Conic finance theory, which has been developed over the past decade, replaces classical one-price theory with the bid-ask price economy in option pricing since the one-price principle ignores the bid-ask spread created by market liquidity. Within this framework, we investigate the European option pricing problem when stochastic interest rate, stochastic volatility, and double exponential jump are all taken into account. We show that the corresponding bid and ask prices can be formulated into a semi-analytical form with the Fourier-cosine method once the solution to the characteristic function is obtained. Some interesting properties regarding the new results are displayed via numerical implementation.
Citation: Shoude Huang, Xinjiang He, Shuqu Qian. An analytical approximation of European option prices under a hybrid GARCH-Vasicek model with double exponential jump in the bid-ask price economy[J]. AIMS Mathematics, 2024, 9(5): 11833-11850. doi: 10.3934/math.2024579
Conic finance theory, which has been developed over the past decade, replaces classical one-price theory with the bid-ask price economy in option pricing since the one-price principle ignores the bid-ask spread created by market liquidity. Within this framework, we investigate the European option pricing problem when stochastic interest rate, stochastic volatility, and double exponential jump are all taken into account. We show that the corresponding bid and ask prices can be formulated into a semi-analytical form with the Fourier-cosine method once the solution to the characteristic function is obtained. Some interesting properties regarding the new results are displayed via numerical implementation.
[1] | A. Cherny, D. Madan, New measures for performance evaluation, Rev. Financ. Stud., 22 (2009), 2571–2606. https://doi.org/10.1093/rfs/hhn081 doi: 10.1093/rfs/hhn081 |
[2] | D. B. Madan, A. Cherny, Markets as a counterparty: An introduction to conic finance, Int. J. Theor. Appl. Fin., 13 (2010), 1149–1177. https://doi.org/10.1142/S0219024910006157 doi: 10.1142/S0219024910006157 |
[3] | D. Madan, W. Schoutens, Applied conic finance, Cambridge University Press, 2016. |
[4] | D. B. Madan, W. Schoutens, Conic option pricing, J. Deriv., 25 (2017), 10–36. https://doi.org/10.3905/jod.2017.25.1.010 doi: 10.3905/jod.2017.25.1.010 |
[5] | H. Albrecher, F. Guillaume, W. Schoutens, Implied liquidity: Model sensitivity, J. Empir. Financ., 23 (2013), 48–67. https://doi.org/10.1016/j.jempfin.2013.05.003 doi: 10.1016/j.jempfin.2013.05.003 |
[6] | F. Guillaume, The LIX: A model-independent liquidity index, J. Bank. Financ., 58 (2015), 214–231. https://doi.org/10.1016/j.jbankfin.2015.04.015 doi: 10.1016/j.jbankfin.2015.04.015 |
[7] | F. Mehrdoust, A. R. Najafi, Pricing European options under fractional Black-Scholes model with a weak payoff function, Comput. Econ., 52 (2018), 685–706. https://doi.org/10.1007/s10614-017-9715-3 doi: 10.1007/s10614-017-9715-3 |
[8] | S. Lin, X. J. He, A regime switching fractional Black-Scholes model and European option pricing, Commun. Nonlinear Sci., 85 (2020), 105222. https://doi.org/10.1016/j.cnsns.2020.105222 doi: 10.1016/j.cnsns.2020.105222 |
[9] | S. Hassanzadeh, F. Mehrdoust, European option pricing under multifactor uncertain volatility model, Soft Comput., 24 (2020), 8781–8792. https://doi.org/10.1007/s00500-020-04919-3 doi: 10.1007/s00500-020-04919-3 |
[10] | S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327 |
[11] | X. J. He, S. Lin, A stochastic liquidity risk model with stochastic volatility and its applications to option pricing, Stoch. Models, 2024. Available from: https://doi.org/10.1080/15326349.2024.2332326. |
[12] | P. Christoffersen, K. Jacobs, K. Mimouni, Volatility Dynamics for the S & P 500 dynamics: Evidence from realized volatility, daily returns, and option prices, Rev. Financ. Studies, 23 (2010), 3141–3189. https://doi.org/10.1093/rfs/hhq032 doi: 10.1093/rfs/hhq032 |
[13] | K. Chourdakis, G. Dotsis, Maximum likelihood estimation of non-affine volatility processes, J. Empir. Financ., 18 (2011), 533–545. https://doi.org/10.1016/j.jempfin.2010.10.006 doi: 10.1016/j.jempfin.2010.10.006 |
[14] | A. Kaeck, C. Alexander, Volatility dynamics for the S & P 500: Further evidence from non-affine, multi-factor jump diffusions, J. Bank. Financ., 36 (2012), 3110–3121. https://doi.org/10.1016/j.jbankfin.2012.07.012 doi: 10.1016/j.jbankfin.2012.07.012 |
[15] | R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 3 (1976), 125–144. https://doi.org/10.1016/0304-405X(76)90022-2 doi: 10.1016/0304-405X(76)90022-2 |
[16] | S. G. Kou, A jump-diffusion model for option pricing, Manag. sci., 48 (2002), 955–1101. https://doi.org/10.1287/mnsc.48.8.1086.166 doi: 10.1287/mnsc.48.8.1086.166 |
[17] | F. Mehrdoust, N. Saber, A. R. Najafi, Modeling asset price under two-factor Heston model with jumps, Int. J. Appl. Comput. Math., 3 (2017), 3783–3794. https://doi.org/10.1007/s40819-017-0328-2 doi: 10.1007/s40819-017-0328-2 |
[18] | S. Huang, X. X. Guo, Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump, Chaos Soliton. Fract., 158 (2022), 112003. https://doi.org/10.1016/j.chaos.2022.112003 doi: 10.1016/j.chaos.2022.112003 |
[19] | Z. H. Hu, B. Z. Yang, X. J. He, J. Yue, Equilibrium pricing of European crude oil options with stochastic behaviour and jump risks, Math. Comput. Simulat., 219 (2024), 212–230. https://doi.org/10.1016/j.matcom.2023.12.020 doi: 10.1016/j.matcom.2023.12.020 |
[20] | L. A. Grzelak, C. W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Financ. Math., 2 (2011), 255–286. https://doi.org/10.1137/090756119 doi: 10.1137/090756119 |
[21] | M. C. Recchioni, Y. Sun, An explicitly solvable Heston model with stochastic interest rate, Eur. J. Oper. Res., 249 (2016), 359–377. https://doi.org/10.1016/j.ejor.2015.09.035 doi: 10.1016/j.ejor.2015.09.035 |
[22] | S. N. Chen, P. P. Hsu, Pricing and hedging barrier options under a Markov-modulated double exponential jump diffusion-CIR model, Int. Rev. Econ. Financ., 56 (2018), 330–346. https://doi.org/10.1016/j.iref.2017.11.003 doi: 10.1016/j.iref.2017.11.003 |
[23] | X. J. He, S. P. Zhu, A closed-form pricing formula for European options under the Heston model with stochastic interest rate, J. Comput. Appl. Math., 335 (2018), 323–333. https://doi.org/10.1016/j.cam.2017.12.011 doi: 10.1016/j.cam.2017.12.011 |
[24] | H. Jackson, The international experience with negative policy rates, Bank of Canada, 2015. |
[25] | M. C. Recchioni, Y. Sun, G. Tedeschi, Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model, Quant. Financ., 17 (2017), 1257–1275. https://doi.org/10.1080/14697688.2016.1272763 doi: 10.1080/14697688.2016.1272763 |
[26] | F. Fang, C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput., 31 (2009), 826–848. https://doi.org/10.1137/080718061 doi: 10.1137/080718061 |
[27] | F. Fang, C. W. Oosterlee, Pricing early-exercise and discrete barrier options by fourier-cosine series expansions, Numer. Math., 114 (2009), 27–62. https://doi.org/10.1007/s00211-009-0252-4 doi: 10.1007/s00211-009-0252-4 |
[28] | X. J. He, S. Lin, Analytically pricing European options under a hybrid stochastic volatility and interest rate model with a general correlation structure, J. Futures Markets, 43 (2023), 951–967. https://doi.org/10.1002/fut.22421 doi: 10.1002/fut.22421 |
[29] | X. J. He, S. Lin, Analytically pricing foreign exchange options under a three-factor stochastic volatility and interest rate model: A full correlation structure, Expert Syst. Appl., 246 (2024), 123203. https://doi.org/10.1016/j.eswa.2024.123203 doi: 10.1016/j.eswa.2024.123203 |
[30] | H. J. Wu, Z. L. Jia, S. Q. Yang, C. Liu, Pricing variance swaps under double Heston stochastic volatility model with stochastic interest rate, Probab. Eng. Inform. Sc., 36 (2022), 564–580. https://doi.org/10.1017/S0269964820000662 doi: 10.1017/S0269964820000662 |
[31] | Y. Yang, S. C. Liu, Y. H. Wu, B. Wiwatanapataphee, Pricing of volatility derivatives in a Heston-CIR model with Markov-modulated jump diffusion, J. Comput. Appl. Math., 393 (2021), 113277. https://doi.org/10.1016/j.cam.2020.113277 doi: 10.1016/j.cam.2020.113277 |
[32] | S. Lin, X. J. He, Analytically pricing variance and volatility swaps with stochastic volatility, stochastic equilibrium level and regime switching, Expert Syst. Appl., 217 (2023), 119592. https://doi.org/10.1016/j.eswa.2023.119592 doi: 10.1016/j.eswa.2023.119592 |
[33] | S. Lin, X. M. Lin, X. J. He, Analytically pricing European options with a two-factor Stein-Stein model, J. Comput. Appl. Math., 440 (2024), 115662. https://doi.org/10.1016/j.cam.2023.115662 doi: 10.1016/j.cam.2023.115662 |
[34] | D. Duffie, J. Pan, K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68 (2000), 1343–1376. https://doi.org/10.1111/1468-0262.00164 doi: 10.1111/1468-0262.00164 |
[35] | X. J. He, S. Lin, Analytically pricing exchange options with stochastic liquidity and regime switching, J. Futures Markets, 43 (2023), 662–676. https://doi.org/10.1002/fut.22403 doi: 10.1002/fut.22403 |