Research article Special Issues

The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary value problems

  • Received: 27 March 2023 Revised: 01 May 2023 Accepted: 07 May 2023 Published: 12 May 2023
  • MSC : 26A33, 65D05, 65D30

  • In this article, we derive some novel results of the existence, uniqueness, and stability of the solution of generalized Caputo-type fractional boundary value problems (FBVPs). The Banach contraction principle, along with necessary features of fixed point theory, is used to establish our results. An example is illustrated to justify the validity of the theoretical observations.

    Citation: Poovarasan R, Pushpendra Kumar, Kottakkaran Sooppy Nisar, V. Govindaraj. The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary value problems[J]. AIMS Mathematics, 2023, 8(7): 16757-16772. doi: 10.3934/math.2023857

    Related Papers:

  • In this article, we derive some novel results of the existence, uniqueness, and stability of the solution of generalized Caputo-type fractional boundary value problems (FBVPs). The Banach contraction principle, along with necessary features of fixed point theory, is used to establish our results. An example is illustrated to justify the validity of the theoretical observations.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
    [2] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Elsevier, 1999. https://doi.org/10.1016/s0076-5392(99)9x8001-5
    [3] M. I. Abbas, Existence results and the Ulam stability for fractional differential equations with hybrid proportional-Caputo derivatives, J. Nonlinear Funct. Anal., 2020 (2020), 1–14. https://doi.org/10.23952/jnfa.2020.48 doi: 10.23952/jnfa.2020.48
    [4] A. Khan, H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. https://doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [5] P. Kumar, V. Govindaraj, Z. A. Khan, Some novel mathematical results on the existence and uniqueness of generalized Caputo-type initial value problems with delay, AIMS Mathematics, 7 (2019), 10483–10494. https://doi.org/10.3934/math.2022584 doi: 10.3934/math.2022584
    [6] A. B. Abdulla, M. Al-Refai, A. Al-Rawashdeh, On the existence and uniqueness of solutions for a class of non-linear fractional boundary value problems, J. King. Saud. Univ. Sci., 28 (2016), 103–110. https://doi.org/10.1016/j.jksus.2015.05.001 doi: 10.1016/j.jksus.2015.05.001
    [7] H. Afshari, E. Karapınar, A discussion on the existence of positive solutions of the boundary value problems via $\psi$-Hilfer fractional derivative on $b$-metric spaces, Adv. Differ. Equ., 2020 (2020), 616. https://doi.org/10.1186/s13662-020-03076-z doi: 10.1186/s13662-020-03076-z
    [8] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, K. Sitthithakerngkiet, A. Ibrahim, Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020 (2020), 225. https://doi.org/10.1186/s13662-020-02681-2 doi: 10.1186/s13662-020-02681-2
    [9] B. Ahmad, S. K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 348–360. https://doi.org/10.2478/s13540-014-0173-5 doi: 10.2478/s13540-014-0173-5
    [10] Z. B. Bai, H. Sh. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [11] Z. Baitiche, C. Derbazi, M. Benchohra, $\psi $-Caputo fractional differential equations with multi-point boundary conditions by Topological Degree Theory, Results Nonlinear Anal., 3 (2020), 167–178.
    [12] M. B. Jeelani, A. M. Saeed, M. S. Abdo, K. Shah, Positive solutions for fractional boundary value problems under a generalized fractional operator, Math. Meth. Appl. Sci., 44 (2021), 9524–9540. https://doi.org/10.1002/mma.7377 doi: 10.1002/mma.7377
    [13] M. Khuddush, K. R. Prasad, Existence, uniqueness and stability analysis of a tempered fractional order thermistor boundary value problems, J. Anal., 31 (2023), 85–107. https://doi.org/10.1007/s41478-022-00438-6 doi: 10.1007/s41478-022-00438-6
    [14] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9
    [15] K. Shah, C. Tunç, Existence theory and stability analysis to a system of boundary value problem, J. TaiBah. Univ. Sci., 11 (2017), 1330–1342. https://doi.org/10.1016/j.jtusci.2017.06.002 doi: 10.1016/j.jtusci.2017.06.002
    [16] R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.6652 doi: 10.1002/mma.6652
    [17] A. Wongcharoen, S. K. Ntouyas, J. Tariboon, Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions, Mathematics, 8 (2020), 1905. https://doi.org/10.3390/math8111905 doi: 10.3390/math8111905
    [18] V. S. Erturk, A. Ali, K. Shah, P. Kumar, T. Abdeljawad, Existence and stability results for nonlocal boundary value problems of fractional order, Bound. Value Probl., 2022 (2022), 25. https://doi.org/10.1186/s13661-022-01606-0 doi: 10.1186/s13661-022-01606-0
    [19] Z. Bekri, V. S. Erturk, P. Kumar, On the existence and uniqueness of a nonlinear $q$-difference boundary value problem of fractional order, Int. J. Model. Simul. Sci. Comput., 13 (2022), 2250011. https://doi.org/10.1142/S1793962322500118 doi: 10.1142/S1793962322500118
    [20] Z. Bekri, V. S. Erturk, P. Kumar, V. Govindaraj, Some novel analysis of two different Caputo-type fractional-order boundary value problems, Results Nonlinear Anal., 5 (2022), 299–311. https://doi.org/10.53006/rna.1114063 doi: 10.53006/rna.1114063
    [21] R. P. Agarwal, S. Hristova, D. O'Regan, Boundary value problems for fractional differential equations of Caputo type and Ulam type stability: Basic concepts and study, Axioms, 12 (2023), 226. https://doi.org/10.3390/axioms12030226 doi: 10.3390/axioms12030226
    [22] G. D. Li, Y. Zhang, Y. J. Guan, W. J. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [23] M. Awadalla, M. Subramanian, K. Abuasbeh, Existence and Ulam-Hyers stability results for a system of coupled generalized Liouville-Caputo fractional Langevin equations with multipoint boundary Conditions, Symmetry, 15 (2023), 198. https://doi.org/10.3390/sym15010198 doi: 10.3390/sym15010198
    [24] A. Refice, M. Inc, M. S. Hashemi, M. S. Souid, Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces L$^{p(.)}$, J. Geom. Phys., 178 (2022), 104554. https://doi.org/10.1016/j.geomphys.2022.104554 doi: 10.1016/j.geomphys.2022.104554
    [25] Z. Odibat, D. Baleanu, Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives, Appl. Numer. Math., 156 (2020), 94–105. https://doi.org/10.1016/j.apnum.2020.04.015 doi: 10.1016/j.apnum.2020.04.015
    [26] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. http://hdl.handle.net/20.500.12416/2171
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1494) PDF downloads(166) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog