Research article

Global weak solutions of nonlinear rotation-Camassa-Holm model

  • Received: 05 March 2023 Revised: 16 April 2023 Accepted: 23 April 2023 Published: 25 April 2023
  • MSC : 35G25, 35L05

  • A nonlinear rotation-Camassa-Holm equation, physically depicting the motion of equatorial water waves and having the Coriolis effect, is investigated. Using the viscous approximation tool, we obtain an upper bound estimate about the space derivative of the viscous solution and a high order integrable estimate about the time-space variables. Utilizing these two estimates, we prove that there exist $ H^1(\mathbb{R}) $ global weak solutions to the rotation-Camassa-Holm model.

    Citation: Zheng Dou, Kexin Luo. Global weak solutions of nonlinear rotation-Camassa-Holm model[J]. AIMS Mathematics, 2023, 8(7): 15285-15298. doi: 10.3934/math.2023781

    Related Papers:

  • A nonlinear rotation-Camassa-Holm equation, physically depicting the motion of equatorial water waves and having the Coriolis effect, is investigated. Using the viscous approximation tool, we obtain an upper bound estimate about the space derivative of the viscous solution and a high order integrable estimate about the time-space variables. Utilizing these two estimates, we prove that there exist $ H^1(\mathbb{R}) $ global weak solutions to the rotation-Camassa-Holm model.



    加载中


    [1] A. Bressan, A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215–239. https://doi.org/10.1007/s00205-006-0010-z doi: 10.1007/s00205-006-0010-z
    [2] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661. https://doi.org/10.1103/physrevlett.71.1661 doi: 10.1103/physrevlett.71.1661
    [3] R. M. Chen, G. L. Gui, Y. Liu, On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect, Adv. Math., 340 (2018), 106–137. https://doi.org/10.1016/j.aim.2018.10.003 doi: 10.1016/j.aim.2018.10.003
    [4] G. M. Coclite, H. Holden, K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044–1069. https://doi.org/10.1137/040616711 doi: 10.1137/040616711
    [5] G. M. Coclite, H. Holden, K. H. Karlsen, Wellposedness for a parabolic-elliptic system, Discrete Contin. Dyn. Syst., 13 (2005), 659–682. https://doi.org/10.3934/dcds.2005.13.659 doi: 10.3934/dcds.2005.13.659
    [6] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229–243. https://doi.org/10.1007/bf02392586 doi: 10.1007/bf02392586
    [7] D. P. Ding, K. Wang, Decay property of solutions near the traveling wave solutions for the second-order Camassa-Holm equation, Nonlinear Anal., 183 (2019), 230–258. https://doi.org/10.1016/j.na.2019.01.018 doi: 10.1016/j.na.2019.01.018
    [8] J. Eckhardt, The inverse spectral transform for the conservative Camassa-Holm flow with decaying initial data, Arch. Ration. Mech. Anal., 224 (2017), 21–52. https://doi.org/10.1007/s00205-016-1066-z doi: 10.1007/s00205-016-1066-z
    [9] G. L. Gui, Y. Liu, J. W. Sun, A nonlocal shallow-water model arising from the full water waves with the Coriolis effect, J. Math. Fluid Mech., 21 (2019), 1–29. https://doi.org/10.1007/s00021-019-0432-7 doi: 10.1007/s00021-019-0432-7
    [10] G. L. Gui, Y. Liu, T. Luo, Model equations and traveling wave solutions for shallow-water waves with the Coriolis effect, J. Nonlinear Sci., 29 (2019), 993–1039. https://doi.org/10.1007/s00332-018-9510-x doi: 10.1007/s00332-018-9510-x
    [11] Z. G. Guo, K. Q. Li, C. B. Xu, On a generalized Camassa-Holm type equation with $(k+1)$-degree nonlinearities, Z. Angew. Math. Mech., 98 (2018), 1567–1573. https://doi.org/10.1002/zamm.201600055 doi: 10.1002/zamm.201600055
    [12] Y. S. Mi, Y. Liu, B. L. Guo, T. Luo, The Cauchy problem for a generalized Camassa-Holm equation, J. Differ. Equ., 266 (2019), 6739–6770. https://doi.org/10.1016/j.jde.2018.11.019 doi: 10.1016/j.jde.2018.11.019
    [13] S. Ming, J. Y. Du, Y. X. Ma, The Cauchy problem for coupled system of the generalized Camassa-Holm equations, AIMS Math., 7 (2022), 14738–14755. https://doi.org/10.3934/math.2022810 doi: 10.3934/math.2022810
    [14] S. Ming, S. Y. Lai, Y. Q. Su, The Cauchy problem of a weakly dissipative shallow water equation, Appl. Anal., 98 (2019), 1387–1402. https://doi.org/10.1080/00036811.2017.1422728 doi: 10.1080/00036811.2017.1422728
    [15] C. Z. Qu, Y. Fu, Curvature blow-up for the higher-order Camassa-Holm equations, J. Dyn. Differ. Equ., 32 (2020), 1901–1939. https://doi.org/10.1007/s10884-019-09793-8 doi: 10.1007/s10884-019-09793-8
    [16] C. Rohde, H. Tang, On a stochastic Camassa-Holm type equation with higher order nonlinearities, J. Dyn. Differ. Equ., 33 (2021), 1823–1852. https://doi.org/10.1007/s10884-020-09872-1 doi: 10.1007/s10884-020-09872-1
    [17] P. L. da Silva, I. L. Freire, Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation. J. Differ. Equ., 267 (2019), 5318–5369. https://doi.org/10.1016/j.jde.2019.05.033
    [18] P. L. da Silva, I. L. Freire, Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation, Stud. Appl. Math., 145 (2020), 537–562. https://doi.org/10.1111/sapm.12327 doi: 10.1111/sapm.12327
    [19] J. G. Tang, M. Liu, S. Y. Lai, Global weak solutions to a nonlinear equation with fourth order nonlinearities, Bound. Value Probl., 2023 (2023), 1–20. https://doi.org/10.1186/s13661-023-01700-x doi: 10.1186/s13661-023-01700-x
    [20] X. Y. Tu, Y. Liu, C. L. Mu, Existence and uniqueness of the global conservative weak solutions to the rotation-Camassa-Holm equation, J. Differ. Equ., 266 (2019), 4864–4900. https://doi.org/10.1016/j.jde.2018.10.012 doi: 10.1016/j.jde.2018.10.012
    [21] Z. P. Xin, P. Zhang, On the weak solutions to a shallow water equation, Commun. Pure Appl. Math., 53 (2000), 1411–1433.
    [22] Y. Wang, Y. X. Guo, Blow-up solution and analyticity to a generalized Camassa-Holm equation, AIMS Math., 8 (2023), 10728–10744. https://doi.org/10.3934/math.2023544 doi: 10.3934/math.2023544
    [23] L. Zhang, Non-uniform dependence and well-posedness for the rotation-Camassa-Holm equation on the torus, J. Differ. Equ., 267 (2019), 5049–5083. https://doi.org/10.1016/j.jde.2019.05.023 doi: 10.1016/j.jde.2019.05.023
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(858) PDF downloads(56) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog