Research article

A kind of even order Bernoulli-type operator with bivariate Shepard

  • Received: 13 March 2023 Revised: 15 April 2023 Accepted: 18 April 2023 Published: 26 April 2023
  • MSC : 41A05, 65D05, 65D15

  • It is known that an efficient method for interpolation of very large scattered data sets is the method of Shepard. Unfortunately, it reproduces only the constants. In this paper, we first generalize an expansion in bivariate even order Bernoulli polynomials for real functions possessing a sufficient number of derivatives. Finally, by combining the known Shepard operator with the even order Bernoulli bivariate operator, we construct a kind of new approximated operator satisfying the higher order polynomial reproducibility. We study this combined operator and give some error bounds in terms of the modulus of continuity of high order and also with Peano's theorem. Numerical comparisons show that this new technique provides the higher degree of accuracy. Furthermore, the advantage of our method is that the algorithm is very simple and easy to implement.

    Citation: Ruifeng Wu. A kind of even order Bernoulli-type operator with bivariate Shepard[J]. AIMS Mathematics, 2023, 8(7): 15299-15316. doi: 10.3934/math.2023782

    Related Papers:

  • It is known that an efficient method for interpolation of very large scattered data sets is the method of Shepard. Unfortunately, it reproduces only the constants. In this paper, we first generalize an expansion in bivariate even order Bernoulli polynomials for real functions possessing a sufficient number of derivatives. Finally, by combining the known Shepard operator with the even order Bernoulli bivariate operator, we construct a kind of new approximated operator satisfying the higher order polynomial reproducibility. We study this combined operator and give some error bounds in terms of the modulus of continuity of high order and also with Peano's theorem. Numerical comparisons show that this new technique provides the higher degree of accuracy. Furthermore, the advantage of our method is that the algorithm is very simple and easy to implement.



    加载中


    [1] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 23rd ACM National Conference, (1968), 517–524. https://doi.org/10.1145/800186.810616
    [2] Gh. Coman, L. Ţ$\hat{ a }$mbulea, A Shepard-Taylor approximation formula, Studia Univ. Babeş-Bolyai Math., 33 (1998), 65–73.
    [3] Gh. Coman, R. T. Trîmbiţaş, Combined Shepard univariate operators, East J. Approx., 7 (2001), 471–483.
    [4] R. Farwig, Rate of convergence of Shepard's global interpolation formula, Math. Comp., 46 (1986), 577–590. https://doi.org/10.1090/S0025-5718-1986-0829627-0 doi: 10.1090/S0025-5718-1986-0829627-0
    [5] Gh. Coman, R.T. Trîmbiţaş, Shepard operators of Lagrange-type, Studia Univ. Babeş-Bolyai Math., 42 (1997), 75–83.
    [6] Gh. Coman, Hermite-type Shepard operators, Rev. Anal. Num$\acute{ e }$r. Th$\acute{ e }$or. Approx., 26 (1997), 33–38.
    [7] Gh. Coman, Shepard operators of Birkhoff-type, Calcolo, 35 (1998), 197–203. https://doi.org/10.1007/s100920050016 doi: 10.1007/s100920050016
    [8] F. Caira, F. Dell'Accio, Shepard-Bernoulli operators, Math. Comp., 76 (2007), 299–321. https://doi.org/10.1090/S0025-5718-06-01894-1 doi: 10.1090/S0025-5718-06-01894-1
    [9] T. C$\breve{a}$tinas, The bivariate Shepard operator of Bernoulli type, Calcolo, 44 (2007), 189–202. https://doi.org/10.1007/s10092-007-0136-x doi: 10.1007/s10092-007-0136-x
    [10] T. C$\check{ a }$tinaş, The combined Shepard-Lidstone bivariate operator, In: de Bruin, M.G. et al.(eds.) Trends an Applications in Constructive Approximation. International Series of Numerical Mathematics, 151 (2005), 77–89. https://doi.org/10.1007/3-7643-7356-3
    [11] R. J. Renka, Multivariate Interpolation of Large Sets of Scattered Data, ACM Trans. Math. Software, 14 (1988), 139–148. https://doi.org/10.1145/45054.45055 doi: 10.1145/45054.45055
    [12] R. J. Renka, Algorithm 660, QSHEP2D: Quadratic Shepard Method for Bivariate Interpolation of Scattered Data, ACM Trans. Math. Software, 14 (1988), 149–150. https://doi.org/10.1145/45054.356231 doi: 10.1145/45054.356231
    [13] R. J. Renka, Algorithm 661, QSHEP3D: Quadratic Shepard Method for Trivariate Interpolation of Scattered Data, ACM Trans. Math. Software, 14 (1988), 151–152. https://doi.org/10.1145/45054.214374 doi: 10.1145/45054.214374
    [14] M. G. Trîmbiţaş, Combined Shepard-least square operators-computing them using spatial data structures, Studia Univ. Babeş-Bolyai Math., 47 (2002), 119–128.
    [15] F. A. Costabile, F. Dell'Accio, F. Di Tommaso, Complementary Lidstone Interpolation on Scattered Data Sets, Numer. Algorithms, 67 (2013), 157–180. https://doi.org/10.1007/s11075-012-9659-6 doi: 10.1007/s11075-012-9659-6
    [16] R. Caira, F. Dell'Accio, F. Di Tommaso, On the bivariate Shepard-Lidstone operators, J. Comput. Appl. Math., 236 (2012), 1691–1707. https://doi.org/10.1016/j.cam.2011.10.001 doi: 10.1016/j.cam.2011.10.001
    [17] F. Dell'Accio, F. Di Tommaso, Complete Hermite-Birkhoff interpolation on scattered data by combined Shepard operators, J. Comput. Appl. Math., 300 (2016), 192–206. https://doi.org/10.1016/j.cam.2015.12.016 doi: 10.1016/j.cam.2015.12.016
    [18] F. Dell'Accio, F. Di Tommaso, Bivariate Shepard-Bernoulli operators, Math. Comput. Simulat., 141 (2017), 65–82. https://doi.org/10.1016/j.matcom.2017.07.002 doi: 10.1016/j.matcom.2017.07.002
    [19] O. Duman, B. Della Vecchia, Approximation to integrable functions by modified complex Shepard operators, J. Math. Anal. Appl., 512 (2022), 126161. https://doi.org/10.1016/j.jmaa.2022.126161 doi: 10.1016/j.jmaa.2022.126161
    [20] O. Duman, B. Della Vecchia, Complex Shepard operators and their summability, Results Math., 76 (2021), 214. https://doi.org/10.1007/s00025-021-01520-4 doi: 10.1007/s00025-021-01520-4
    [21] F. Dell'Accio, F. Di Tommaso, O. Nouisser, N. Siar, Solving Poisson equation with Dirichlet conditions through multinode Shepard operators, Comput. Math. Appl., 98 (2021), 254–260. https://doi.org/10.1016/j.camwa.2021.07.021 doi: 10.1016/j.camwa.2021.07.021
    [22] R. K. Beatson, M. J. D. Powell, Univariate multiquadric approximation: Quasi-interpolation to scattered data, Constr. Approx., 8 (1992), 275–288. https://doi.org/10.1007/BF01279020 doi: 10.1007/BF01279020
    [23] Z. M. Wu, Z. C. Xiong, Multivariate quasi-interpolation in $L_p(R^d)$ with radial basis functions for scattered data, Int. J. Comput. Math., 87 (2010), 583–590. https://doi.org/10.1080/00207160802158702 doi: 10.1080/00207160802158702
    [24] L. Ling, A univariate quasi-multiquadric interpolation with better smoothness, Comput. Math. Appl., 48 (2004), 897–912. https://doi.org/10.1016/j.camwa.2003.05.014 doi: 10.1016/j.camwa.2003.05.014
    [25] R. H. Wang, M. Xu, Q. Fang, A kind of improved univariate multiquadric quasi-interpolation operators, Comput. Math. Appl., 59 (2010), 451–456. https://doi.org/10.1016/j.camwa.2009.06.023 doi: 10.1016/j.camwa.2009.06.023
    [26] R. Z. Feng, X. Zhou, A kind of multiquadric quasi-interpolation operator satisfying any degree polynomial reproduction property to scattered data, J. Comput. Appl. Math., 235 (2011), 1502–1514. https://doi.org/10.1016/j.cam.2010.08.037 doi: 10.1016/j.cam.2010.08.037
    [27] R. H. Wang, M. Xu, A kind of Bernoulli-type quasi-interpolation operator with univariate multiquadrics, Comput. Appl. Math., 29 (2010), 47–60. https://doi.org/10.1590/S1807-03022010000100004 doi: 10.1590/S1807-03022010000100004
    [28] R. F. Wu, H. L. Li, T. R. Wu, Univariate Lidstone-type multiquadric quasi-interpolants, Comput. Appl. Math., 39 (2020), 141. https://doi.org/10.1007/s40314-020-01159-x doi: 10.1007/s40314-020-01159-x
    [29] R. F. Wu, Abel-Goncharov Type Multiquadric Quasi-Interpolation Operators with Higher Approximation Order, J. Math., 2021 (2021), 1–12. https://doi.org/10.1155/2021/8874668 doi: 10.1155/2021/8874668
    [30] S. G. Zhang, C. G. Zhu, Q. J. Gao, Numerical Solution of High-Dimensional Shockwave Equations by Bivariate Multi-Quadric Quasi-Interpolation, Mathematics, 7 (2019), 734. https://doi.org/10.3390/math7080734 doi: 10.3390/math7080734
    [31] Z. M. Wu, R. Schaback, Shape preserving properties and convergence of univariate multiquadric quasi-interpolation, Acta. Math. Appl. Sin. Engl. Ser., 10 (1994), 441–446. https://doi.org/10.1007/BF02016334 doi: 10.1007/BF02016334
    [32] H. Y. Wu, Y. Duan, Multi-quadric quasi-interpolation method coupled with FDM for the Degasperis-Procesi equation, Appl. Math. Comput., 274 (2016), 83–92. https://doi.org/10.1016/j.amc.2015.10.044 doi: 10.1016/j.amc.2015.10.044
    [33] S. L. Zhang, H. Q. Yang, Y. Yang, A multiquadric quasi-interpolations method for CEV option pricing model, J. Comput. Appl. Math., 347 (2019), 1–11. https://doi.org/10.1016/j.cam.2018.03.046 doi: 10.1016/j.cam.2018.03.046
    [34] S. S. Li, Y. Duan, L. B. Li, On the meshless quasi-interpolation methods for solving 2D sine-Gordon euqations, Comput. Appl. Math., 41 (2022), 348. https://doi.org/10.1007/s40314-022-02054-3 doi: 10.1007/s40314-022-02054-3
    [35] R. Jordan, Calculus of Finite Differences, New York: Chelsea Publishing Co, 1960.
    [36] F. A. Costabile, F. Dell'Accio, R. Luceri, Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values, J. Comput. Appl. Math., 176 (2005), 77–90. https://doi.org/10.1016/j.cam.2004.07.004 doi: 10.1016/j.cam.2004.07.004
    [37] R. P. Agarwal, P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, The Netherlands: Kluwer Academic Publishers, 1960.
    [38] A. Sard, Linear Approximation, New York: AMS, Providence, RI, 1963.
    [39] D. D. Stancu, The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal. Ser. B, 1 (1964), 137–163. https://doi.org/10.1137/0701013 doi: 10.1137/0701013
    [40] R. A. Devore, G. G. Lorentz, Constructive Approximation, New York: Springer-Verlag, 1993.
    [41] Z. Ditzian, V. Totik, Moduli of Smoothness, New York: Springer-Verlag, Bernlin-Heidelberg, 1987.
    [42] R. J. Renka, A. K. Cline, A triangle-based $C^1$ interpolation method, Rocky Mt. J. Math., 14 (1984), 223–237. https://doi.org/10.1216/RMJ-1984-14-1-223 doi: 10.1216/RMJ-1984-14-1-223
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(912) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog