This paper focuses on a class of variation-inequality problems involving non-divergence polytropic parabolic operators. The penalty method is employed, along with the Leray Schauder fixed point theory and limit progress, to determine the existence of solutions. The study also delves into the blow-up phenomena of the solution, revealing that under certain conditions, the solution will blow up in finite time.
Citation: Jia Li, Changchun Bi. Existence and blowup of solutions for non-divergence polytropic variation-inequality in corn option trading[J]. AIMS Mathematics, 2023, 8(7): 16748-16756. doi: 10.3934/math.2023856
This paper focuses on a class of variation-inequality problems involving non-divergence polytropic parabolic operators. The penalty method is employed, along with the Leray Schauder fixed point theory and limit progress, to determine the existence of solutions. The study also delves into the blow-up phenomena of the solution, revealing that under certain conditions, the solution will blow up in finite time.
[1] | C. Guan, Z. Xu, F. Yi, A consumption-investment model with state-dependent lower bound constraint on consumption, J. Math. Anal. Appl., 516 (2022), 126511. https://doi.org/10.1016/j.jmaa.2022.126511 doi: 10.1016/j.jmaa.2022.126511 |
[2] | X. Han, F. Yi, An irreversible investment problem with demand on a finite horizon: The optimal investment boundary analysis, Commun. Nonlinear Sci., 109 (2022), 106302. https://doi.org/10.1016/j.cnsns.2022.106302 doi: 10.1016/j.cnsns.2022.106302 |
[3] | C. Guan, F. Yi, J. Chen, Free boundary problem for a fully nonlinear and degenerate parabolic equation in an angular domain, J. Differ. Equations, 266 (2019), 1245–1284. https://doi.org/10.1016/j.jde.2018.07.070 doi: 10.1016/j.jde.2018.07.070 |
[4] | J. Li, C. Bi, Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems, AIMS Math., 7 (2022), 19758–19769. https://doi.org/10.3934/math.20221083 doi: 10.3934/math.20221083 |
[5] | Y. Sun, T. Wu, Study of weak solutions for degenerate parabolic inequalities with nonstandard conditions, J. Inequal. Appl., 2022 (2022), 141. https://doi.org/10.1186/s13660-022-02872-3 doi: 10.1186/s13660-022-02872-3 |
[6] | D. Adak, G. Manzini, S. Natarajan, Virtual element approximation of two-dimensional parabolic variational inequalities, Comput. Math. Appl., 116 (2022), 48–70. https://doi.org/10.1016/j.camwa.2021.09.007 doi: 10.1016/j.camwa.2021.09.007 |
[7] | S. B. Boyana, T. Lewis, A. Rapp, Y. Zhang, Convergence analysis of a symmetric dual-wind discontinuous Galerkin method for a parabolic variational inequality, J. Comput. Appl. Math., 422 (2023), 114922. https://doi.org/10.1016/j.cam.2022.114922 doi: 10.1016/j.cam.2022.114922 |
[8] | S. Migorski, V. T. Nguyen, S. Zeng, Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian, Appl. Math. Comput., 364 (2020), 124668. https://doi.org/10.1016/j.amc.2019.124668 doi: 10.1016/j.amc.2019.124668 |
[9] | J. Wang, W. Gao, Existence of nontrivial nonnegative periodic solutions for a class of doubly degenerate parabolic equation with nonlocal terms, J. Math. Anal. Appl., 331 (2007), 481–498. https://doi.org/10.1016/j.jmaa.2006.08.059 doi: 10.1016/j.jmaa.2006.08.059 |
[10] | J. Wang, W. Gao, M. Su, Periodic solutions of non-Newtonian polytropic filtration equations with nonlinear sources, Appl. Math. Comput., 216 (2010), 1996–2009. https://doi.org/10.1016/j.amc.2010.03.030 doi: 10.1016/j.amc.2010.03.030 |
[11] | W. Chen, T. Zhou, Existence of solutions for p-Laplacian parabolic Kirchhoff equation, Appl. Math. Lett., 122 (2021), 107527. https://doi.org/10.1016/j.aml.2021.107527 doi: 10.1016/j.aml.2021.107527 |
[12] | W. Zou, J. Li, Existence and uniqueness of solutions for a class of doubly degenerate parabolic equations, J. Math. Anal. Appl., 446 (2017), 1833–1862. https://doi.org/10.1016/j.jmaa.2016.10.002 doi: 10.1016/j.jmaa.2016.10.002 |