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Abstract: Conic finance theory, which has been developed over the past decade, replaces classical
one-price theory with the bid-ask price economy in option pricing since the one-price principle
ignores the bid-ask spread created by market liquidity. Within this framework, we investigate the
European option pricing problem when stochastic interest rate, stochastic volatility, and double
exponential jump are all taken into account. We show that the corresponding bid and ask prices can
be formulated into a semi-analytical form with the Fourier-cosine method once the solution to the
characteristic function is obtained. Some interesting properties regarding the new results are displayed
via numerical implementation.
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1. Introduction

Most of the existing option pricing models assume that the market is frictionless and completely
liquid, which leads to the situation that the bid and ask prices are treated as the same when pricing
various options. However, there are two kinds of prices listed in real markets, i.e., bid and ask
prices. The former refers to the price at which traders sell options, while the latter represents the
one at which traders buy options. This prompted the development of conic finance theory [1–4],
which acknowledges the non-uniqueness of market prices. It basically assumes that the market
acts as a central counterparty; it sells and buys assets at ask price and bid price, respectively. The
difference between ask and bid prices is usually called the bid-ask spread, which is an indication of the
market liquidity.
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In fact, the issue of liquidity has already become a hot topic in the area of risk management and
has attracted a lot of research attention on the bid-ask economy. Madan and Cherny [2] solved bid and
ask prices of European options analytically under a market liquidity model after introducing a single
market stress level. However, a number of authors used market data to further study the model and
found that the implied market liquidity is not constant, which is far from the assumption in Madan
and Cherny’s conic option pricing model [5, 6]. It should be pointed out that the underlying asset
price in the above literature is modeled by the simplest geometric Brownian motion (GBM) in order to
obtain the explicit forms of the distribution function so that bid and ask prices can be further derived
by numerical methods.

It is well known that the GBM is not suitable for describing the price process of the underlying
asset since the so-called implied volatility smile or skew has been widely observed. Many studies have
extended the GBM model. Mehrdoust and Najafi [7] studied European option pricing under a fractional
Black-Scholes model with a weak payoff function. Lin and He [8] proposed a regime switching
fractional Black-Scholes model and obtained the European option pricing formula. Hassanzadeh and
Mehrdoust [9] investigated option pricing under a multifactor uncertain volatility model. Nevertheless,
one of the most famous modifications is the Heston stochastic volatility model [10], and there are also
various modifications to the Heston model [11]. It should be noted that the Heston model with the
square root specification cannot describe the nonlinear characteristics of financial time series well in
practical applications, although it brings great convenience due to the analytical pricing formula of
options. Thus, alternative models have been established, among which the GARCH diffusion model
has received increasing attention. This is because the GARCH diffusion model is shown to be able to
better describe financial time series [12, 13]. We refer interested readers to Kaeck and Alexander [14]
and the references therein for more details on the results associated with the GARCH diffusion model.

On the other hand, the jump-diffusion model represents a refinement of the GBM process, as
it effectively captures the discontinuous changes in the underlying stock returns [15]. Moreover,
the double exponential jump-diffusion model proposed by Kou [16] is able to reflect high levels of
skewness and leptokurtosis exhibited by financial data. Due to its analytical tractability, this model
has received great attention from academia and industry ever since it was put forward. For example,
Mehrdoust et al. [17] presented the valuation for European options by adding jumps into the Bi-Heston
model. Huang and Guo [18] got the semi-analytic solution of vulnerable options by assuming that the
price process of the underlying asset follows non-affine stochastic volatility with double exponential
jump. Considering the stochastic behaviour and jump risks, Hu et al. [19] investigated the pricing of
European crude oil options. Moreover, we should be aware that the spot interest rate plays a decisive
role in modern financial industry and it changes stochastically in the market. Grzelak et al. [20],
Recchioni and Sun [21], and Chen et al. [22] proved that it performs much better if the option pricing
model replaces the constant interest rate with a stochastic one. Although He and Zhu [23] presented
a closed-form series solution to European option prices when the volatility and interest rate are both
stochastic, which is appealing, their assumption of the CIR interest rate model prevents the interest
rate from going negative. This is inconsistent with actual situations, as the short-term government
bond markets of the USA and Europe have already witnessed negative interest rates [24]. It was even
claimed by Recchioni et al. [25] that models allowing interest rates to take negative values are able to
improve the performance of option pricing and implied volatility forecasting.

Considering all the features discussed above that are able to help improve model performance, we
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incorporate the Vasicek stochastic interest rate and double exponential jump into the GARCH diffusion
model when pricing options in the bid-ask price economy. However, the probability distribution of
the log-price process cannot be analytically obtained due to the complexity of the adopted dynamic
processes. Fortunately, with the help of the Fourier-cosine method, or the COS method* [26, 27], we
are able to derive the probability density function by making use of the corresponding characteristic
function. Once the density function is obtained, bid and ask prices can be straightforwardly computed
with some numerical schemes, including Gaussian quadrature. The accuracy of our proposed approach
is verified via numerical comparison with the Monte Carlo simulation, and the sensitivity analysis is
also performed so that the effect of the market liquidity parameter on bid and ask prices is clear.

The remainder of the paper is as follows. Section 2 presents a hybrid option pricing model
combining the Vasicek stochastic interest rate, GARCH diffusion volatility model, and double
exponential jump together. An approximation to the characteristic function is derived in Section 3.
In Section 4, using the Fourier cosine method, we obtain the density function of the underlying log-
price, and, further, we derive bid-ask prices of European options. Results of numerical experiments are
provided in Section 5, with the last section concluding the article.

2. Model specification

Consider a filtered probability space
{
Ω,F , {Ft}0≤t≤T ,Q

}
, with Q being a risk-neutral probability

measure. We assume that the market is frictionless, i.e., there are no transaction costs and the assets
can be traded continuously. The underlying asset price process S t, the volatility process vt, and the
stochastic interest rate process rt under Q are

dS t

S t−
= (rt − λm) dt +

√
vtdWs(t) +

(
eJ − 1

)
dNt, (2.1)

dvt = kv (θv − vt) dt + σvvtdWv(t), (2.2)
drt = kr (θr − rt) dt + σrdWr(t), (2.3)

with dWs(t)dWv(t) = ρdt. It should be pointed out that the model can be more sophisticated if one
incorporates the correlation between the underlying price and interest rate. However, introducing such
correlation could break down the analytical tractability according to a number of different literature [20,
28–31]. Thus, it remains an open question on how to effectively price options with the incorporation
of such correlation, and we would like to leave this to future work. The mean reversion speed is
denoted by κv, while θv and σv respectively represent the long-run mean and instantaneous volatility of
volatility. λ is the constant intensity of the Poisson process Nt. We have that m = EQ(eJ − 1), where J
is the jump size following an asymmetric double exponential distribution whose density function can
be presented as

f (J) = pη1e−η1 J1{J≥0} + qη2eη2 J1{J<0}, η1 > 1, η2 > 0,

where p and q respectively represent the probability of jumping upward and that of jumping downward,
with p + q = 1. This further implies that m =

pη1
η1−1 +

qη2
η2+1 − 1.

*The COS method has been widely used in European and American options pricing due to its simplicity, high pricing accuracy, and
high computational efficiency. The central idea of the COS method is to reconstruct the density function by the characteristic function
of log-price.
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Due to the existence of the stochastic interest rate, it is a natural treatment to make a measure
transform to convert the price dynamics of the underlying asset under the original measure Q into
those under the T-forward measure QT . In order to achieve this, we need to choose the T-discount bond
price as the numeraire, which will be provided below. In particular, if we denote P(t,T ) as the price of
a risk-free zero-coupon bond maturing at time T , when the evolution of rt follows Eq (2.3), the P(t,T )
can be formulated as

P(t,T ) = exp {Ar(τ) − Br(τ)r(t)} ,

where

τ = T − t, B(τ) =
1 − e−krτ

kr
,

and

A(τ) =
σ2

r − 2k2
r θr

2k2
r

τ +
k2

r θr − σ
2
r

k2
r

Br(τ) +
σ2

r

4k2
r

Br(2τ).

The measure changing from the risk-neutral probability measure Q to the T-forward measure QT can
be established by the following Radon-Nikodym derivative:

dQT

dQ
| FT = Θ(T ),

where

Θ(T ) =

exp
(
−

∫ T

t
r(z)dz

)
E

[
exp

(
−

∫ T

t
r(z)dz

)
| Ft

]
= exp

{
−

1
kr

∫ T

t

(
1 − e−kr(T−z)

)
σrdWr(z)

−
1

2k2
r

∫ T

t

(
1 − e−kr(T−z)

)2
σ2

r dz
}
.

Thus, we can express the target model dynamics under QT as

dS t

S t−
= (rt − λm) dt +

√
vtdWT

s (t) +
(
eJ − 1

)
dNt, (2.4)

dvt = kv (θv − vt) dt + σvvt

(
ρdWs(t) +

√(
1 − ρ2)dW⊥

v (t)
)
, (2.5)

drt =
(
krθr − σ

2
r Br(τ) − krrt

)
dt + σrdWr(t), (2.6)

where dWv(t)dW⊥
v (t) = 0.

Letting xt = lnS t, we can transform Eqs (2.4)–(2.6) into the following form:

dxt = (r −
vt

2
− λm)dt +

√
vtdWs(t) + (J − 1)dNt, (2.7)

dvt = kv(θ − vt)dt + σvt

(
ρdWs(t) +

√(
1 − ρ2)dW⊥

v (t)
)
, (2.8)

drt =
(
krθr − σ

2
r Br(τ) − krrt

)
dt + σrdWr(t). (2.9)
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3. The pricing of European options in bid-ask price economy

3.1. The COS method

In this subsection, the COS method is briefly introduced for the completeness of the paper. It is
well-known that the price P(x, t) of a European option at time t is an expectation under the risk neutral
measure according to the classic option pricing theory [32], which does not take bid-ask spread into
account, i.e.,

P(x, t) = e−r(T−t)E[P(y,T ) | x] = e−r(T−t)
∫
R

P(y,T ) f (y | x)dy,

where x = lnS t, y = lnS T , r is the risk-free rate, and T is the maturity time. f (y|x) is the probability
density function of the underlying process, and P(y,T ) is the payoff function of the option at maturity.

Without significantly losing accuracy, given the special choice of [a, b], we can obtain

P(x, t) ≈ e−r(T−t)
∫ b

a
P(y,T ) f (y | x)dy.

The key point of the COS method is that the density f (y|x), which is unknown in most cases, is
approximated by a Fourier-cosine series expansion on [a, b], i.e.,

f (y | x) =

+∞∑
k=0

Ak(x) cos
(
kπ

y − a
b − a

)
,

where Ak(x) = 2
b−a

∫ b

a
f (y | x) cos

(
kπ y−a

b−a

)
dy, for k = 0, 1, . . . ,N − 1.

As a result,

P(x, t) = e−r(T−t)
∫ b

a
P(y,T )

+∞∑
k=0

Ak(x) cos
(
kπ

y − a
b − a

)
dy

=
1
2

(b − a)e−r(T−t)
+∞∑
k=0

Ak(x)Vk

≈
1
2

(b − a)e−r(T−t)
N−1∑′

k=0

Ak(x)Vk,

where Vk = 2
b−a

∫ b

a
P(y,T ) cos

(
kπ y−a

b−a

)
dy, and the prime of

∑′ is used to indicate that the first term of
the summation should be multiplied by a weight of 1/2.

Meanwhile, Ak(x) ≈ Fk(x). Since

Φ1(ω) =

∫ b

a
eiωx f (x)dx ≈

∫
R

eiωx f (x)dx = Φ(ω),

we have

Ak(x) =
2

b − a

∫ b

a
f (y | x) cos

(
kπ

y − a
b − a

)
dy
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=
2

b − a
Re

{
Φ1

(
kπ

b − a
; x

)
· exp

(
−i

kaπ
b − a

)}
,

Fk(x) =
2

b − a
Re

{
Φ

(
kπ

b − a

)
· exp

(
−i

kaπ
b − a

)}
,

where Re{·} is an operator to take the real part.
In summary,

P(x, t) ≈ e−r(T−t)
N−1∑′

k=0

Re
{

Φ

(
kπ

b − a
; x

)
e−ikπ a

b−a

}
Vk,

where Φ is the characteristic function. Detailed contents about the COS method can be found in Fang
and Oosterlee [26].

3.2. The joint characteristic function

This subsection presents the joint characteristic function of the underlying log-price, stochastic
volatility, and stochastic interest rate. The following theorem provides the solution to the joint
characteristic function under the T-forward measure QT .

Theorem 3.1. Given that the underlying asset price follows the dynamics in Eqs (2.7)–(2.9), the
characteristic function for xT is given by

Φ(x, v, r, τ; u) = exp{iux + C(τ, u)v + D(τ, u)r + E(τ, u)|x = xt, v = vt, r = rt},

where
C(τ, u) =α0

1 − e−ατ

−β2 + β1e−ατ
,

D(τ, u) =
iu
kr

{
1 − exp (−krτ)

}
,

E(τ, u) = −
1
2
θvC(τ, u) −

α3

α2

[
β1τ + ln

(
−β2 + β1e−ατ

α

)]
−

1
4

(
iuθv + u2θv

)
τ − λmiuτ + H(τ, u),

with

α0 = −
1
2

(iu + u2), α1 =
3
2

iuσvρθ
1
2
v − kv,

α2 = θvσ
2
v , β1 =

α1 + α

2
, β2 =

α1 − α

2
,

α =

√
α2

1 − 4α0α2, α3 =
1
4
ρσviuθ

3
2
v +

1
2

kvθv,

H(τ, u) = λΛ(u)τ +

(
iuθr −

1
k2

r

(
iuσ2

r +
1
2

u2σ2
r

))
τ +

iukrθr

k2
r

e−krτ +
1
k3

r

(
iuσ2

r

+
1
2

u2σ2
r

) (
1
2

e−2krτ − 2e−krτ

)
+

3
2k3

r

(
iuσ2

r +
1
2

u2σ2
r

)
−

iukrθr

k2
r
,

AIMS Mathematics Volume 9, Issue 5, 11833–11850.



11839

and T ≥ t, τ = T − t, i =
√
−1, Λ(u) =

pη1
η1−iu +

qη2
η2+iu − 1.

Proof. By applying the Feynman-Kac theorem, Φ(x, v, r, τ; u) satisfies the following partial integral-
differential equation (PIDE):

−
∂Φ

∂τ
+ (r −

v
2
− λm)

∂Φ

∂x
+

v
2
∂2Φ

∂x2 + kv(θv − v)
∂Φ

∂v
+

1
2
σ2

vv2∂
2Φ

∂v2 +
1
2
σ2

r
∂2Φ

∂r2

+ v
3
2σvρ

∂2Φ

∂x∂v
+

(
krθr − σ

2
r Br(τ) − krr

) ∂Φ

∂r
+ λ

∫ +∞

−∞

[Φ(x + J) − Φ(x)] f (J)dJ

= 0. (3.1)

The boundary condition for Eq (3.1) is given by

Φ(x, v, r, 0; u) = eiuxT .

According to several different studies [33–35], this PIDE has an exponential-affine solution of
the form

Φ(x, v, r, τ; u) = exp{iux + C(τ, u)v + D(τ, u)r + E(τ, u)},

with boundary conditions
C(0, u) = D(0, u) = E(0, u) = 0.

Moreover, ∫ +∞

−∞

[Φ(x + J) − Φ(x)] f (J)dJ =

∫ +∞

−∞

[
EQ

[
eiu(x+J)

]
− EQ

[
eiux

]]
f (J)dJ

=

∫ +∞

−∞

[
EQ

[
eiux

(
eiuJ − 1

)]]
f (J)dJ

=

∫ +∞

−∞

EQ
[
eiux

]
EQ

[
eiuJ − 1

]
f (J)dJ

= Φ(x, v, r, τ; u)Λ(u), (3.2)

where Λ(u) =
pη1
η1−iu +

qη2
η2+iu − 1.

Equation (3.1) is very difficult to solve since it is a nonlinear PDE, and thus we first linearize it
approximately. The idea is to approximate v

3
2 , v2 in the PIDE using Taylor expansions around the

long-run mean of variance as follows:

v2 = 2θvv − θ2
v , (3.3)

v
3
2 =

3
2
θ

1
2
v v −

1
2
θ

3
2
v . (3.4)

With the substitution of Eqs (3.2)–(3.4) into PDE (3.1), we obtain

− (
∂C
∂τ

v +
∂D
∂τ

r +
∂E
∂τ

) + (rt − λm −
v
2

)iu +
1
2

v(iu)2 + kv(θv − v)C

+
1
2
σ2

r D2 +
(
krθr − σ

2
r Br(τ) − krr

)
D + (

3
2
θ

1
2
v v −

1
2
θ

3
2
v )σvρiuC + λΛ(u)

+
σ2

v

2
(2θvv − θ2

v)C2 = 0.
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Denote
G(τ, u) = λΛ(u) +

1
2
σ2

r D2 +
(
krθr − σ

2
r Br(τ)

)
D.

Then, by matching coefficients, we can derive the following three ordinary differential equations:
∂C
∂τ

= σ2
vθvC2 + (

3
2
θ

1
2
v σvρiu − kv)C −

1
2

(iu + u2), (3.5)

∂D
∂τ

= iu − krD, (3.6)

∂E
∂τ

= −λmiu + kvθvC −
1
2
σ2

vθ
2
vC2 −

1
2
σvρθ

3
2
v iuC + G(τ, u). (3.7)

According to the boundary condition D(0, u) = 0, we obtain

D(τ, u) =
iu
kr

{
1 − exp (−krτ)

}
.

Equation (3.5) is a Riccati equation, whose general solution can be presented as

C(τ, u) = α0
1 − e−ατ

−β2 + β1e−ατ
,

where

α0 = −
1
2

(iu + u2), α1 =
3
2

iuσvρθ
1
2
v − kv,

α2 = θvσ
2
v , β1 =

α1 + α

2
, β2 =

α1 − α

2
,

α =

√
α2

1 − 4α0α2.

From Eq (3.5), we can rewrite Eq (3.7) as
∂E
∂τ

= −
θv

2
∂C
∂τ

+ (
1
4
ρσviuθ

3
2
v +

1
2

kvθv)C −
1
4

(
iuθv + u2θv

)
+ G(τ, u) − λmiu.

Integrating both sides of the above-mentioned equation, we have the following result:

E(τ, u) = −
1
2
θvC(τ, u) −

α3

α2

[
β1τ + ln

(
−β2 + β1e−ατ

α

)]
−

1
4

(
iuθv + u2θv

)
τ − λmiuτ + H(τ, u),

where

α3 =
1
4
ρσviuθ

3
2
v +

1
2

kvθv,

H(τ, u) =

(
iukrθr

a
−

1
k2

r

(
iuσ2

r +
1
2

u2σ2
r

))
τ +

iukrθr

k2
r

e−krτ

+
1
k3

r

(
iuσ2

r +
1
2

u2σ2
r

) (
1
2

e−2krτ − 2e−krτ

)
+ λΛ(u)τ

+
3

2k3
r

(
iuσ2

r +
1
2

u2σ2
r

)
−

iukrθr

k2
r
.

Combining (13) and the above two expressions, Theorem 3.1 follows. �
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3.3. Option pricing in the bid-ask price economy

According to conic finance theory, there are two types of market prices. The minimal acceptable
price for selling a claim X is known as the ask price aγ(X), while the maximal acceptable price for
purchasing the claim is referred to as the bid price bγ(X). Then, the following lemma should be
introduced. For more detailed information, one can refer to [1–4].

Lemma 3.1. If we assume that X represents the cashflow of the claim at its expiry time T , the ask and
bid prices of the claim are respectively determined by

aγ(X) = inf
{
a : EΨγ

[a − exp(−rT )X] > 0
}

= − exp(−rT )EΨγ
[−X]

= − exp(−rT )
∫ +∞

−∞

xdΨγ (F−X(x))

= − exp(−rT )
[∫ 0

−∞

(
1 − Ψγ (1 − FX(x))

)
dx

+

∫ +∞

0
Ψγ (1 − FX(x)) dx

]
,

and
bγ(X) = sup

{
b : EΨγ

[exp(−rT )X − b] > 0
}

= exp(−rT )EΨγ
[X]

= exp(−rT )
∫ +∞

−∞

xdΨγ (FX(x))

= exp(−rT )
[
−

∫ 0

−∞

Ψγ (FX(x)) dx +

∫ +∞

0

(
1 − Ψγ (FX(x))

)
dx

]
,

where r is the risk-free interest rate, Ψ is the probability distortion function, γ denotes the degree of
the distortion, and FX(x) is the distribution of random X. In addition,according to Lemma 3.1, the ask
and bid prices for European call options will be shown in the following theorem.

Theorem 3.2. Given the MINMAXVAR distortion function, i.e., Ψγ(w) = 1 −
(
1 − w

1
1+γ

)1+γ
, γ >

0, w ∈ [0, 1], it follows from Eqs (2.1)–(2.3) that the ask and bid prices for European call options
can be expressed as

aγ(C) = P(t,T )
∫ +∞

K
1 −

(
1 − (1 − FS (x))

1
1+γ

)1+γ
dx,

bγ(C) = P(t,T )
∫ +∞

K

(
1 − (FS (x))

1
1+γ

)1+γ
dx,

where

FS (x) = Fln S (ln x)

=
1
2

Ã0(ln x − a) +
b − a
π

N−1∑
k=1

Ãk

k
sin

(
kπ

ln x − a
b − a

)
,
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with Ã0 = 2
b−a Re{Φ(0)}. K denotes the strike price of the option, while aγ(C) and bγ(C) represent the

ask and bid prices for the option, respectively.
Proof. We can reconstruct the density function fln S of the random variable, i.e., the log-asset price

ln S T with a truncated region [a, b] using the results provided by Fang and Oosterlee [26] as

fln S (x) ≈
2

b − a

N−1∑′

k=0

Re
{

Φ

(
kπ

b − a

)
eikπ x−a

b−a

}
cos

(
kπ

x − a
b − a

)
, (3.8)

where Φ{·} is the characteristic function of the density function f (x), which is obtained in Theorem 3.1,
and Re{·} is an operator to take the real part. It should be noted that the prime of

∑′ is used to alert that
the first term of the summation should be multiplied by a weight of 1/2.

Meanwhile, let

Ãk =
2

b − a
Re

{
Φ

(
kπ

b − a

)
eikπ x−a

b−a

}
, k = 1, 2, . . . ,N − 1,

where Φ{·} is the characteristic function of the density function f (x) which is obtained in Theorem 3.1.
Then, the distribution function Fln S of the log-asset price ln S T is given by

Fln S (y) =

∫ y

−∞

fln S (x)dy

≈

∫ y

a
fln S (x)dy

=
1
2

Ã0(y − a) +
b − a
π

N−1∑
k=1

Ãk

k
sin

(
kπ

y − a
b − a

)
.

As a result, the distribution function FS of the underlying price S T can be directly obtained through

FS (x) = Fln S (ln x)

=
1
2

Ã0(ln x − a) +
b − a
π

N−1∑
k=1

Ãk

k
sin

(
kπ

ln x − a
b − a

)
. (3.9)

By employing Lemma 3.1 and the MINMAXVAR distortion function, European call ask and bid
prices can be respectively expressed as

aγ(C) = P(t,T )
∫ +∞

K
1 −

(
1 − (1 − FS (x))

1
1+γ

)1+γ
dx,

bγ(C) = P(t,T )
∫ +∞

K

(
1 − (FS (x))

1
1+γ

)1+γ
dx,

where the formula of FS (x) is provided in Eq (3.9). �
Following Theorem 3.2, we can obtain the ask and bid prices of European put options as the

following corollary.
Corollary 3.1 If the European put option is also controlled by the stochastic differential
equations (2.1)–(2.3), given the same distortion function in Theorem 3.2 and utilizing a similar
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derivation, the ask and bid prices of European put options can be expressed as

aγ(P) = P(t,T )
∫ K

0
Ψγ (FS (x)) dx

= P(t,T )
∫ K

0
1 −

(
1 − (FS (x))

1
1+γ

)1+γ
dx,

bγ(P) = P(t,T )
∫ K

0

(
1 − Ψγ (1 − FS (x))

)
dx

= P(t,T )
∫ K

0

(
1 − (1 − FS (x))

1
1+γ

)1+γ
dx.

It should be remarked that the integrals involved in ask and bid prices given by Theorem 3.2 and
Corollary 3.1 can be numerically computed with the Gaussian quadrature, which is one of the best
quadratures with a high degree of accuracy and efficiency. This can be very easily implemented by the
MATLAB built-in function quadgk, which ensures the speed for the implementation of the proposed
approximation method when calculating ask and bid prices.

4. Numerical analysis

4.1. Accuracy analysis

In this subsection, we benchmark our results by making use of a Monte Carlo (hereafter, MC)
simulation. All the computation is implemented using MATLAB 2016a on a computer equipped with
an Intel Core i3 CPU @ 2.53 GHz.

First, we follow Fang and Oosterlee [18,19] to select [a, b] as

[a, b] =

[
c1 + x0 − L

√
c2 +

√
c4, c1 + x0 + L

√
c2 +

√
c4

]
,

when computing our approximation formula, where x0 = ln S 0, L = 10, and cn is the n-th cumulant
of lnS T .

Moreover, each sample path in the MC simulation is generated with the time interval being
uniformly divided containing M1 = 252 points, and we use M2 = 100, 000 as the number of sample
paths. If the payoff produced by the i-th sample path is denoted by payoff(i), i = 1, 2, · · · ,M2, we
can obtain

bid = P(t,T )
M2∑
i=1

[
Ψγ

(
i

M2

)
− Ψγ

(
i − 1
M2

)]
payoff (i),

and

ask = P(t,T )
M2∑
i=1

[
Ψγ

(
M2 − i + 1

M2

)
− Ψγ

(
M2 − i

M2

)]
payoff (i),

In addition, we utilize a discrete scheme of stochastic differential equations (2.1)–(2.3) as follows:

S (t+∆t) =S t + S t((r − λm) ∆t +
√

vtε1

√
∆t +

(
eJ1 − 1

)
(N(t+∆t) − Nt),

v(t+∆t) =vt + kv (θv − vt) ∆t + σvvt

(
ρε1 +

√
1 − ρ2ε2

) √
∆t,

r(t+∆t) =rt + kr (θr − rt) ∆t + σrε3

√
∆t,
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where ∆t = T
252 , εi ∼ N(0, 1), i = 1, . . . , 3, and ε1, ε2, ε3 are independent of each other. N(t) is a Poisson

process with parameter λ. Then,

payoff (i) = max{S i,T − K, 0},

where S i,T is the price of the underlying asset which is produced by the i-th sample path at the maturity
time T .

With the values of other parameters provided in Table 1, bid and ask prices of European call options
are shown in Tables 2 and 3 with different values of strike prices, respectively. The absolute relative
error (Abs.R.E.) is defined as

Abs.R.E. =
|Pcos − Pmc|

Pmc
× 100%.

Table 1. Parameter values for the numerical experiments.

Parameter r0 λ kv θv σv kr θr γ S 0

value 0.05 3 1.15 0.3 0.2 0.75 0.1 0.25 1
Parameter p1 η1 η2 σr ρ K T v0

value 0.3 10 5 0.25 0.7 1.5 1 0.25

Table 2. Comparisons of the CPU time and accuracy for Fourier-cosine method and the
Monte Carlo simulation of the bid price of European call options.

K T-t F.C. method MC Simulation Abs.R.E.
0.9 1/4 0.1100 0.1050 4.61%
0.9 1/2 0.1282 0.1332 3.75%

cpu time(sec) — 2.133 8.949 —
1 1/4 0.0714 0.0676 5.62%
1 1/2 0.0998 0.0958 4.17%

cpu time(sec) — 2.128 8.817 —
1.1 1/4 0.0447 0.0421 6.18%
1.1 1/2 0.0742 0.0711 4.36%

cpu time (sec) — 2.123 8.569 —
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Table 3. Comparisons of the CPU time and accuracy for Fourier-cosine method and the
Monte Carlo simulation of the ask price of European call options.

K T-t F.C. method MC Simulation Abs.R.E.
0.9 1/4 0.2922 0.2857 2.28%
0.9 1/2 0.3931 0.3980 1.23%

cpu time(sec) — 2.813 8.443 —
1 1/4 0.2235 0.2179 2.57%
1 1/2 0.3349 0.3306 1.30%

cpu time(sec) — 2.798 8.689 —
1.1 1/4 0.1671 0.1627 2.70%
1.1 1/2 0.2801 0.2767 1.22%

cpu time (sec) — 2.832 8.784 —

One should note that the results derived with our analytical approximation and those from the MC
simulation are close to each other, which is a clear indication that the approximation is of high accuracy.
Meanwhile, Figure 1 shows how the bid-ask prices of European call options change with different
sample paths M2. It shows that the results of MC simulation usually fluctuate within a confidence
interval. It also indicates that the results of MC simulation and our approach get close to each other as
the number of paths increases.

(a) The bid prices (b) The ask prices

Figure 1. The European call option price under different sample paths M2.

4.2. Sensitivity analysis

In this subsection, the impact of parameter changes on bid and ask prices will be investigated, with
a focus on: (i) The long-run mean level γ; (ii) The jump intensity λ and time to maturity T − t; (iii) The
long-run mean level θv and θr.

The effect of different γ on the bid-ask prices of European call options are shown in Figure 2.
We find that, as the market liquidity indicator γ increases, or equivalently the liquidity of the market
becomes lower, the bid-ask spread becomes larger and cannot be ignored. As γ approaches 0, the
bid and ask prices will converge to a single price. This shows it is reasonable to consider the market
liquidity in option pricing.
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Figure 2. European call option price with different γ.

Figure 3 demonstrates how European option prices are affected by different λ and T − t. Both bid
and ask prices increase with the time to maturity, which is consistent with financial intuition since
longer time implies larger time values of options. Larger jump intensity also contributes to greater
option prices, since the underlying asset price becomes more volatile when there are possibly more
jumps, which leads to higher risks and larger option premiums.

(a) The bid prices (b) The ask prices

Figure 3. European call option price under different λ and T − t.

What is plotted in Figure 4 is the influence of θv and θr on European option prices. It is clear that
both θv and θr have a positive impact on European call option prices. This is reasonable since bigger
θv means that the underlying asset prices are more volatile in the long run. Also, bigger θr indicates
that the expected return of the underlying asset under the risk-neutral world is larger. Both will lead to
higher option premiums.
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(a) The bid prices (b) The ask prices

Figure 4. European call option price under different θv and θr.

5. Conclusions

This article aims to develop a pricing framework for European options within a hybrid GARCH-
Vasicek model incorporating double exponential jumps in the bid-ask price economy. We derive
analytical formulas for calculating bid and ask prices of European options utilizing the COS method,
employing an approximation approach to obtain the characteristic function. We have also shown how
both bid and ask prices vary with different values of parameters.
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