In this article, we deal with the following fractional $ p $-Kirchhoff type equation
$ \begin{equation*} \begin{cases} M\left( \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right)(-\Delta)_p^su=\frac{|u|^{p_\alpha^*-2}u}{|x|^\alpha}+\frac{\lambda}{|x|^\beta} , &\rm \mathrm{in}\ \ \Omega, \\ u>0, &\rm \mathrm{in}\ \ \Omega, \\ u=0, &\rm \mathrm{in}\ \ \mathbb{R}^N\backslash \Omega, \end{cases} \end{equation*} $
where $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain containing $ 0 $, $ (-\Delta)_p^s $ denotes the fractional $ p $-Laplacian, $ M(t)=a+bt^{k-1} $ for $ t\geq0 $ and $ k>1 $, $ a, b>0 $, $ \lambda>0 $ is a parameter, $ 0<s<1 $, $ 0\leq\alpha<ps<N $, $ \frac{N(p-2)+ps}{p-1}<\beta<\frac{N(p_\alpha^*-1)+\alpha}{p_\alpha^*} $, $ 1<p<pk<p_\alpha^*=\frac{p(N-\alpha)}{N-ps} $ is the fractional critical Hardy-Sobolev exponent. With aid of the variational method and the concentration compactness principle, we prove the existence of two distinct positive solutions.
Citation: Zusheng Chen, Hongmin Suo, Jun Lei. Multiple solutions for a fractional p-Kirchhoff equation with critical growth and low order perturbations[J]. AIMS Mathematics, 2022, 7(7): 12897-12912. doi: 10.3934/math.2022714
In this article, we deal with the following fractional $ p $-Kirchhoff type equation
$ \begin{equation*} \begin{cases} M\left( \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right)(-\Delta)_p^su=\frac{|u|^{p_\alpha^*-2}u}{|x|^\alpha}+\frac{\lambda}{|x|^\beta} , &\rm \mathrm{in}\ \ \Omega, \\ u>0, &\rm \mathrm{in}\ \ \Omega, \\ u=0, &\rm \mathrm{in}\ \ \mathbb{R}^N\backslash \Omega, \end{cases} \end{equation*} $
where $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain containing $ 0 $, $ (-\Delta)_p^s $ denotes the fractional $ p $-Laplacian, $ M(t)=a+bt^{k-1} $ for $ t\geq0 $ and $ k>1 $, $ a, b>0 $, $ \lambda>0 $ is a parameter, $ 0<s<1 $, $ 0\leq\alpha<ps<N $, $ \frac{N(p-2)+ps}{p-1}<\beta<\frac{N(p_\alpha^*-1)+\alpha}{p_\alpha^*} $, $ 1<p<pk<p_\alpha^*=\frac{p(N-\alpha)}{N-ps} $ is the fractional critical Hardy-Sobolev exponent. With aid of the variational method and the concentration compactness principle, we prove the existence of two distinct positive solutions.
[1] | C. Alves, F. Corr$\hat{e}$a, T. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85–93. http://dx.doi.org/10.1016/j.camwa.2005.01.008 doi: 10.1016/j.camwa.2005.01.008 |
[2] | A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[3] | M. Caponi, P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional $p$-Laplacian equations, Annali di Matematica, 195 (2016), 2099–2129. http://dx.doi.org/10.1007/s10231-016-0555-x doi: 10.1007/s10231-016-0555-x |
[4] | W. Chen, Critical fractional $p$-Kirchhoff type problem with a generalized Choquard nonlinearity, J. Math. Phys., 59 (2018), 121502. http://dx.doi.org/10.1063/1.5052669 doi: 10.1063/1.5052669 |
[5] | W. Chen, Y. Gui, Multiple solutions for a fractional $p$-Kirchhoff problem with Hardy nonlinearity, Nonlinear Anal., 188 (2019), 316–338. http://dx.doi.org/10.1016/j.na.2019.06.009 doi: 10.1016/j.na.2019.06.009 |
[6] | W. Chen, S. Mosconi, M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal., 275 (2018), 3065–3114. http://dx.doi.org/10.1016/j.jfa.2018.02.020 doi: 10.1016/j.jfa.2018.02.020 |
[7] | W. Chen, V. Rǎdulescu, B. Zhang, Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential, Anal. Math. Phys., 11 (2021), 132. http://dx.doi.org/10.1007/s13324-021-00564-7 doi: 10.1007/s13324-021-00564-7 |
[8] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. http://dx.doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0 |
[9] | A. Fiscella, P. Pucci, $p$-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal.-Real, 35 (2017), 350–378. http://dx.doi.org/10.1016/j.nonrwa.2016.11.004 doi: 10.1016/j.nonrwa.2016.11.004 |
[10] | A. Fiscella, P. Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17 (2017), 429–456. http://dx.doi.org/10.1515/ans-2017-6021 doi: 10.1515/ans-2017-6021 |
[11] | M. Khiddi, S. Sbai, Infinitely many solutions for non-local elliptic non-degenerate $p$-Kirchhoff equations with critical exponent, Complex Var. Elliptic, 65 (2020), 368–380. http://dx.doi.org/10.1080/17476933.2019.1627527 doi: 10.1080/17476933.2019.1627527 |
[12] | G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883. |
[13] | S. Marano, S. Mosconi, Asymptotic for optimizers of the fractional Hardy-Sobolev inequality, Commun. Contemp. Math., 21 (2019), 1850028. http://dx.doi.org/10.1142/S0219199718500281 doi: 10.1142/S0219199718500281 |
[14] | S. Mosconi, M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal.-Theor., 136 (2016), 84–101. http://dx.doi.org/10.1016/j.na.2016.02.012 doi: 10.1016/j.na.2016.02.012 |
[15] | E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[16] | N. Nyamoradi, A. Razani, Existence to fractional critical equation with Hardy-Littlewood-Sobolev nonlinearities, Acta Math. Sci., 41 (2021), 1321–1332. http://dx.doi.org/10.1007/s10473-021-0418-4 doi: 10.1007/s10473-021-0418-4 |
[17] | P. Pucci, M. Xiang, B. Zhang, Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional $p$-Laplacian, Adv. Calc. Var., 12 (2019), 253–275. http://dx.doi.org/10.1515/acv-2016-0049 doi: 10.1515/acv-2016-0049 |
[18] | L. Wang, T. Han, J. Wang, Infinitely many solutions for Schrödinger-Choquard-Kirchhoff equations involving the fractional $p$-Laplacian, Acta Math. Sin.-English Ser., 37 (2021), 315–332. http://dx.doi.org/10.1007/s10114-021-0125-z doi: 10.1007/s10114-021-0125-z |
[19] | F. Wang, M. Xiang, Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity, Anal. Math. Phys., 9 (2019), 1–16. http://dx.doi.org/10.1007/s13324-017-0174-8 doi: 10.1007/s13324-017-0174-8 |
[20] | F. Wang, D. Hu, M. Xiang, Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems, Adv. Nonlinear Anal., 10 (2021), 636–658. http://dx.doi.org/10.1515/anona-2020-0150 doi: 10.1515/anona-2020-0150 |
[21] | M. Xiang, B. Zhang, A critical fractional $p$-Kirchhoff type problem involving discontinuous nonlinearity, Discrete Cont. Dyn.-S, 12 (2019), 413–433. http://dx.doi.org/10.3934/dcdss.2019027 doi: 10.3934/dcdss.2019027 |
[22] | M. Xiang, B. Zhang, X. Zhang, A nonhomogeneous fractional $p$-Kirchhoff type problem involving critical exponent in $\mathbb{R}^N$, Adv. Nonlinear Stud., 17 (2017), 611–640. http://dx.doi.org/10.1515/ans-2016-6002 doi: 10.1515/ans-2016-6002 |
[23] | M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Anal., 198 (2020), 111899. http://dx.doi.org/10.1016/j.na.2020.111899 doi: 10.1016/j.na.2020.111899 |
[24] | M. Xiang, V. Rǎdulescu, B. Zhang, Existence results for singular fractional $p$-Kirchhoff problems, Acta Math. Sci., 42 (2022), 1209–1224. http://dx.doi.org/10.1007/s10473-022-0323-5 doi: 10.1007/s10473-022-0323-5 |