Research article

Multiple solutions for a fractional p-Kirchhoff equation with critical growth and low order perturbations

  • Received: 16 February 2022 Revised: 04 April 2022 Accepted: 22 April 2022 Published: 06 May 2022
  • MSC : 35J20, 35J60, 47G20

  • In this article, we deal with the following fractional $ p $-Kirchhoff type equation

    $ \begin{equation*} \begin{cases} M\left( \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right)(-\Delta)_p^su=\frac{|u|^{p_\alpha^*-2}u}{|x|^\alpha}+\frac{\lambda}{|x|^\beta} , &\rm \mathrm{in}\ \ \Omega, \\ u>0, &\rm \mathrm{in}\ \ \Omega, \\ u=0, &\rm \mathrm{in}\ \ \mathbb{R}^N\backslash \Omega, \end{cases} \end{equation*} $

    where $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain containing $ 0 $, $ (-\Delta)_p^s $ denotes the fractional $ p $-Laplacian, $ M(t)=a+bt^{k-1} $ for $ t\geq0 $ and $ k>1 $, $ a, b>0 $, $ \lambda>0 $ is a parameter, $ 0<s<1 $, $ 0\leq\alpha<ps<N $, $ \frac{N(p-2)+ps}{p-1}<\beta<\frac{N(p_\alpha^*-1)+\alpha}{p_\alpha^*} $, $ 1<p<pk<p_\alpha^*=\frac{p(N-\alpha)}{N-ps} $ is the fractional critical Hardy-Sobolev exponent. With aid of the variational method and the concentration compactness principle, we prove the existence of two distinct positive solutions.

    Citation: Zusheng Chen, Hongmin Suo, Jun Lei. Multiple solutions for a fractional p-Kirchhoff equation with critical growth and low order perturbations[J]. AIMS Mathematics, 2022, 7(7): 12897-12912. doi: 10.3934/math.2022714

    Related Papers:

  • In this article, we deal with the following fractional $ p $-Kirchhoff type equation

    $ \begin{equation*} \begin{cases} M\left( \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right)(-\Delta)_p^su=\frac{|u|^{p_\alpha^*-2}u}{|x|^\alpha}+\frac{\lambda}{|x|^\beta} , &\rm \mathrm{in}\ \ \Omega, \\ u>0, &\rm \mathrm{in}\ \ \Omega, \\ u=0, &\rm \mathrm{in}\ \ \mathbb{R}^N\backslash \Omega, \end{cases} \end{equation*} $

    where $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain containing $ 0 $, $ (-\Delta)_p^s $ denotes the fractional $ p $-Laplacian, $ M(t)=a+bt^{k-1} $ for $ t\geq0 $ and $ k>1 $, $ a, b>0 $, $ \lambda>0 $ is a parameter, $ 0<s<1 $, $ 0\leq\alpha<ps<N $, $ \frac{N(p-2)+ps}{p-1}<\beta<\frac{N(p_\alpha^*-1)+\alpha}{p_\alpha^*} $, $ 1<p<pk<p_\alpha^*=\frac{p(N-\alpha)}{N-ps} $ is the fractional critical Hardy-Sobolev exponent. With aid of the variational method and the concentration compactness principle, we prove the existence of two distinct positive solutions.



    加载中


    [1] C. Alves, F. Corr$\hat{e}$a, T. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85–93. http://dx.doi.org/10.1016/j.camwa.2005.01.008 doi: 10.1016/j.camwa.2005.01.008
    [2] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [3] M. Caponi, P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional $p$-Laplacian equations, Annali di Matematica, 195 (2016), 2099–2129. http://dx.doi.org/10.1007/s10231-016-0555-x doi: 10.1007/s10231-016-0555-x
    [4] W. Chen, Critical fractional $p$-Kirchhoff type problem with a generalized Choquard nonlinearity, J. Math. Phys., 59 (2018), 121502. http://dx.doi.org/10.1063/1.5052669 doi: 10.1063/1.5052669
    [5] W. Chen, Y. Gui, Multiple solutions for a fractional $p$-Kirchhoff problem with Hardy nonlinearity, Nonlinear Anal., 188 (2019), 316–338. http://dx.doi.org/10.1016/j.na.2019.06.009 doi: 10.1016/j.na.2019.06.009
    [6] W. Chen, S. Mosconi, M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal., 275 (2018), 3065–3114. http://dx.doi.org/10.1016/j.jfa.2018.02.020 doi: 10.1016/j.jfa.2018.02.020
    [7] W. Chen, V. Rǎdulescu, B. Zhang, Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential, Anal. Math. Phys., 11 (2021), 132. http://dx.doi.org/10.1007/s13324-021-00564-7 doi: 10.1007/s13324-021-00564-7
    [8] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. http://dx.doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0
    [9] A. Fiscella, P. Pucci, $p$-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal.-Real, 35 (2017), 350–378. http://dx.doi.org/10.1016/j.nonrwa.2016.11.004 doi: 10.1016/j.nonrwa.2016.11.004
    [10] A. Fiscella, P. Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17 (2017), 429–456. http://dx.doi.org/10.1515/ans-2017-6021 doi: 10.1515/ans-2017-6021
    [11] M. Khiddi, S. Sbai, Infinitely many solutions for non-local elliptic non-degenerate $p$-Kirchhoff equations with critical exponent, Complex Var. Elliptic, 65 (2020), 368–380. http://dx.doi.org/10.1080/17476933.2019.1627527 doi: 10.1080/17476933.2019.1627527
    [12] G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883.
    [13] S. Marano, S. Mosconi, Asymptotic for optimizers of the fractional Hardy-Sobolev inequality, Commun. Contemp. Math., 21 (2019), 1850028. http://dx.doi.org/10.1142/S0219199718500281 doi: 10.1142/S0219199718500281
    [14] S. Mosconi, M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal.-Theor., 136 (2016), 84–101. http://dx.doi.org/10.1016/j.na.2016.02.012 doi: 10.1016/j.na.2016.02.012
    [15] E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [16] N. Nyamoradi, A. Razani, Existence to fractional critical equation with Hardy-Littlewood-Sobolev nonlinearities, Acta Math. Sci., 41 (2021), 1321–1332. http://dx.doi.org/10.1007/s10473-021-0418-4 doi: 10.1007/s10473-021-0418-4
    [17] P. Pucci, M. Xiang, B. Zhang, Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional $p$-Laplacian, Adv. Calc. Var., 12 (2019), 253–275. http://dx.doi.org/10.1515/acv-2016-0049 doi: 10.1515/acv-2016-0049
    [18] L. Wang, T. Han, J. Wang, Infinitely many solutions for Schrödinger-Choquard-Kirchhoff equations involving the fractional $p$-Laplacian, Acta Math. Sin.-English Ser., 37 (2021), 315–332. http://dx.doi.org/10.1007/s10114-021-0125-z doi: 10.1007/s10114-021-0125-z
    [19] F. Wang, M. Xiang, Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity, Anal. Math. Phys., 9 (2019), 1–16. http://dx.doi.org/10.1007/s13324-017-0174-8 doi: 10.1007/s13324-017-0174-8
    [20] F. Wang, D. Hu, M. Xiang, Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems, Adv. Nonlinear Anal., 10 (2021), 636–658. http://dx.doi.org/10.1515/anona-2020-0150 doi: 10.1515/anona-2020-0150
    [21] M. Xiang, B. Zhang, A critical fractional $p$-Kirchhoff type problem involving discontinuous nonlinearity, Discrete Cont. Dyn.-S, 12 (2019), 413–433. http://dx.doi.org/10.3934/dcdss.2019027 doi: 10.3934/dcdss.2019027
    [22] M. Xiang, B. Zhang, X. Zhang, A nonhomogeneous fractional $p$-Kirchhoff type problem involving critical exponent in $\mathbb{R}^N$, Adv. Nonlinear Stud., 17 (2017), 611–640. http://dx.doi.org/10.1515/ans-2016-6002 doi: 10.1515/ans-2016-6002
    [23] M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Anal., 198 (2020), 111899. http://dx.doi.org/10.1016/j.na.2020.111899 doi: 10.1016/j.na.2020.111899
    [24] M. Xiang, V. Rǎdulescu, B. Zhang, Existence results for singular fractional $p$-Kirchhoff problems, Acta Math. Sci., 42 (2022), 1209–1224. http://dx.doi.org/10.1007/s10473-022-0323-5 doi: 10.1007/s10473-022-0323-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1663) PDF downloads(63) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog