In this study, we derived pricing formulas for various forward-start style exotic options based on an uncertain stock models with periodic dividends. Specifically, we present valuations for forward-start, Cliquet/Ratchet, and spread options. In addition, we conducted numerical simulations of these formulas and compared them to pricing formulas for the same options based on a dividend-paying stock model driven by standard Brownian motion.
Citation: Javed Hussain, Saba Shahid, Tareq Saeed. Pricing forward-start style exotic options under uncertain stock models with periodic dividends[J]. AIMS Mathematics, 2024, 9(9): 24934-24954. doi: 10.3934/math.20241215
In this study, we derived pricing formulas for various forward-start style exotic options based on an uncertain stock models with periodic dividends. Specifically, we present valuations for forward-start, Cliquet/Ratchet, and spread options. In addition, we conducted numerical simulations of these formulas and compared them to pricing formulas for the same options based on a dividend-paying stock model driven by standard Brownian motion.
[1] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062 |
[2] | P. Bjerksund, B. Myksvoll, G. Stensland, Managing flexible load contracts: two simple strategies (December 1, 2006), NHH Dept. of Finance & Management Science Discussion Paper No. 2006/20. https://doi.org/10.2139/ssrn.1145206 |
[3] | P. Bjerksund, G. Stensland, Closed form spread option valuation, Quant. Financ., 14 (2014), 1785–1794. https://doi.org/10.1080/14697688.2011.617775 doi: 10.1080/14697688.2011.617775 |
[4] | Z. Brzezniak, T. Zastawniak, Basic stochastic processes, London: Springer, 1999. http://doi.org/10.1007/978-1-4471-0533-6 |
[5] | C. Bernard, W. V. Li, Pricing and hedging of cliquet options and locally capped contracts, SIAM J. Financ. Math., 4 (2013), 353–371. http://doi.org/10.1137/100818157 doi: 10.1137/100818157 |
[6] | G. W. Buetow Jr., Ratchet options, Journal of Financial and Strategic Decisions, 12 (1999), 17–30. |
[7] | G. H. L. Cheang, L. P. D. M. Garces, Representation of exchange option prices under stochastic volatility jump-diffusion dynamics, Quant. Financ., 20 (2020), 291–310. http://doi.org/10.1080/14697688.2019.1655785 doi: 10.1080/14697688.2019.1655785 |
[8] | X. Chen, American option pricing formula for uncertain financial market, International Journal of Operations Research, 8 (2011), 27–32. |
[9] | X. Chen, Y. Liu, D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optim. Dcis. Making, 12 (2013), 111–123. http://doi.org/10.1007/s10700-012-9141-x doi: 10.1007/s10700-012-9141-x |
[10] | L. P. D. M. Garces, G. H. L. Cheang, A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics, Quant. Financ., 21 (2021), 2025–2054. http://doi.org/10.1080/14697688.2021.1926534 doi: 10.1080/14697688.2021.1926534 |
[11] | P. B. Girma, A. S. Paulson, Seasonality in petroleum futures spreads, J. Futures Markets, 18 (1998), 581–598. http://doi.org/10.1002/(sici)1096-9934(199808)18:5<581::aid-fut5>3.0.co;2-1 doi: 10.1002/(sici)1096-9934(199808)18:5<581::aid-fut5>3.0.co;2-1 |
[12] | M. Gaudenzi, A. Zanette, Pricing cliquet options by tree methods, Comput. Manag. Sci, , 8 (2011), 125–135. http://doi.org/10.1007/s10287-009-0109-4 doi: 10.1007/s10287-009-0109-4 |
[13] | J.-H. Guo, M.-W. Hung, A generalization of Rubinstein's "pay now, choose later", J. Futures Markets, 28 (2008), 488–515. http://doi.org/10.1002/fut.20311 doi: 10.1002/fut.20311 |
[14] | Y. Haifeng, Y. Jianqi, L. Limin, Pricing cliquet options in jump-diffusion models, Stoch. Models, 21 (2005), 875–884. http://doi.org/10.1080/15326340500294587 doi: 10.1080/15326340500294587 |
[15] | J. Helwege, J.-Z. Huang, Y. Wang, Liquidity effects in corporate bond spreads, J. Bank. Financ., 45 (2014), 105–116. http://doi.org/10.1016/j.jbankfin.2013.08.018 doi: 10.1016/j.jbankfin.2013.08.018 |
[16] | M. Hess, Cliquet option pricing with Meixner processes, Mod. Stoch.-Theory App., 5 (2018), 81–97. http://doi.org/10.15559/18-VMSTA96 doi: 10.15559/18-VMSTA96 |
[17] | M. Hess, Cliquet option pricing in a jump-diffusion Lévy model, Mod. Stoch.-Theory App., 5 (2018), 317–336. http://doi.org/10.15559/18-vmsta107 doi: 10.15559/18-vmsta107 |
[18] | T. R. Hurd, Z. Zhou, A Fourier transform method for spread option pricing, SIAM J. Financ. Math., 1 (2010), 142–157. http://doi.org/10.1137/090750421 doi: 10.1137/090750421 |
[19] | R. Korn, B. Z. Temoçin, J. Wenzel, Applications of the central limit theorem for pricing Cliquet-style options, Eur. Actuar. J., 7 (2017), 465–480. http://doi.org/10.1007/s13385-017-0158-y doi: 10.1007/s13385-017-0158-y |
[20] | S. Kruse, U. Nögel, On the pricing of forward starting options in Hestons model on stochastic volatility, Finance Stochast., 9 (2005), 233–250. http://doi.org/10.1007/s00780-004-0146-3 doi: 10.1007/s00780-004-0146-3 |
[21] | M. Li, S.-J. Deng, J. Zhoc, Closed-form approximations for spread option prices and Greeks, The Journal of Derivatives, 15 (2008), 58–80. http://doi.org/10.3905/jod.2008.702506 doi: 10.3905/jod.2008.702506 |
[22] | S. Lin, X.-J. He, A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model, Chaos Soliton. Fract., 144 (2021), 110644. http://doi.org/10.1016/j.chaos.2020.110644 doi: 10.1016/j.chaos.2020.110644 |
[23] | B. Liu, Uncertainty theory, In: Uncertainty theory, Berlin, Heidelberg: Springer, 2007,205–234. http://doi.org/10.1007/978-3-540-73165-8_5 |
[24] | B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3–16. |
[25] | Y. H. Liu, M. Ha, Expected value of function of uncertain variables, Journal of Uncertain Systems, 4 (2010), 181–186. |
[26] | R. C. Merton, Theory of rational option pricing, The Bell Journal of Economics and Management Science, 4 (1973), 141–183. http://doi.org/10.2307/3003143 doi: 10.2307/3003143 |
[27] | N. Patel, The evolving art of pricing cliquets, Risk, 15 (2002), 22–24. |
[28] | A. Ramponi, Fourier transform methods for regime-switching jump-diffusions and the pricing of forward starting options, Int. J. Theor. Appl. Fin., 15 (2012), 1250037. http://doi.org/10.1142/s0219024912500379 doi: 10.1142/s0219024912500379 |
[29] | A. Ramponi, Spread option pricing in regime-switching jump diffusion models, Mathamatics, 10 (2022), 1574. http://doi.org/10.3390/math10091574 doi: 10.3390/math10091574 |
[30] | S. M. Ross, An elementary introduction to mathematical finance, Cambridge: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511921483 |
[31] | B. Shi, Z. Zhang, Pricing EIA with cliquet-style guarantees under time-changed Lévy models by frame duality projection, Commun. Nonlinear Sci. Numer. Simulat., 95 (2021), 105651. http://doi.org/10.1016/j.cnsns.2020.105651 doi: 10.1016/j.cnsns.2020.105651 |
[32] | X. Wang, Z. Gao, H. Guo, Uncertain hypothesis testing for two experts' empirical data, Math. Comput. Model., 55 (2012), 1478–1482. http://doi.org/10.1016/j.mcm.2011.10.039 doi: 10.1016/j.mcm.2011.10.039 |
[33] | P. Wilmott, Derivatives: The theory and practice of financial engineering, Wiley, 1998. |
[34] | P. Wilmott, Cliquet options and volatility models, Wilmott Magazine, 2002, 78–83. |
[35] | H. A. Windcliff, P. A. Forsyth, K. R. Vetzal, Numerical methods and volatility models for valuing cliquet options, Applied Mathematical Finance, 13 (2006), 353–386. http://doi.org/10.1080/13504860600839964 doi: 10.1080/13504860600839964 |
[36] | K. Yao, Uncertain calculus with renewal process, Fuzzy Optim. Decis. Making, 11 (2012), 285–297. http://doi.org/10.1007/s10700-012-9132-y doi: 10.1007/s10700-012-9132-y |
[37] | P. G. Zhang, Exotic options: A guide to second generation options, 2 Eds., World Scientific, 1998. |