α)

3
σ2

2T

+
(1 − α)(ασ2

2 − ρσ1σ2)d3
√

T
3σ

]
, (3.9)

∆
(a)
1 =

∂AAS O
∂S 1

= e−rT
{ 1
S 1

eµ1+
1
2 δ

2
1N(d̂1) +

S 1
√

2πδ

[
eµ1+

1
2 (δ21−d̂2

1)

·
(
1 −

d̂1[1 − 1
S 2

1
]

δ

)
+ eµ2+

1
2 (δ22−d̂2

2)
(
1 −

2
S 2

1

+
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S 2
1
]

δ

)
+Ke−

1
2 d̂2
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(
1 −

2
S 2
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d̂3[1 − 1

S 2
1
]

δ
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, (3.10)

∆
(a)
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S 2

{
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1
2 δ

2
2N(d̂2) +

β
√

2πδ

[
−eµ1+

1
2 (δ21−d̂2

1)

·
(
1 − [β(S 2

2 − 1) − ρ̂(1 − β)δ1δ2 + β(1 − β)δ2
2][1 −

d̂1

δ
]
)

+eµ2+
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2 (δ22−d̂2

2)
(
1 + [1 − β][(S 2

2 − 1) + (1 − β)δ2
2] +
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δ
[β(S 2

2 − 1)

+β(1 − β)δ2
2 − ρ̂(1 − β)δ1δ2]

)
+ Ke−

1
2 d̂2
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(
1 − β[(S 2

2 − 1) + (1 − β)δ2
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+
d̂3

δ
[β(S 2

2 − 1) + β(1 − β)δ2
2 − ρ̂(1 − β)δ1δ2]

)]}
, (3.11)

where δ =
√
δ2

1 − 2ρ̂βδ1δ2 + β2δ2
2.

Proof: Using the results of Propositions 2 and 3, straightforward calculations lead to the formulas
(3.8)–(3.11).

4. Numerical analysis

In this section, we present a few numerical examples of our main results in Propositions 2 and
3 above. We first compare the performance of Propositions 2 and 3 with the Monte Carlo (MC)
simulation in Table 1 below. The MC simulation values were used for the benchmark, and accuracy
was measured by the root of mean-squared errors (RMSE) and maximum absolute error (MAE). In
our comparison, we continued to use the same model parameters as the numerical examples in [7].
More specifically, we picked the following model parameters in our numerical tests: r = 0.05, S 10 =

100, S 20 = 96, σ1 = 0.2, and σ2 = 0.1. The MC simulation was implemented by means of the
Euler-Maruyama discretization method. In our numerical experiments, we generated N = 1, 000, 000
sample paths with running on a daily basis. Second, we compared the option prices for the ASOs with
those of the commom spread options. Finally, in order to see the impact of underlying parameters
on approximated prices and delta values, sensitivity analysis was conducted. All the algorithms were
implemented in MatLab (R2018b). The codes for the examples were run in MATLAB R2017a on a
PC with the configuration: Intel(R)Core(TM) i7-8550UCPU@1.80GHz 1.99GHz and 8.0GB RAM.

Table 1 provides the computational results for 33 ASOs with different strike prices. In Table 1,
GASO and AASO are the values obtained by our pricing formulas (3.4) and (3.5), and ‘GMC’ and
‘AMC’ are the values by MC simulations for the ASO on geometric average and arithmetic average,
respectively. The columns labeled “95% C.I.” is the 95% confidence interval for the MC simulation
method. From Table 1, we can see that the approximated formulas in Propositions 2 and 3 gave
highly accurate Asian spread option prices as they were very close to the prices obtained by the MC
simulation. Concretely, the RMSE was less than 3% and the MAE was less than 7% for all cases. In
addition, we observed that the speed of this approximated method was faster than the MC simulation
method. Concretely, the average of the computational time of the MC methods was over 8 seconds,
while the approximated approach took less than 0.008 second. As a result, the approximated formulas
in Propositions 2 and 3 were pretty tight so that they could be used as an excellent approximation.

Table 2 reports comparisons between the ASOs prices and the plain-vanilla spread option prices
derived by Bjerksund and Stensland [7]. As expected, it can be seen from Table 2 that the ASOs prices
were all less than those of the plain-vanilla spread option, and the prices of the ASO with arithmetic
averaging were higher than those of the ASO with geometric averaging under the same parameter
values. In addition, higher strike prices K and higher correlation coefficients ρ led to lower Asian
spread call option prices. This finding was similar to that for the plain-vanilla spread option in Hurd
and Zhou [31], Bjerksund and Stensland [7], and Lo [46]. On the other hand, we also observed that
the prices of the spread options including the ASOs and plain-vanilla spread option increased as the
maturity time T increased, meaning that the maturity had a significant effect on the values of Asian
spread options. Intuitively, the values of Asian spread options depended on the relative performances
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between two underlying assets. This may be explained by the fact that the volatilities of the two
underlying assets in a long time period were larger, so the option price rose.

Table 1. Accuracy comparison of pricing formulas of ASO for the case T = 1 (year).

ρ K GASO GMC 95% C.I. AASO AMC 95% C.I.
-0.5 0.0 7.8154 7.7813 (7.7550, 7.8176) 8.0166 7.9646 (7.9377, 8.0916)

0.4 7.5943 7.5850 (7.5589, 7.6111) 7.7933 7.7667 (7.7400, 7.7934)
0.8 7.3771 7.3602 (7.3346, 7.3859) 7.5740 7.5417 (7.5155, 7.5780)
1.2 7.1638 7.1871 (7.1617, 7.2125) 7.3585 7.3671 (7.3411, 7.3932)
1.6 6.9545 6.9524 (6.9272, 6.9775) 7.1470 7.1317 (7.1059, 7.1575)
2.0 6.7492 6.7358 (6.7111, 6.7605) 6.9393 6.9129 (6.8876, 6.9403)
2.4 6.5478 6.5173 (6.4930, 6.5486) 6.7356 6.6926 (6.6677, 6.7376)
2.8 6.3504 6.3386 [6.3145, 6.3627) 6.5358 6.5136 (6.4888, 6.5383)
3.2 6.1569 6.1572 (6.1335, 6.1809) 6.3400 6.3299 (6.3056, 6.3543)
3.6 5.9674 5.9611 (5.9377, 5.9846) 6.1480 6.1328 (6.1088, 6.1569)
4.0 5.7819 5.7969 (5.7737, 5.8200) 5.9600 5.9673 (5.9435, 5.9911)

0.0 0.0 6.9506 6.9027 (6.8798, 6.9555) 7.1500 7.0812 (7.0578, 7.1546)
0.4 6.7239 6.7127 (6.6900, 6.7353) 6.9209 6.8900 (6.8668, 6.9232)
0.8 6.5019 6.4958 (6.4735, 6.5181) 6.6963 6.6719 (6.6490, 6.6988)
1.2 6.2845 6.2959 (6.2739, 6.3178) 6.4763 6.4711 (6.4485, 6.4936)
1.6 6.0717 6.0639 (6.0423, 6.0855) 6.2609 6.2372 (6.2149, 6.2694)
2.0 5.8637 5.8213 (5.8000, 5.8726) 6.0502 5.9939 (5.9720, 6.0558)
2.4 5.6603 5.6620 (5.6409, 5.6831) 5.8441 5.8320 (5.8103, 5.8537)
2.8 5.4616 5.5168 (5.4960, 5.5376) 5.6426 5.6879 (5.6665, 5.7093)
3.2 5.2676 5.3129 (5.2924, 5.3333) 5.4457 5.4820 (5.4609, 5.5031)
3.6 5.0783 5.0836 (5.0635, 5.1037) 5.2535 5.2491 (5.2284, 5.2699)
4.0 4.8936 4.9114 (4.8916, 4.9311) 5.0659 5.0757 (5.0553, 5.0961)

0.5 0.0 5.9065 5.9083 (5.8896, 5.9270) 6.1050 6.0865 (6.0673, 6.1058)
0.4 5.6695 5.6527 (5.6343, 5.6710) 5.8649 5.8273 (5.8084, 5.8663)
0.8 5.4384 5.4560 (5.4377, 5.4742) 5.6307 5.6294 (5.6106, 5.6482)
1.2 5.2133 5.2160 (5.1981, 5.2339) 5.4023 5.3861 (5.3676, 5.4045)
1.6 4.9942 4.9812 (4.9637, 4.9987) 5.1798 5.1509 (5.1328, 5.1890)
2.0 4.7811 4.7857 (4.7684, 4.8029) 4.9633 4.9523 (4.9345, 4.9702)
2.4 4.5740 4.5887 (4.5718, 4.6056) 4.7527 4.7525 (4.7350, 4.7700)
2.8 4.3729 4.3362 (4.3197, 4.3827) 4.5480 4.4977 (4.4806, 4.5547)
3.2 4.1779 4.1472 (4.1311, 4.1833) 4.3493 4.3057 (4.2890, 4.3524)
3.6 3.9888 3.9790 (3.9632, 3.9949) 4.1566 4.1354 (4.1189, 4.1578)
4.0 3.8057 3.8129 (3.7973, 3.8285) 3.9697 3.9691 (3.9529, 3.9853)

RMSE 0.0222 0.0298
MAE 0.0552 0.0688
Time (se) 0.0192 246.46 0.0273 258.75

AIMS Mathematics Volume 9, Issue 5, 11696–11717.



11707

Table 2. Comparison of ASOs and spread options.

T=1 T=3
ρ K GASO AASO Spread option GASO AASO Spread option
-0.5 0.0 7.8154 8.0166 12.4356 11.0883 11.7499 19.8298

0.4 7.5943 7.7933 12.2317 10.9077 11.5660 19.6595
0.8 7.3771 7.5740 12.0301 10.7290 11.3841 19.4903
1.2 7.1638 7.3585 11.8307 10.5524 11.2041 19.3221
1.6 6.9545 7.1470 11.6336 10.3778 11.0261 19.1551
2.0 6.7492 6.9393 11.4387 10.2052 10.8500 18.9891
2.4 6.5478 6.7356 11.2461 10.0345 10.6759 18.8242
2.8 6.3504 6.5358 11.0557 9.8659 10.5037 18.6604
3.2 6.1569 6.3400 10.8676 9.6993 10.3334 18.4977
3.6 5.9674 6.1480 10.6817 9.5346 10.1651 18.3361
4.0 5.7819 5.9600 10.4981 9.3720 9.9987 18.1756

0.0 0.0 6.9506 7.1500 10.8684 9.6365 10.2755 17.1303
0.4 6.7239 6.9209 10.6620 9.4544 10.0895 16.9603
0.8 6.5019 6.6963 10.4583 9.2745 9.9058 16.7916
1.2 6.2845 6.4763 10.2572 9.0971 9.7244 16.6242
1.6 6.0717 6.2609 10.0589 8.9221 9.5453 16.4581
2.0 5.8637 6.0502 9.8632 8.7494 9.3686 16.2933
2.4 5.6603 5.8441 9.6702 8.5791 9.1941 16.1298
2.8 5.4616 5.6426 9.4798 8.4111 9.0220 15.9675
3.2 5.2676 5.4457 9.2921 8.2455 8.8521 15.8066
3.6 5.0783 5.2535 9.1071 8.0822 8.6845 15.6469
4.0 4.8936 5.0659 8.9247 7.9213 8.5192 15.4885

0.5 0.0 5.9065 6.1050 8.9497 7.8549 8.4637 13.7923
0.4 5.6695 5.8649 8.7386 7.6698 8.2737 13.6229
0.8 5.4384 5.6307 8.5311 7.4877 8.0867 13.4552
1.2 5.2133 5.4023 8.3269 7.3088 7.9027 13.2891
1.6 4.9942 5.1798 8.1263 7.1329 7.7217 13.1248
2.0 4.7811 4.9633 7.9290 6.9601 7.5436 12.9621
2.4 4.5740 4.7527 7.7352 6.7903 7.3685 12.8011
2.8 4.3729 4.5480 7.5449 6.6235 7.1964 12.6417
3.2 4.1779 4.3493 7.3579 6.4598 7.0272 12.4839
3.6 3.9888 4.1566 7.1743 6.2991 6.8609 12.3278
4.0 3.8057 3.9697 6.9942 6.1413 6.6975 12.1733

The impacts of basic parameters on the ASOs prices or their deltas are shown in Figures 1–3,
including the initial values and volatilities of the underlying assets. Figure 1 shows that a larger S 2

results in a larger option price with other parameters being fixed, but the impact of the parameter S 1

on the ASOs price is opposite with a larger S 1 corresponding to a lower option price, where other
parameters are fixed. In other words, a larger difference (S 1 − S 2) based on the two underlying asset
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prices results in a lower price for the ASOs.

(a) GASO (b) AASO

Figure 1. Prices of ASOs against different initial values S 1 and S 2.

Figure 2 depicts the influence of the volatilities σ1 and σ2 of the two underlying assets. The prices
of the ASO options increase with the volatilities. This increases the volatility of the spread and hence
the spread option value.

(a) GASO (b) AASO

Figure 2. Impact of option price for different volatilities σ1 and σ2.

Figure 3 displays the ∆ values of the GASO and AASO against the underlying asset prices S 1 or S 2.
From Figure 3(a), one can observe that the ∆ values of GASO increase as S 1 increases, and become
larger as the strike price K decreases. Contrary to the case of the underlying asset price S 2, the ∆ values
of GASO decrease as S 2 increases and become larger as the strike price K increases. Also, there is a
similar pattern for the ∆ values of AASO with respect to S 2 and K from Figure 3(b).
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Figure 3. ∆ values against different initial values S 1 or S 2.

Figure 4 illustrates the changes in the ∆ value of GASO, AASO, and the spread option with respect
to S 1 or S 2, respectively. We observed that an increase in the initial underlying asset value led to a rise
in the option’s delta value. However, the delta value increased at a slower pace for the spread option
compared to the Asian spread options. This is a result of the average value of the underlying asset over
the entire period, which affected a portion of the option’s delta value and made it less sensitive than in
the case where it was based on the underlying asset’s value at the expiration date.
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Figure 4. Comparison of ∆ values against different initial values S 1 or S 2.
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5. Conclusions

This paper presents a new variety of financial instruments-spread option on two average asset
prices. In virtue of the moment-matching and distribution-approximating techniques, we generalized
the Bjerksund and Stensland [7] approximate of two asset spread option formulas to the case of the
Asian spread options, and obtained the analytical valuation formulas for the Asian spread options on
geometric averaging and arithmetic averaging. Finally, we presented some numerical results. The main
contribution of this paper is to provide practitioners with a pricing formula, which can be used for real-
time pricing of Asian spread options. For example, practitioners might apply the above option pricing
formulas (3.4) and (3.5) to calibrate the model and estimate the model parameters on a set of market
data of European-style Asian spread options by minimizing the difference between market prices and
model prices in a least-squared error fit.

At present, although trading of the options proposed in this paper is very limited in the real market,
financial innovations have become increasingly important to risk management. Creating an option is
unusual and is more likely to occur when academics are involve. Therefore, the Asian spread options
that non-trivially combine the spread option with Asian options obviously provide great value-added
potentials in financial markets. In particular, Asian spread options not only have wide applications in
risk management but also appropriately enter the payoff function of incentive contracts for management
compensation.

There are a few directions that one can take to extend and improve the results in this paper. First,
in the geometric Brownian motions case, our results can be easily extended to incorporate jumps
or stochastic volatility (for example, the Merton jump-diffusion model or the Hull-White stochastic
volatility model) in the price processes of the assets. Second, the approximation method might be
improved for Asian spread options such as using the Edgeworth expansion approach by Kao and
Xie [32], or the method considered in Castellaccia and Siclari [14], who approximate an arithmetic
average with a geometric one by adjusting the strike for the discrepancy. In addition, the formulas
of continuously monitored average Asian spread options can be a good proxy for the corresponding
discrete-type option in cases that are a kind of basket option. We leave these interesting topics for
future research.
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Appendix

Proof of Proposition 2: We define the following event,

A =
{
ω :

G1T

Gα2T

>
ek

E(Gα2T )

}
, (A.1)

and then from (2.4) and (2.5)

A =
{
ω :

S 10e(r− 1
2σ

2
1) T

2 +
σ1
T

∫ T
0 (T−t)dW1t

S α20e(r− 1
2σ

2
2) αT

2 +
ασ2

T

∫ T
0 (T−t)dW2t

>
ek

E(Gα2T )

}
=
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ω :
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T
X1 −

ασ2

T
X2 > ln

k
S 10
−

1
6
α2σ2

2T − (r −
1
2
σ2

1)
T
2

}
, (A.2)

where X1 =
∫ T

0
(T − t)dW1t ∼ N

(
0, T 3

3

)
and X2 =

∫ T

0
(T − t)dW2t ∼ N

(
0, T 3

3

)
. Therefore, following the

idea of Bjerksund and Stensland [7], and [38], we have (G1T − G2T − K)+ ≥ (G1T − G2T − K)1A, and
get a lower bound to the Asian spread options

GAS O(S 1, S 2,K) = E{e−rT (G1T −G2T − K)1A}

= e−rT (I1 − I2 − I3),

where I1 = E{G1T 1A}, I2 = E{G21T 1A} and I3 = KE{1A}. In the following, we adopt Proposition 1 to
derive the expressions of I1–I3 in turn. First, we derive I1 as follows:

I1 = E{G1T 1A} = E
[
S 10e(r− 1

2σ
2
1) T

2 +
σ1
T X11A

]
= E
[
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)]
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6σ
2
1) T

2 N(d1). (A.3)

Similarly, it holds that

I2 = E{G2T 1A} = E
[
S 20e(r− 1

2σ
2
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2 +
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]
= E
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2
1) T

2

)]
= S 20e(r− 1

6σ
2
2) T

2 N(d2), (A.4)

and

I3 = KE{1A}

= KQ
(σ1

T
X1 −

ασ2

T
X2 > ln

k
S 10
−

1
6
α2σ2

2T − (r −
1
2
σ2

1)
T
2

)
= KN(d3). (A.5)

Now, we have completed the proof.
Proof of Proposition 3: Due to the fact that the integral of lognormal distribution no longer obeys
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lognormal distribution, its probability distribution is difficult to determine. In the following, we adopt
the wilkinson approximation of Levy [39] for one-dimensional ln AT with a two-parameter lognormal
distribution to extend the two-dimensional case (ln A1T , ln A2T ) with five-parameter adjoint lognormal
distribution approximation. In this case, we assume that

(ln A1T , ln A2T ) ∼ N2(µ1, µ2, δ
2
1, δ

2
2, ρ̂), (A.6)

where N2(·) denotes the bivariate normal cumulative distribution function. It is obvious that the moment
generating function for the two-dimensional random vector (ln A1T , ln A2T ) is

E(eλ1 ln A1T+λ2 ln A2T ) = exp{λ1µ1 + λ2µ2 +
1
2

(λ2
1δ

2
1 + 2ρ̂λ1λ2δ1δ2 + λ

2
2δ

2
2)},

and it holds then that

E(eln A1T ) = E(A1T ) = exp{µ1 +
1
2
δ2

1},

E(e2 ln A1T ) = E(A2
1T ) = exp{2µ1 + 2δ2

1},

E(eln A2T ) = E(A2T ) = exp{µ2 +
1
2
δ2

2},

E(e2 ln A2T ) = E(A2
2T ) = exp{2µ2 + 2δ2

2},

E(eln A1T+ln A2T ) = E(A1T A2T ) = exp{µ1 + µ2 +
1
2

(δ2
1 + 2ρ̂δ1δ2 + δ

2
2)}.

Therefore, we have the five parameters as follows:

µi = 2 ln E(AiT ) −
1
2

ln E(A2
iT ),

δ2
i = ln E(A2

iT ) − 2 ln E(AiT ), i = 1, 2,

ρ̂ =
2[ln E(A1T A2T ) − (µ1 + µ2)] − (δ2

1 + δ
2
2)

2δ1δ2
,

where E(AiT ) and E(A2
iT ) for i = 1, 2 are defined by (2.6) and (2.7). Now, it is key to compute the

expectation E(A1T A2T ) in the third expression above.
Next, we use the theory of the polynomial diffusion process suggested by Willems [63] to compute

such moment E(A1T A2T ). Since

tAit = S i0

∫ t

0
e(r− 1

2σ
2
i )u+σiWiudu

law
= S i0

∫ t

0
e(r− 1

2σ
2
i )(t−u)+σi(Wit−Wiu)du := S i0 · Zit, (A.7)

for i = 1, 2 and fixed t > 0. Using Ito’s formula, we have

dZit = (1 + rZit)dt + σiZitdWit, i = 1, 2, (A.8)

and Zit, i = 1, 2 are polynomial diffusion processes. So, we know that E(A1T A2T ) = S 10S 20
T 2 E(Z1T Z2T ).

On the other hand, we get

d(Z1tZ2t) = Z1tdZ2t + Z2tdZ1t + dZ1tdZ2t
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= (Z1t + Z2t + 2rZ1tZ2t + ρσ1σ2Z1tZ2t)dt + Z1tZ2t(σ1dW1t + σ2dW2t).

Hence, we have (using Fubini’s theorem)

E(Z1tZ2t) =
∫ t

0

[
E(Z1u) + E(Z2u) + (2r + ρσ1σ2)E(Z1uZ2u)

]
du, (A.9)

where E(Ziu) = ert−1
r , i = 1, 2. it shows that y(t) = E(Z1tZ2t) is the solution of the following ordinary

differential equation { dy(t)
dt − (2r + ρσ1σ2)y(t) = 2 ert−1

r ,

y(0) = 0.
(A.10)

After solving the equation above, we obtain:

E(Z1tZ2t) =
2
r

[e(2r+ρσ1σ2)t − ert

r + ρσ1σ2
−

e(r+ρσ1σ2)t − 1
2r + ρσ1σ2

]
. (A.11)

Finally, similar to the proof of Proposition 2, we calculate the price of the AASO as follows:

B =
{
ω :

A1T

Aβ2T

>
ek̂

E(Aβ2T )

}
=
{
ω : ln A1T − β ln A2T > k̂ − βµ2 −

1
2
β2δ2

2

}
. (A.12)

Thus, the price of the AASO is given by

AAS O(S 1, S 2,K) = E{e−rT (A1T − A2T − K)1B},

= e−rT (Î1 − Î2 − Î3),

where

Î1 = E(A1T 1B) = E
[
eln A1T 1(ln A1T−β ln A2T>ln D2)

]
= eµ1+

1
2 δ

2
1N(d̂1),

Î2 = E(A2T 1B) = E
[
eln A2T 1(ln A1T−β ln A2T>ln D2)

]
= eµ2+

1
2 δ

2
2N(d̂2),

Î3 = KE(1B) = KQ
(
ln A1T − β ln A2T > ln D2

)
= KN(d̂3).

By combining the expressions above, we obtain the stated formulae.
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