Processing math: 81%
Research article

The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory

  • Received: 10 March 2022 Revised: 19 April 2022 Accepted: 20 April 2022 Published: 06 May 2022
  • MSC : 26A33, 35R11, 35B44

  • In this article, we focus on the blow-up problem of solution to Caputo-Hadamard fractional diffusion equation with fractional Laplacian and nonlinear memory. By virtue of the fundamental solutions of the corresponding linear and nonhomogeneous equation, we introduce a mild solution of the given equation and prove the existence and uniqueness of local solution. Next, the concept of a weak solution is presented by the test function and the mild solution is demonstrated to be a weak solution. Finally, based on the contraction mapping principle, the finite time blow-up and global solution for the considered equation are shown and the Fujita critical exponent is determined. The finite time blow-up of solution is also confirmed by the results of numerical experiment.

    Citation: Zhiqiang Li. The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory[J]. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715

    Related Papers:

    [1] Mengyang Liang, Zhong Bo Fang, Su-Cheol Yi . Blow-up analysis for a reaction-diffusion equation with gradient absorption terms. AIMS Mathematics, 2021, 6(12): 13774-13796. doi: 10.3934/math.2021800
    [2] Fugeng Zeng, Peng Shi, Min Jiang . Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155
    [3] Huafei Di, Yadong Shang, Jiali Yu . Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term. AIMS Mathematics, 2020, 5(4): 3408-3422. doi: 10.3934/math.2020220
    [4] Khaled Zennir, Abderrahmane Beniani, Belhadji Bochra, Loay Alkhalifa . Destruction of solutions for class of wave p(x)bi-Laplace equation with nonlinear dissipation. AIMS Mathematics, 2023, 8(1): 285-294. doi: 10.3934/math.2023013
    [5] Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
    [6] M. J. Huntul . Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators. AIMS Mathematics, 2024, 9(11): 32734-32756. doi: 10.3934/math.20241566
    [7] Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
    [8] Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307
    [9] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [10] Jia Li, Changchun Bi . Existence and blowup of solutions for non-divergence polytropic variation-inequality in corn option trading. AIMS Mathematics, 2023, 8(7): 16748-16756. doi: 10.3934/math.2023856
  • In this article, we focus on the blow-up problem of solution to Caputo-Hadamard fractional diffusion equation with fractional Laplacian and nonlinear memory. By virtue of the fundamental solutions of the corresponding linear and nonhomogeneous equation, we introduce a mild solution of the given equation and prove the existence and uniqueness of local solution. Next, the concept of a weak solution is presented by the test function and the mild solution is demonstrated to be a weak solution. Finally, based on the contraction mapping principle, the finite time blow-up and global solution for the considered equation are shown and the Fujita critical exponent is determined. The finite time blow-up of solution is also confirmed by the results of numerical experiment.



    The main purpose of this paper is to study the finite time blow-up to time-space fractional partial differential equation in the following form

    {CHDαa,tu(x,t)+(Δ)su(x,t)=HD(1γ)a,t(|u|p1u)(x,t),xRd,t>a>0,u(x,a)=ua(x),xRd, (1.1)

    where dN, 0<α<γ<1, 0<s<1, p>1, the operators CHDαa,t, (Δ)s, and HD(1γ)a,t respectively denote the Caputo-Hadamard fractional derivative, fractional Laplacian, and Hadamard fractional integral, and the initial value ua(x)C0(Rd), where C0(Rd)={υC(Rd)|lim|x|υ(x)=0}.

    Fractional calculus has attracted considerable attention during recent years because of its widespread applications in science and engineering fields such as physics, chemistry, biology, anomalous diffusion, control theory of dynamical systems, etc., see [1,2,3,4]. It has been found that Hadamard-type fractional calculus had many potential applications [5,6,7,8,9,10,11], for example, the ultraslowly diffusive process such as Sinai diffusion [5], fractal analysis [8], the Lomnitz logarithmic creep law in rheology [9], and some studies in this respect have been available [12,13,14,15,16,17,18,19]. The fractional Laplacian is a typically nonlocal pseudo-differential operator, which appears in different disciplines of mathematics and various applications, see [20,21,22,23] and the list of references therein.

    We next recall some pioneering work on the blow-up problem for fractional diffusion equation, here we only mention the results related to our studies.

    In the 1960s, Fujita [24] first considered the following semilinear heat equation

    {ut=Δu+u1+α,xRd,t>0,u|t=0=u0(x),xRd, (1.2)

    where α>0 and u0(x)0. In that paper, the author shown that: If u0(x)0 and 0<α<2d then the solution of (1.2) blows up in finite time; If α>2d and the initial value u0(x) can be bounded by sufficiently small Gaussian then the solution of (1.2) exists globally. As for the critical case α=2d, Weissler [25] proved that (1.2) has a global solution when ||u0||Lαd2(Rd) is sufficiently small.

    Later, Cazenave et al. [26] studied the following Cauchy problem of heat equation with nonlinear memory

    {utΔu=t0(tτ)γ|u(τ)|p1u(τ)dτ,xRd,t>0,u|t=0=u0(x),xRd, (1.3)

    where p>1,0γ<1, and u0C0(Rd). Let pγ=1+2(2γ)(d2+2γ)+ with (d2+2γ)+=max{0,d2+2γ}. They proved that: If γ0,pmax{1γ,pγ},u00, and u00, then the solution of (1.3) blows up in finite time; if γ0,p>max{1γ,pγ} and ||u0||Lqsc(Rd) is sufficiently small with qsc=d(p1)42γ, then (1.3) has global solution. In the case with γ=0, every nontrivial positive solution of (1.3) will blow up [27].

    In [28], Fino and Kirane further investigated the equation involving fractional Laplacian with nonlinear memory

    {ut+(Δ)β2u=1Γ(1γ)t0(tτ)γ|u(τ)|p1u(τ)dτ,xRd,t>0,u|t=0=u0(x),xRd, (1.4)

    where 0<β2,0<γ<1,p>1, and u0C0(Rd). They derived that: If u00,u00, and pmax{1+β(2γ)(dβ+βγ)+,1γ}, then the solution of (1.4) will blow up in finite time; if p>max{1+β(2γ)(dβ+βγ)+,1γ} and ||u0||Lpsc(Rd) is very small with psc=d(p1)β(2γ), then (1.4) exists global solution.

    Shortly after, Li and Zhang [29] discussed the following time fractional diffusion equation involving Caputo derivative with nonlinear memory

    {CDα0,tuΔu=1Γ(1γ)t0(tτ)γ|u(τ)|p1u(τ)dτ,xRd,t>0,u|t=0=u0(x),xRd, (1.5)

    where 0<α<γ<1, p>1, and u0C0(Rd). They proved that: If 1<p<p=max{1+1γα,1+2(1+αγ)αd} and u00 with u00, then the solution of (1.5) will blow up in finite time; if d<2(1+αγ)1γ with pp or d2(1+αγ)1γ with p>p, and ||u0||Lqc(Rd) is small enough, where qc=αd(p1)2(1+αγ), then (1.5) has global solution.

    Recently, Li and Li [16] investigated the semilinear time-space fractional diffusion equation involving Caputo-Hadamard derivative and fractional Laplacian,

    {CHDαa,tu(x,t)+(Δ)su(x,t)=|u(x,t)|p1u(x,t),xRd,t>a>0,u(x,a)=ua(x),xRd, (1.6)

    where 0<α<1, 0<s<1, p>1, and uaC0(Rd). They obtained that: If 1<p<2sd and ua0 with ua0, then the solution of (1.6) will blow up in finite time; Conversely, if p1+2sd and ||ua||Lq(Rd) is sufficiently small, where q=d(p1)2s, then (1.6) has a global solution.

    Motivated mathematically by the results and methods in [16], this paper will further study the blow-up property and global solution to time-space fractional diffusion equation (1.1) with nonlinear memory. The main result is displayed in the following theorem.

    Theorem 1.1. Let dN, 0<α<γ<1, 0<s<1, and p>1.Assume that uaC0(Rd) and ua0 with ua0.

    (1) If 1<p<˜p=max{1+1γα,1+2s(1+αγ)αd}, then the mild solution of Eq (1.1) will blow up in finite time.

    (2) If d<2s(1+αγ)1γ,p˜p or d2s(1+αγ)1γ,p>˜p, and ||ua||Lp(Rd) is small enough with p=αd(p1)2s(1+αγ), then Eq (1.1) exists global solution.

    The organization of this paper is as follows. Section 2 recalls some basic definitions and presents several important lemmas. In Section 3, we define a mild solution to Eq (1.1) and then prove the local existence and uniqueness of the mild solution. Then, a weak solution of Eq (1.1) is introduced and the mild solution is actually proved to be a weak solution. Next, we show the finite time blow-up and global existence of the solution to Eq (1.1) in Section 4. Finally, an illustrative example is provided to verify the blow-up of solution in finite time in Section 5. The conclusions are given in the last section. Throughout the paper, we use the letter C to denote a generic positive constant which may take different values at different places.

    Let us recall some basic definitions and several important lemmas, which will be applied in the next sections.

    Definition 2.1. [4,30] Let a function f(t) be defined on the interval (a,b)(0a<b+) and α>0. The left- and right- sided Hadamard fractional integrals of the function f(t) with order α are given by

    HDαa,tf(t)=1Γ(α)ta(logtτ)α1f(τ)dττ,t>a, (2.1)

    and

    HDαt,bf(t)=1Γ(α)bt(logτt)α1f(τ)dττ,t<b, (2.2)

    where the Gamma function Γ(ξ)=0ettξ1dt.

    Definition 2.2. [4,31] Let a function f(t) be defined on the interval (a,b)(0a<b+) and n1<α<nN. The left- and right- sided Caputo-Hadamard fractional derivative of the function f(t) with order α can be written as

    CHDαa,tf(t)=HD(nα)a,t[δnf(t)]=1Γ(nα)ta(logtτ)nα1δnf(τ)dττ,t>a, (2.3)

    and

    CHDαt,bf(t)=(1)nHD(nα)t,b[δnf(t)]=(1)nΓ(nα)bt(logτt)nα1δnf(τ)dττ,t<b, (2.4)

    where δnf(t)=(tddt)nf(t).

    Definition 2.3. [2,20,30] The fractional Laplacian (Δ)s with s(0,1) is defined by

    (Δ)sv(x)=C(d,s) P.V.Rdv(x)v(y)|xy|d+2sdy,xRd, (2.5)

    where P.V. denotes the Cauchy principle value and the constant

    C(d,s)=(Rd1cosy1|y|d+2sdy)1

    for any y=(y1,y2,,yd)Rd.

    To define a mild solution of Eq (1.1), let us consider the following linear equation,

    {CHDαa,tu(x,t)+(Δ)su(x,t)=f(x,t),xRd,t>a>0,u(x,a)=ua(x),xRd, (2.6)

    whose solution is expressed by [14]

    u(x,t)=Ga(x,t)ua(x)+taGf(x,atτ)f(x,τ)dττ:=RdGa(xy,t)ua(y)dy+taRdGf(xy,atτ)f(y,τ)dydττ, (2.7)

    where Ga(x,t) and Gf(x,t) are the fundamental solutions given by

    Ga(x,t)=1|x|dπd2H2123(|x|2s22s(logta)α|(1,1);(1,α)(1,1),(d2,s);(1,s)), (2.8)

    and

    Gf(x,t)=(logta)α1|x|dπd2H2123(|x|2s22s(logta)α|(1,1);(α,α)(1,1),(d2,s);(1,s)). (2.9)

    The special function H2123(z) in the above equalities is the Fox H-function and some details regarding this function can be found in [4,32,33].

    In the sequel, we list some properties of the functions Ga(x,t) and Gf(x,t).

    Lemma 2.1. [16] Let dN, 0<α<1, and 0<s<1. Thenthe functions Ga(x,t) and Gf(x,t) in Eqs (2.8) and (2.9) have the following properties.

    (1) Ga(x,t)>0, Gf(x,t)>0.

    (2) RdGa(x,t)dx=1, RdGf(x,t)dx=1Γ(α)(logta)α1. (3) HD(1α)a,tGf(x,t)=Ga(x,t).

    Lemma 2.2. [16] Let dN, 0<α<1, and 0<s<1.If ua(x)0 and ua(x)0, then we have Ga(x,t)ua(x)>0 and ||Ga(x,t)ua(x)||L1(Rd)=||ua(x)||L1(Rd).Furthermore, when 1rq+ and 1r1q<min{1,2sd}, it holds that

    ||Ga(x,t)ua(x)||Lq(Rd)C(logta)αd2s(1r1q)||ua(x)||Lr(Rd),t>a. (2.10)

    Lemma 2.3. [16] Let dN, 0<α<1, and 0<s<1.If ua(x)0 and ua(x)0, then we have Gf(x,t)ua(x)>0 and ||Gf(x,t)ua(x)||L1(Rd)=1Γ(α)(logta)α1||ua(x)||L1(Rd).Furthermore, when 1rq+ and 1r1q<min{1,4sd}, it holds that

    ||Gf(x,t)ua(x)||Lq(Rd)C(logta)α1αd2s(1r1q)||ua(x)||Lr(Rd),t>a. (2.11)

    Lemma 2.4. [16] Let dN, 0<α<1, and 0<s<1. Assume ua(x)C0(Rd). Then for t>a>0, we have Ga(x,t)ua(x)C0(Rd) and

    CHDαa,t[Ga(x,t)ua(x)]=(Δ)s[Ga(x,t)ua(x)],t>a>0.

    And there exists a constant C>0 such that

    ||(Δ)s[Ga(x,t)ua(x)]||L(Rd)C(logta)α||ua(x)||L(Rd),t>a>0.

    For simplicity of representation, from now on, we denote Ga(t)=Ga(x,t), Gf(t)=Gf(x,t), and so on.

    Lemma 2.5. [16] Let dN, 0<α<1, 0<s<1, and T>a>0.Let also fLq((a,T),C0(Rd)) with q>1 and

    θ(t)=taGf(atτ)f(τ)dττ.

    Then we have

    HD(1α)a,tθ(t)=taGa(atτ)f(τ)dττ.

    Furthermore, one has θ(t)C([a,T],C0(Rd)) provided that qα>1.

    In this part, we first define a mild solution of Eq (1.1) and then prove the local existence and uniqueness of the mild solution in terms of the contraction mapping principle. Next, the definition of a weak solution is introduced to Eq (1.1). We can also prove that the mild solution is just a weak solution. Let us begin by introducing the definition of a mild solution to Eq (1.1).

    Definition 3.1. Let dN, 0<α<γ<1, 0<s<1, p>1 and T>a>0. Let uaC0(Rd). Then a mild solution uC([a,T],C0(Rd)) of Eq (1.1) is given by

    u(t)=Ga(t)ua+taGf(atτ)[HD(1γ)a,τ(|u|p1u)(τ)]dττ,t[a,T]. (3.1)

    Theorem 3.1. Let dN, 0<α<γ<1, 0<s<1, p>1, and T>a>0.Let uaC0(Rd). Then there isa maximal time Tmax>a such that Eq (1.1) hasa unique mild solution uC([a,Tmax),C0(Rd)), where, either Tmax= or Tmax< and ||u||L((a,T),L(Rd) as tTmax. Moreover, if ua0 and ua0, then u(t)>0 for any a<t<Tmax. Besides, if uaLr(Rd) for 1r<, then one has uC([a,Tmax),Lr(Rd)).

    Proof. For given T>a>0 and uaC0(Rd), let

    Ea,T={uC([a,T],C0(Rd))|||u||L((a,T),L(Rd))2||ua||L(Rd)}

    and

    d(u,v)=maxt[a,T]||u(t)v(t)||L(Rd),u,vEa,T.

    Obviously, (Ea,T,d) is a complete metric space. By means of the fundamental solutions Ga(t) and Gf(t), we define the following operator F on the metric space (Ea,T,d),

    F(u)(t)=Ga(t)ua+taGf(atτ)[HD(1γ)a,τ(|u|p1u)(τ)]dττ,uEa,T.

    It follows from Lemma 2.5 that F(u)C([a,T],C0(Rd)).

    We next show that F:Ea,TEa,T. For uEa,T and t[a,T], by Definition 2.1 and Lemma 2.1, we get

    ||F(u)(t)||L(Rd)||Ga(t)ua||L(Rd)+ta||Gf(atτ)[HD(1γ)a,τ(|u|p1u)(τ)]||L(Rd)dττ||ua||L(Rd)+2pΓ(α)Γ(1γ)taτa(logtτ)α1(logτw)γdwwdττ||ua||pL(Rd)=||ua||L(Rd)+2pΓ(α)Γ(2γ)ta(logtτ)α1(logτa)1γdττ||ua||pL(Rd)=||ua||L(Rd)+2pΓ(α)Γ(2γ)(logta)αγ+110τα1(1τ)1γdτ||ua||pL(Rd)=||ua||L(Rd)+2pΓ(α)Γ(2γ)Γ(α)Γ(2γ)Γ(2+αγ)(logta)αγ+1||ua||pL(Rd)||ua||L(Rd)+2p||ua||p1L(Rd)Γ(2+αγ)(logTa)αγ+1||ua||L(Rd).

    Choosing T>a sufficiently close to a such that

    2pΓ(2+αγ)(logTa)αγ+1||ua||p1L(Rd)1,

    then we obtain ||F(u)||L((a,T),L(Rd))2||ua||L(Rd) and F(u)Ea,T, viz., the operator F maps Ea,T into itself.

    We need to show that the operator F is contractive on Ea,T. For u,vEa,T and t[a,T], one can deduce that

    ||F(u)(t)F(v)(t)||L(Rd)1Γ(α)Γ(1γ)taτa(logtτ)α1(logτw)γ×|||u(w)|p1u(w)|v(w)|p1v(w)||L(Rd)dwwdττ2pC(p)Γ(2+αγ)(logTa)αγ+1||ua||p1L(Rd)||uv||L((a,T),L(Rd)).

    Taking T>a sufficiently close to a gives rise to

    2pC(p)Γ(2+αγ)(logTa)αγ+1||ua||p1L(Rd)12,

    which means ||F(u)(t)F(v)(t)||L(Rd)12||uv||L((a,T),C0(Rd)). This illustrates the operator F is contractive on Ea,T and thus it has a fixed point uEa,T by the contraction mapping principle. Moreover, using Gronwall inequality immediately knows the uniqueness of the mild solutions to Eq (1.1) holds.

    In view of the uniqueness, there is a maximal time Tmax>a such that the solution of Eq (1.1) exists on the interval [a,Tmax), where

    Tmax=sup{T>a|there is a mild solution uC([a,T],C0(Rd)) to (1.1)}+.

    Next, we show ||u||L((a,T),L(Rd)) as tTmax provided that Tmax<. If Tmax< and there is M>0 satisfying ||u(t)||L(Rd)M for t[a,Tmax), then we have for a<ξ<η<Tmax,

    ||u(ξ)u(η)||L(Rd)||[Ga(ξ)Ga(η)]ua||L(Rd)+||ηξGf(aητ)[HD(1γ)a,τ(|u|p1u)(τ)]dττ||L(Rd)+||ξa(Gf(aξτ)Gf(aητ))[HD(1γ)a,τ(|u|p1u)(τ)]dττ||L(Rd)||[Ga(ξ)Ga(η)]ua||L(Rd)+MpΓ(α)Γ(2γ)ηξ(logητ)α1(logτa)1γdττ+CMpΓ(2γ)ξa(logτa)1γmin{(logξτ)α1,(logξτ)α2(logηξ)}dττ||[Ga(ξ)Ga(η)]ua||L(Rd)+MpΓ(α)Γ(2γ)(logTmaxa)1γηξ(logητ)α1dττ+CMpΓ(2γ)(logTmaxa)1γξamin{(logξτ)α1,(logξτ)α2(logηξ)}dττ||[Ga(ξ)Ga(η)]ua||L(Rd)+Mp(logTmaxa)1γΓ(α+1)Γ(2γ)(logηξ)α+CMp(logTmaxa)1γ(logηξ)α,

    which implies limtTmaxu(t) exists in C0(Rd).

    Now we define limtTmaxu(t)=uTmax. Therefore one gets uC([a,Tmax],C0(Rd)). Furthermore, using Lemma 2.5 yields that

    taGf(atτ)[HD(1γ)a,τ(|u|p1u)(τ)]dττC([a,Tmax],C0(Rd)).

    For h>0 and σ>0, consider a set

    ˜Eh,σ={uC([Tmax,Tmax+h],C0(Rd))|u(Tmax)=uTmax,d(u,uTmax)σ}

    equipped with

    d(u,v)=maxt[Tmax,Tmax+h]||u(t)v(t)||L(Rd),u,v˜Eh,σ.

    Then the metric space (˜Eh,σ,d) is complete.

    On the space (˜Eh,σ,d), define an operator Q as follows,

    Q(v)(t)=Ga(t)ua+TmaxaGf(atτ)[HD(1γ)a,τ(|u|p1u)(τ)]dττ+tTmaxGf(atτ)[HD(1γ)a,τ(|v|p1v)(τ)]dττ,vEh,σ.

    It is easy to see that Q(v)C([Tmax,Tmax+h],C0(Rd)) and Q(v)(Tmax)=uTmax.

    We first prove Q(v)˜Eh,σ for v˜Eh,σ. As a matter of fact, if t[Tmax,Tmax+h], then

    ||Q(v)(t)uTmax||L(Rd)||Ga(t)uaGa(Tmax)ua||L(Rd)+||tTmaxGf(atτ)[HD(1γ)a,τ(|v|p1v)(τ)]dττ||L(Rd)+||Tmaxa[Gf(atτ)Gf(aTmaxτ)][HD(1γ)a,τ(|u|p1u)(τ)]dττ||L(Rd)=||J1||L(Rd)+||J2||L(Rd)+||J3||L(Rd).

    By taking sufficiently small h, we arrive at

    ||J1||L(Rd)σ3,   ||J3||L(Rd)σ3.

    In regard to ||J2||L(Rd), one has

    ||J2||L(Rd)||tTmaxGf(atτ)[HD(1γ)a,τ(|v(τ)|p1v(τ)|uTmax|p1uTmax)]dττ||L(Rd)+||tTmaxGf(atτ)[HD(1γ)a,τ(|uTmax|p1uTmax)]dττ||L(Rd)(Cσα+(logta)1γΓ(α+1)Γ(2γ)||uTmax||pL(Rd))(logtTmax)ασ3,

    for t[Tmax,Tmax+h] and h small enough. Therefore, there holds ||Q(v)(t)uTmax||L(Rd)σ, i.e., d(Q(v),uTmax)σ for t[Tmax,Tmax+h].

    We next show that the operator Q is contractive on ˜Eh,σ. Assume that v,w˜Eh,σ and t[Tmax,Tmax+h], it follows that

    ||Q(v)(t)Q(w)(t)||L(Rd)C(p)Γ(α)Γ(2γ)(||v||p1L((Tmax,Tmax+h),L(Rd))+||w||p1L((Tmax,Tmax+h),L(Rd)))×tTmax(logtτ)α1(logτa)1γdττ||vw||L((Tmax,Tmax+h),L(Rd))2C(p)(logta)1γΓ(α+1)Γ(2γ)(σ+||uTmax||L(Rd))p1(logtTmax)αd(v,w).

    In this case, for t[Tmax,Tmax+h], one may take very small h such that

    2C(p)(logta)1γΓ(α+1)Γ(2γ)(σ+||uTmax||L(Rd))p1(logtTmax)α12,

    which suggests the operator Q is contractive on ˜Eh,σ and thus it has a fixed point v˜Eh,σ. In view of v(Tmax)=Q(v)(Tmax)=u(Tmax), we set

    ¯u(t)={u(t),  t[a,Tmax),v(t),  t[Tmax,Tmax+h],

    such that ¯u(t)C([a,Tmax+h],C0(Rd)) and

    ¯u(t)=Ga(t)ua+taGf(atτ)[HD(1γ)a,τ(|¯u(τ)|p1¯u)(τ)]dττ,

    which means ¯u(t) is indeed a mild solution of Eq (1.1). Recalling the definition of Tmax, this yields a contradiction.

    The proof of the remainder of this theorem follows that of Theorem 3.2 in [16] and so is omitted. The proof is thus complete.

    In the following, we present the definition of a weak solution to Eq (1.1) and show that the mild solution given by Definition 3.1 is a weak solution.

    Definition 3.2. Let dN, 0<α<γ<1, 0<s<1, p>1, and T>a>0. For given uaLLoc(Rd), a function u is said to be a weak solution of Eq (1.1) if uLp((a,T),LLoc(Rd)) and

    RdTa(HD(1γ)a,τ(|u|p1u)φ+uaCHDαt,Tφ)dttdx=RdTa(u(Δ)sφ+uCHDαt,Tφ)dttdx, (3.2)

    for any test function φC2,1x,t(Rd×[a,T]) satisfying suppxφ⊂⊂Rd and φ(,T)=0.

    Theorem 3.2. Let dN, 0<α<γ<1, 0<s<1, p>1, and T>a>0.If the initial value uaC0(Rd), thenthe mild solution uC([a,T],C0(Rd)) of Eq (1.1) is also its weak solution.

    Proof. Assume that uC([a,T],C0(Rd)) is a mild solution to Eq (1.1). Then Definition 3.1 gives

    uua=Ga(t)uaua+taGf(atτ)[HD(1γ)a,τ(|u|p1u)]dττ.

    Use Lemma 2.5 to get

    HD(1α)a,t(uua)=HD(1α)a,t(Ga(t)uaua)+taGa(atτ)[HD(1γ)a,τ(|u|p1u)]dττ.

    Therefore, for every φC2,1x,t(Rd×[a,T]) satisfying suppxφ⊂⊂Rd and φ(,T)=0, there holds

    RdHD(1α)a,t(uua)φdx=RdHD(1α)a,t(Ga(t)uaua)φdx+RdtaGa(atτ)[HD(1γ)a,τ(|u|p1u)]dττφdx=I1+I2.

    For I1, an application of Lemma 2.4 leads to

    δI1=Rd(Δ)s(Ga(t)ua)φdx+RdHD(1α)a,t(Ga(t)uaua)δφdx. (3.3)

    To estimate I2, we set h>0, t[a,T) and t+hT, then

    I2(t+h)I2(t)log(t+h)log(t)=1log(t+h)log(t)Rdt+htGa(at+hτ)[HD(1γ)a,τ(|u|p1u)]dττφ(t+h,x)dx+1log(t+h)log(t)RdtaGa(at+hτ)[HD(1γ)a,τ(|u|p1u)]dττ[φ(t+h,x)φ(t,x)]dx+1log(t+h)log(t)Rdta[Ga(at+hτ)Ga(atτ)][HD(1γ)a,τ(|u|p1u)]dττφ(t,x)dx=I21+I22+I23.

    Applying the mean value theorem yields that

    limh0I21=RdHD(1γ)a,τ(|u|p1u)φdx,
    limh0I22=RdtaGa(atτ)[HD(1γ)a,τ(|u|p1u)]dττδφdx,

    and

    limh0I23=RdtaGf(atτ)[HD(1γ)a,τ(|u|p1u)]dττ(Δ)sφdx.

    Consequently,

    δI2=RdHD(1γ)a,t(|u|p1u)φdx+RdHD(1α)a,ttaGf(atτ)[HD(1γ)a,τ(|u|p1u)]dττδφdxRdtaGf(atτ)[HD(1γ)a,τ(|u|p1u)]dττ(Δ)sφdx. (3.4)

    Combining (3.3) and (3.4), we obtain

    0=TaδRdHD(1α)a,t(uua)φdxdtt=Ta(δI1+δI2)dtt=TaRdu(Δ)sφdxdtt+TaRdHD(1γ)a,t(|u|p1u)φdxdttTaRd(uua)CHDαt,Tφdxdtt,

    which is the desired result and the proof is now ended.

    Proof of Theorem 1.1.

    (1) We consider two cases: (i) 1<p<˜p=1+1γα. (ii) 1<p<˜p=1+2s(1+αγ)αd.

    (i) Assume that 1<p<˜p=1+1γα. Let

    ω(x)=(Rded2+|x|2dx)1ed2+|x|2,xRd,

    and the function Φ satisfy

    ΦC0(R),    Φ(ξ)={1,  |ξ|1,0,  |ξ|2,    0Φ1.

    Thanks to Theorem 3.2, we may take φ1(x)=ω(x)Φn(x) with Φn(x)=Φ(|x|/n),n=1,2,, and φ2(t)=(1log(t/a)log(T/a))m for t[a,T], where mmax{2,p(1+αγ)p1}. Now we set φ(x,t)=CHD1γt,T(φ1(x)φ2(t)). From Definition 3.2 of the weak solution, one has

    RdTa(HD(1γ)a,tupCHD1γt,T(φ1φ2)+uaCHDαt,TCHD1γt,T(φ1φ2))dttdx=RdTa(u(Δ)sφ1CHD1γt,Tφ2+uCHDαt,TCHD1γt,T(φ1φ2))dttdx. (4.1)

    Furthermore, it follows that

    RdTa(upφ1φ2+uaφ1CHD1+αγt,Tφ2)dttdx=RdTa(u(Δ)sφ1CHD1γt,Tφ2+uφ1CHD1+αγt,Tφ2)dttdx. (4.2)

    According to the inequality (Δ)sω(x)ω(x) in [16] and the Lebesgue dominated convergence theorem, we have with n in (4.2),

    RdTaupωφ2dttdx+RdTauaωCHD1+αγt,Tφ2dttdxRdTa(uωCHD1γt,Tφ2+uωCHD1+αγt,Tφ2)dttdx. (4.3)

    Using Jensen's inequality in (4.3) gives

    Ta(Rduωdx)pφ2dtt+RdTauaωCHD1+αγt,Tφ2dttdxRdTa(uωCHD1γt,Tφ2+uωCHD1+αγt,Tφ2)dttdx. (4.4)

    Denoting f(t)=Rduωdx, it is easy to see that f(t)0 and f(a)>0. In view of inequality (4.4), Hölder inequality and Young's inequality, we obtain

    Tafp(t)φ2(t)dtt+Taf(a)CHD1+αγt,Tφ2(t)dttTaf(t)CHD1γt,Tφ2(t)dtt+Taf(t)CHD1+αγt,Tφ2(t)dtt=Taf(t)φ1p2(t)φ1p2(t)CHD1γt,Tφ2(t)dtt+Taf(t)φ1p2(t)φ1p2(t)CHD1+αγt,Tφ2(t)dtt12Tafp(t)φ2(t)dtt+CTaφ1p12(t)(CHD1γt,Tφ2(t))pp1dtt+CTaφ1p12(t)(CHD1+αγt,Tφ2(t))pp1dtt.

    Hence there holds

    12Tafp(t)φ2(t)dtt+Cf(a)(logTa)γαC(logTa)pγ1p1+C(logTa)pγpα1p1.

    Then we get

    f(a)<C(logTa)pγ1p1+αγ+C(logTa)pγpα1p1+αγ. (4.5)

    If Eq (1.1) has a global solution, we know that f(a)=0 as T in (4.5) by 0<α<γ<1 and p<1+1γα, which is inconsistent with f(a)>0. Hence, the mild solution of Eq (1.1) blows up in finite time.

    (ii) Suppose that 1<p<˜p=1+2s(1+αγ)αd. For t[a,T] with T>a>0, we take

    φ1(x)=(Φ((logTa)α2s|x|))2pp1,   φ2(t)=(1log(t/a)log(T/a))m

    with mmax{2,p(1+αγ)p1}, and φ(x,t)=CHD1γt,T(φ1(x)φ2(t)).

    Let u be a mild solution of Eq (1.1), then Theorem 3.2 implies

    RdTa(upφ1φ2+uaφ1CHD1+αγt,Tφ2)dttdx=RdTa(u((Δ)sφ1)CHD1γt,Tφ2+uφ1CHD1+αγt,Tφ2)dttdx. (4.6)

    Note that the fact

    (Δ)sφ1CHD1γt,Tφ2C1(logTa)(1+αγ)φ1p1φ1p2, (4.7)

    and

    φ1CHD1+αγt,Tφ2C2(logTa)(1+αγ)φ1p1φ1p2, (4.8)

    where the positive constants C1 and C2 are independent of T.

    According to (4.6)–(4.8), together with Young's inequality and Hölder inequality, it holds that

    RdTa(upφ1φ2+uaφ1CHD1+αγt,Tφ2)dttdxC(logTa)(1+αγ)+(1+αd2s)p1p(RdTaupφ1φ2dttdx)1pC(p)(logTa)1+αd2sp(1+αγ)p1+RdTaupφ1φ2dttdx. (4.9)

    As a result,

    C(α,γ)(logTa)γαRduaφ1dxC(p)(logTa)1+αd2sp(1+αγ)p1, (4.10)

    i.e.,

    RduaφdxC(α,γ,p)(logTa)1+αγ+αd2sp(1+αγ)p1. (4.11)

    The condition 1<p<1+2s(1+αγ)αd indicates 1+αγ+αd2sp(1+αγ)p1<0. If Eq (1.1) has a global solution, then Rduaφdx=0 as T, that is ua0, which makes a contradiction with the assumption ua0. Therefore, blowup of the mild solution u of Eq (1.1) occurs in finite time.

    (2) Based on the fixed point principle, we demonstrate the required result by constructing the global solution of Eq (1.1). Firstly, the condition p1+2s(1+αγ)αd implies that

    αd(p1)2s(pαpγ+1)+>1, (4.12)

    where (pαpγ+1)+=max{0,pαpγ+1}. If d<2s(1+αγ)1γ, one has p˜p=1+2s(1+αγ)αd, and if d2s(1+αγ)1γ, one gets p>˜p=1+1γα. In either case, we obtain

    αd(p1)2sp(1+αγ(p1)α)+>1. (4.13)

    In addition, by p>1+1γα>1γ, it follows that

    d(p1)2sp<αd(p1)2s(p(αγ)+1)+, (4.14)

    and

    d(p1)2sp<αd(p1)2sp(2α+1γαp)+. (4.15)

    Hence, taking (4.12)–(4.15) into account, we can choose q>p such that

    1+αγp11p<αd2sq<αp1, (4.16)

    and

    1+αγp1α<αd2sq<αp1. (4.17)

    Let

    β=αd2s(1p1q)=1+αγp1αd2sq. (4.18)

    Then (4.16) gives

    0<pβ<1. (4.19)

    If the initial value ua satisfies

    supt>a(logta)β||Ga(t)ua||Lq(Rd)=ϑ, (4.20)

    then ϑ<+ by (4.18) and (2.10) provided that uaLp(Rd) with p=αd(p1)2s(1+αγ).

    Next we use the contractive mapping principle to obtain result. To this end, we denote

    E={uL((a,),Lq(Rd))|||u||E=supt>a(logta)β||u||Lq(Rd)<+}

    and

    Ψ(u)(t)=Ga(t)ua+taGf(atτ)[HD(1γ)a,τ(|u|p1u)(τ)]dττ,uE.

    Define

    EK={uE|||u||EK,K>0}.

    By q>p and q>d(p1)4s, one gets pq1q<min{1,4sd}. Thus, for any u,vEK and t>a, it follows that

    (logta)β||Ψ(u)(t)Ψ(v)(t)||Lq(Rd)(logta)βta||Gf(atτ)[HD(1γ)a,τ(up(τ)vp(τ))]||Lq(Rd)dττCΓ(1γ)(logta)βta(logtτ)α1αd(p1)2sqτa(logτw)γ||upvp||Lqp(Rd)dwwdττCΓ(1γ)(logta)βta(logtτ)α1αd(p1)2sq×τa(logτw)γ(||u||p1Lq(Rd)+||v||p1Lq(Rd))||uv||Lq(Rd)dwwdττCKp1Γ(1γ)(logta)βta(logtτ)α1αd(p1)2sqτa(logτw)γ(logwa)pβdwwdττ||uv||E=CKp1Γ(1γ)10(1τ)α1αd(p1)2sqτ1γpβdτ10(1w)γwpβdw||uv||E=CKp1Γ(1γ)Γ(ααd(p1)2sq)Γ(2γpβ)Γ(2+αpβγαd(p1)2sq)Γ(1pβ)Γ(1γ)Γ(2γpβ)||uv||E=CKp1Γ(ααd(p1)2sq)Γ(1pβ)Γ(2+αpβγαd(p1)2sq)||uv||E. (4.21)

    By taking K small enough such that

    CK^{p-1}\frac{\Gamma(\alpha-\frac{\alpha d(p-1)}{2s q}\;\;)\Gamma(1-p\beta)} {\Gamma(2+\alpha-p\beta-\gamma-\frac{\alpha d(p-1)}{2s q}\;\;)} < \frac{1}{2},

    which yields ||\Psi(u)-\Psi(v)||_{E}\leq \frac{1}{2}||u-v||_{E} by Eq (4.21).

    A similar calculation as (4.21) results in

    \begin{align} \left(\log\frac{t}{a}\right)^{\beta}||\Psi(u)(t)||_{L^{q}(\mathbb{R}^{d})} \leq \vartheta+ CK^{p}\frac{\Gamma(\alpha-\frac{\alpha d(p-1)}{2s q})\Gamma(1-p\beta)} {\Gamma(2+\alpha-p\beta-\gamma-\frac{\alpha d(p-1)}{2s q})}. \end{align} (4.22)

    Choose sufficiently small \vartheta and K such that

    \vartheta+ CK^{p}\frac{\Gamma(\alpha-\frac{\alpha d(p-1)}{2s q}\;\;)\Gamma(1-p\beta)} {\Gamma(2+\alpha-p\beta-\gamma-\frac{\alpha d(p-1)}{2s q}\;\;)}\leq K.

    This implies \Psi(u)\in E_{K} and thus \Psi has a fixed point u\in E_{K} by the contractive mapping principle.

    Finally, We need to prove u\in C([a, \infty), C_{0}(\mathbb{R}^{d})) . For a T sufficiently close to a , let

    E_{K, T} = \left\{u\in L^{\infty}((a,T), L^{q}(\mathbb{R}^{d}))\,\Big|\, \sup\limits_{a < t < T}\left(\log\frac{t}{a}\right)^{\beta} ||u(t)||_{L^{q}(\mathbb{R}^{d})}\leq K\right\}.

    As demonstrated before, it is known that there is a unique solution u on E_{K, T} . It follows from Theorem 3.1 and the initial value u_{a}\in C_{0}(\mathbb{R}^{d})\cap L^{q}(\mathbb{R}^{d}) that there exists a unique solution \widetilde{u}\in C([a, T], C_{0}(\mathbb{R}^{d}))\cap C([a, T], L^{q}(\mathbb{R}^{d})) for T sufficiently close to a . Hence, for T sufficiently close to a , one has \sup\limits_{a < t < T}\left(\log\frac{t}{a}\right)^{\beta} ||\widetilde{u}(t)||_{L^{q}(\mathbb{R}^{d})}\leq K . This means that u = \widetilde{u} for t\in [a, T] from the uniqueness of solution and thus u\in C([a, T], C_{0}(\mathbb{R}^{d}))\cap C([a, T], L^{q}(\mathbb{R}^{d})) .

    Our purpose is to prove u\in C([a, \infty), C_{0}(\mathbb{R}^{d})) . In fact, for t > T , it holds that

    \begin{align*} \label{mainresult-23} &u-G_{a}(t)*u_{a} = \int_{a}^{t}G_{f}\left(a\frac{t}{\tau}\right)* [\,_{H}{\rm{D}}^{-(1-\gamma)}_{a,\tau}u^{p}(\tau)]\frac{{\rm d}\tau}{\tau} \\ = &\int_{a}^{T}G_{f}\left(a\frac{t}{\tau}\right)*[\,_{H}{\rm{D}}^{-(1-\gamma)}_{a,\tau}u^{p}(\tau)]\frac{{\rm d}\tau}{\tau} +\int_{T}^{t}G_{f}\left(a\frac{t}{\tau}\right)*[\,_{H}{\rm{D}}^{-(1-\gamma)}_{a,\tau}u^{p}(\tau)]\frac{{\rm d}\tau}{\tau} \\ = &I_{1}+I_{2}. \end{align*}

    Using the fact u\in C([a, T], C_{0}(\mathbb{R}^{d})) , one obtains

    I_{1} \in C([T, \infty), C_{0}(\mathbb{R}^{d}))\cap C([T, \infty), L^{q}(\mathbb{R}^{d})).

    For any \widetilde{T} > T , it can be easily find that u^{p}\in L^{\infty} ((T, \widetilde{T}), L^{q/p}(\mathbb{R}^{d})) and _{H}{\rm{D}}^{-(1-\gamma)}_{a, \tau}u^{p}\in L^{\infty}((T, \widetilde{T}), L^{q/p}(\mathbb{R}^{d})) . On the other hand, the condition q > \frac{d(p-1)}{2s} indicates that we may choose r > q such that \frac{d}{2s}(\frac{p}{q}-\frac{1}{r}) < 1 . As what we have proved in Lemma 2.5, it is obvious that I_{2}\in C([T, \widetilde{T}], L^{r}(\mathbb{R}^{d})) . By the arbitrariness of \widetilde{T} , we see that I_{2}\in C([T, \infty), L^{r}(\mathbb{R}^{d})) and thus u\in C([T, \infty), L^{r}(\mathbb{R}^{d})) .

    Let r = q\lambda^{n} and \lambda > 1 satisfy

    \frac{d}{2s}\left(\frac{p}{q\lambda^{n-1}}-\frac{1}{q\lambda^{n}}\right) < 1,\, n = 1,2,\ldots,

    then u\in C([T, \infty), L^{q\lambda^{n}}(\mathbb{R}^{d})) . After finite steps, one has \frac{p}{q\lambda^{n}} < \frac{2s}{d} . In other words, we show u\in C([a, \infty), C_{0}(\mathbb{R}^{d})) . This concludes the proof of the theorem.

    Remark 4.1. It is worth noticing that, according to Theorem 1.1, the Fujita critical exponent to Eq (1.1) is the number \widetilde{p} = \max\{1+\frac{1-\gamma}{\alpha}, 1+\frac{2s(1+\alpha-\gamma)}{\alpha d}\} .

    Remark 4.2. In the Eq (1.1) , we consider the case 0 < \alpha < \gamma < 1 and prove the main result, i.e., Theorem 1.1. If \gamma\geq \alpha with 0 < \alpha < 1 and 0\leq \gamma < 1 , then it is easy to verify that Theorems 3.1 and 3.2 are still valid provided that a mild solution and a weak solution are defined as Definitions 3.1 and 3.2. However, compared with Theorem 1.1, we see that the main conclusions are very different. In fact, we can derive the following result whose proof is similar to that of Theorem 1.1 or can also refer to the proof of Theorem 1 in [34].

    Theorem 4.1. Let d\in \mathbb{N} , 0 < \alpha < 1 , 0\leq\gamma < 1 , \gamma\leq \alpha , 0 < s < 1 , and p > 1 .Assume that u_{a}\in C_{0}(\mathbb{R}^{d}) and u_{a}\geq 0 with u_{a}\not\equiv 0 .

    (1) If 1 < p\leq\overline{p} = \max\{\frac{1}{\gamma}, 1+\frac{2s(1+\alpha-\gamma)}{(2+\alpha d-2s(1+\alpha-\gamma))_{+}}\} , then the mild solution of Eq (1.1) will blow up in finite time.

    (2) If p > \overline{p} and ||u_{a}||_{L^{p^{*}}(\mathbb{R}^{d})} is small enough with p^{*} = \frac{\alpha d(p-1)}{2s(1+\alpha-\gamma)} , then Eq (1.1) exists global solution.

    Remark 4.3. From Theorem 4.1, we remark that the Fujita critical exponent is \overline{p} = \max\{\frac{1}{\gamma}, 1+\frac{2s(1+\alpha-\gamma)}{(2+\alpha d-2s(1+\alpha-\gamma))_{+}}\} when \gamma\leq \alpha for 0 < \alpha < 1 and 0\leq\gamma < 1 .

    In this section, we show the finite time blow-up of the solution to Eq (1.1) by numerical simulation. For this purpose, we have to approximate the Caputo-Hadamard derivative, fractional Laplacian and Hadamard fractional integral in Eq (1.1), respectively. We shall use formulaes (3.2) and (3.3) in [35] to discretize the Caputo-Hadamard derivative of order \alpha\in (0, 1) and apply formula (2.9) in [36] to approximate the fractional Laplacian of order s\in (0, 1) . For the right sided Hadamard fractional integral of order 1-\gamma\, (\gamma\in (0, 1)) in Eq (1.1), we present the following discrete scheme.

    Let a = t_{0} < t_{1} < \ldots < t_{k} < \ldots < t_{N} = T be a partition of the interval [a, T] with N\in \mathbb{N} and some positive number T > a . Then the Hadamard fractional integral with order 1-\gamma\, (\gamma\in (0, 1)) can be approximated by, for t = t_{k}, 1\leq k\leq N ,

    \begin{align*} _{H}{\rm{D}}_{a,t}^{-(1-\gamma)} g(t)|_{t = t_{k}} = &\frac{1}{\Gamma(1-\gamma)}\int_{a}^{t_{k}} \left(\log\frac{t_{k}}{\tau}\right)^{-\gamma}g(\tau)\frac{{\rm{d}}\tau}{\tau} \\ = &\frac{1}{\Gamma(1-\gamma)}\sum\limits_{j = 1}^{k}\int_{t_{j-1}}^{t_{j}} \left(\log\frac{t_{k}}{\tau}\right)^{-\gamma}g(\tau)\frac{{\rm{d}}\tau}{\tau} \\ \approx & \frac{1}{\Gamma(1-\gamma)}\sum\limits_{j = 1}^{k}\int_{t_{j-1}}^{t_{j}} \left(\log\frac{t_{k}}{\tau}\right)^{-\gamma}g(t_{j-1})\frac{{\rm{d}}\tau}{\tau} \\ = & \frac{1}{\Gamma(2-\gamma)}\sum\limits_{j = 1}^{k}\left[\left(\log\frac{t_{k}}{t_{j-1}}\right)^{1-\gamma} -\left(\log\frac{t_{k}}{t_{j}}\right)^{1-\gamma}\right]g(t_{j-1}) \\ = & \sum\limits_{j = 1}^{k}b_{j,k}g(t_{j-1}), \end{align*}

    where

    b_{j,k} = \frac{1}{\Gamma(2-\gamma)}\left[\left(\log\frac{t_{k}}{t_{j-1}}\right)^{1-\gamma} -\left(\log\frac{t_{k}}{t_{j}}\right)^{1-\gamma}\right].

    Based on these results, we obtain a numerical scheme to Eq (1.1). For simplicity, we now take d = 1, a = 1, p = 2 and u_{a} = 10 in Eq (1.1). Figure 1 depicts the curves of the solution to Eq (1.1) when the parameters \alpha and s choose different values and \gamma = 0.8 , which displays the finite time blow-up of solution of Eq (1.1) and thus shows the effectiveness of the results in Theorem 1.1. Similarly, Figure 2 presents the curves of the solution to Eq (1.1) in the case \gamma\leq \alpha and illustrates the validity of the results given by Theorem 4.1.

    Figure 1.  Solution curves for Eq (1.1) with \gamma = 0.8 .
    Figure 2.  Solution curves for Eq (1.1) with \gamma = 0.3 .

    In this paper, we study the blow-up and global existence of solution of the Cauchy problem to time-space fractional partial differential Eq (1.1) with nonlinear memory. A mild solution and a weak solution are introduced to Eq (1.1) and the mild solution is actually shown to be the weak solution. We next prove the local existence and uniqueness of the mild solution of Eq (1.1) by using the fixed point argument. Finally, the finite time blow-up and global solution of Eq (1.1) are established and the Fujita critical exponent is also determined, where the blowing-up character of the solution in a finite time is verified by numerical simulations.

    The work was partially supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (No. 2021L573).

    The author declare no conflict of interest.



    [1] K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Amsterdam: Gordon and Breach Science, 1993.
    [3] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [5] Y. G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Theor. Probab. Appl., 27 (1983), 256–268. https://doi.org/10.1007/978-1-4419-6205-8 doi: 10.1007/978-1-4419-6205-8
    [6] H. Schiessel, I. M. Sokolov, A. Blumen, Dynamics of a polyampholyte hooked around an obstacle, Phys. Rev. E, 56 (1997), R2390–R2393. https://doi.org/10.1103/PhysRevE.56.R2390 doi: 10.1103/PhysRevE.56.R2390
    [7] S. I. Denisov, H. Kantz, Continuous-time random walk theory of superslow diffusion, Europhys Lett., 92 (2010), 30001. https://doi.org/10.1209/0295-5075/92/30001 doi: 10.1209/0295-5075/92/30001
    [8] W. T. Ang, Hypersingular integral equations in fracture analysis, Amsterdam: Elsevier, 2014.
    [9] R. Garra, F. Mainardi, G. Spada, A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus, Chaos Soliton. Fract., 102 (2017), 333–338. https://doi.org/10.1016/j.chaos.2017.03.032 doi: 10.1016/j.chaos.2017.03.032
    [10] Y. Liang, S. Wang, W. Chen, Z. Zhou, R. L. Magin, A survey of models of ultraslow diffusion in heterogeneous materials, Appl. Mech. Rev., 71 (2019), 040802. https://doi.org/10.1115/1.4044055 doi: 10.1115/1.4044055
    [11] A. De Gregorio, R. Garra, Hadamard-type fractional heat equations and ultra-slow diffusions, Fractal Fract., 5 (2021), 48. https://doi.org/10.3390/fractalfract5020048 doi: 10.3390/fractalfract5020048
    [12] J. Hadamard, Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186.
    [13] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [14] C. P. Li, Z. Q. Li, Asymptotic behaviors of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, Int. J. Comput. Math., 98 (2021), 305–339.
    [15] C. P. Li, Z. Q. Li, Asymptotic behaviors of solution to partial differential equation with Caputo-Hadamard derivative and fractional Laplacian: Hyperbolic case, Discrete Cont. Dyn.-S., 14 (2021), 3659–3683. https://doi.org/10.3934/dcdss.2021023 doi: 10.3934/dcdss.2021023
    [16] C. P. Li, Z. Q. Li, The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, J. Nonlinear Sci., 31 (2021), 80. https://doi.org/10.1007/s00332-021-09736-y doi: 10.1007/s00332-021-09736-y
    [17] C. P. Li, Z. Q. Li, Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation, J. Nonlinear Sci., 31 (2021), 31. https://doi.org/10.1007/s00332-021-096918 doi: 10.1007/s00332-021-096918
    [18] L. Ma, Blow-up phenomena profile for Hadamard fractional differential systems in finite time, Fractals, 27 (2019), 1950093. https://doi.org/10.1142/S0218348X19500932 doi: 10.1142/S0218348X19500932
    [19] L. Ma, Comparative analysis on the blow-up occurrence of solutions to Hadamard type fractional differential systems, Int. J. Comput. Math., 99 (2022), 895–908. https://doi.org/10.1080/00207160.2021.1939020 doi: 10.1080/00207160.2021.1939020
    [20] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2011), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [21] C. Bucur, E. Valdinoci, Non-local diffusion and applications, Cham: Springer, 2016.
    [22] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3–26. https://doi.org/10.5565/PUBLMAT_60116_01 doi: 10.5565/PUBLMAT_60116_01
    [23] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Frac. Calc. Appl. Anal., 20 (2017), 7–51. https://doi.org/10.1515/fca-2017-0002 doi: 10.1515/fca-2017-0002
    [24] H. Fujita, On the blowing up of solutions of the Cauchy problem for u_{t} = \Delta u+u^{1+\alpha}, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124.
    [25] F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29–40.
    [26] T. Cazenave, F. Dickstein, F. B. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal., 68 (2008), 862–874. https://doi.org/10.1016/j.na.2006.11.042 doi: 10.1016/j.na.2006.11.042
    [27] P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29 (1998), 1301–1334. https://doi.org/10.1137/S0036141097318900 doi: 10.1137/S0036141097318900
    [28] A. Z. Fino, M. Kirane, Qualitative properties of solutions to a time-space fractional evolution equation, Quart. Appl. Math., 70 (2012), 133–157. https://doi.org/10.1090/S0033-569X-2011-01246-9 doi: 10.1090/S0033-569X-2011-01246-9
    [29] Y. N. Li, Q. G. Zhang, Blow-up and global existence of solutions for a time fractional diffusion equation, Frac. Calc. Appl. Anal., 21 (2018), 1619–1640. https://doi.org/10.1515/fca-2018-0085 doi: 10.1515/fca-2018-0085
    [30] C. P. Li, M. Cai, Theory and numerical approximations of fractional integrals and derivatives, Philadelphia: SIAM, 2019.
    [31] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [32] A. A. Kilbas, M. Saigo, H-transforms: Theory and applications, Boca Raton: CRC Press, 2004.
    [33] H. M. Srivastava, K. C. Gupta, S. P. Goyal, The H-functions of one and two variables with applications, New Delhi: South Asian, 1982.
    [34] Q. G. Zhang, Y. N. Li, The critical exponent for a time fractional diffusion equation with nonlinear memory, Math. Meth. Appl. Sci., 41 (2018), 6443–6456. https://doi.org/10.1002/mma.5169 doi: 10.1002/mma.5169
    [35] M. Gohar, C. P. Li, Z. Q. Li, Finite difference methods for Caputo-Hadamard fractional differential equations, Mediterr. J. Math., 17 (2020), 194. https://doi.org/10.1007/s00009-020-01605-4 doi: 10.1007/s00009-020-01605-4
    [36] S. W. Duo, H. W. V. Wyk, Y. Z. Zhang, A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., 355 (2018), 233–252. https://doi.org/10.1016/j.jcp.2017.11.011 doi: 10.1016/j.jcp.2017.11.011
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2119) PDF downloads(99) Cited by(0)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog