In this work, we studied the multiplicity of solutions for a Kirchhoff problem involving the $ \kappa(\xi) $-fractional derivative and critical exponent. More precisely, we transformed the studied problem into an integral equation that lead to the study of the critical point for the energy functional; after that, we presented and proved some properties related to this functional and demonstrated that the energy functional satisfied the geometry of the mountain pass geometry. Finally, by applying the mountain pass theorem for the even functional, we proved that this functional admitted infinitely many critical points, which means that the studied problem has infinitely many solutions.
Citation: Najla Alghamdi, Abdeljabbar Ghanmi. Multiple solutions for a singular fractional Kirchhoff problem with variable exponents[J]. AIMS Mathematics, 2025, 10(1): 826-838. doi: 10.3934/math.2025039
In this work, we studied the multiplicity of solutions for a Kirchhoff problem involving the $ \kappa(\xi) $-fractional derivative and critical exponent. More precisely, we transformed the studied problem into an integral equation that lead to the study of the critical point for the energy functional; after that, we presented and proved some properties related to this functional and demonstrated that the energy functional satisfied the geometry of the mountain pass geometry. Finally, by applying the mountain pass theorem for the even functional, we proved that this functional admitted infinitely many critical points, which means that the studied problem has infinitely many solutions.
[1] | T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics: Vibrations and diffusion processes, London: Wiley-ISTE, 2014. https://doi.org/10.1002/9781118577530 |
[2] | J. A. T. Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1–34. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801 |
[3] | F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004 |
[4] | V. E. Tarasov, Applications of fractional calculus to dynamics of particles, fields and media, New York: Springer, 2010. |
[5] | O. K. Wanassi, D. F. M. Torres, Modeling blood alcohol concentration using fractional differential equations based on the $\psi$-Caputo derivative, Math. Method. Appl. Sci., 47 (2024), 7793–7803. https://doi.org/10.1002/mma.10002 doi: 10.1002/mma.10002 |
[6] | A. Ghanmi, Z. Zhang, Nehari manifold and multiplicity results for a class of fractional boundary value problems with $p$-Laplacian, B. Korean Math. Soc., 56 (2019), 1297–1314. http://doi.org/10.4134/BKMS.b181172 doi: 10.4134/BKMS.b181172 |
[7] | P. Veeresha, N. S. Malagi, D. G. Prakasha, H. M. Baskonus, An efficient technique to analyze the fractional model of vector-borne diseases, Phys. Scripta, 97 (2022), 054004. http://dx.doi.org/10.1088/1402-4896/ac607b doi: 10.1088/1402-4896/ac607b |
[8] | D. G. Prakasha, N. S. Malagi, P. Veeresha, B. C. Prasannakumara, An efficient computational technique for time-fractional Kaup-Kupershmidt equation, Numer. Meth. Part D. E., 37 (2021), 1299–1316. https://doi.org/10.1002/num.22580 doi: 10.1002/num.22580 |
[9] | R. Alsaedi, A. Ghanmi, Variational approach for the Kirchhoff problem involving the $p$-Laplace operator and the $\psi$-Hilfer derivative, Math. Method. Appl. Sci., 46 (2023), 9286–9297. https://doi.org/10.1002/mma.9053 doi: 10.1002/mma.9053 |
[10] | R. Ezati, N. Nyamoradi, Existence of solutions to a Kirchhoff $\psi$-Hilfer fractional $p$-Laplacian equations, Math. Method. Appl. Sci., 44 (2021), 12909–12920. https://doi.org/10.1002/mma.7593 doi: 10.1002/mma.7593 |
[11] | A. Nouf, W. M. Shammakh, A. Ghanmi, Existence of solutions for a class of Boundary value problems involving Riemann Liouville derivative with respect to a function, Filomat, 37 (2023), 1261–1270. https://doi.org/10.2298/FIL2304261N doi: 10.2298/FIL2304261N |
[12] | J. V. C. Sousa, E. C. D. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[13] | J. V. D. C. Sousa, J. Zuo, D. O'Regan, The Nehari manifold for a $\psi$-Hilfer fractional $p$-Laplacian, Appl. Anal., 101 (2021), 5076–5106. https://doi.org/10.1080/00036811.2021.1880569 doi: 10.1080/00036811.2021.1880569 |
[14] | J. V. D. C. Sousa, Nehari manifold and bifurcation for a $\psi$-Hilfer fractional $p$-Laplacian, Math. Method. Appl. Sci., 2020, 1–14. http://dx.doi.org/10.1002/mma.7296 |
[15] | L. Xie, J. Zhou, H. Deng, Y. He, Existence and stability of solution for multi-order nonlinear fractional differential equations, AIMS Math., 7 (2022), 16440–16448. https://doi.org/10.3934/math.2022899 doi: 10.3934/math.2022899 |
[16] | J. L. Zhou, Y. B. He, S. Q. Zhang, H. Y. Deng, X. Y. Lin, Existence and stability results for nonlinear fractional integro-differential coupled systems, Bound. Value Probl., 2023 (2023), 10. https://doi.org/10.1186/s13661-023-01698-2 doi: 10.1186/s13661-023-01698-2 |
[17] | J. L. Zhou, S. Q. Zhang, Y. B. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921 |
[18] | J. L. Zhou, S. Q. Zhang, Y. B. He, Existence and stability of solution for nonlinear differential equations with $\psi$-Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457 |
[19] | G. Kirchhoff, Vorlesungen über mechanik, Leipzig: Teubner, 1983. |
[20] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam., 1 (1985), 145–201. https://doi.org/10.4171/RMI/6 doi: 10.4171/RMI/6 |
[21] | J. G. Azorero, I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, T. Am. Math. Soc., 323 (1991), 877–895. https://doi.org/10.2307/2001562 doi: 10.2307/2001562 |
[22] | J. Zhang, Y. Zhang, An infinite sequence of localized semiclassical states for nonlinear Maxwell-Dirac system, J. Geom. Anal., 34 (2024), 277. https://doi.org/10.1007/s12220-024-01724-4 doi: 10.1007/s12220-024-01724-4 |
[23] | A. Ghanmi, M. Kratou, K. Saoudi, D. Repovš, Nonlocal p-Kirchhoff equations with singular and critical nonlinearity terms, Asymptotic Anal., 131 (2023), 125–143. https://doi.org/10.3233/ASY-221769 doi: 10.3233/ASY-221769 |
[24] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, In: CBMS RegionalConference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, 65 (1986). |
[25] | G. Dai, R. Hao, Existence of solutions for a $p(\xi)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. https://doi.org/10.1016/j.jmaa.2009.05.031 doi: 10.1016/j.jmaa.2009.05.031 |
[26] | G. Dai, R. Ma, Solutions for a $p(\xi)$-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal.-Real, 12 (2011), 2666–2680. https://doi.org/10.1016/j.nonrwa.2011.03.013 doi: 10.1016/j.nonrwa.2011.03.013 |
[27] | V. Ambrosio, T. Isernia, Concentration phenomena for a fractional Schrödinger Kirchhoff type equation, Math. Method. Appl. Sci., 41 (2018), 615–645. https://doi.org/10.1002/mma.4633 doi: 10.1002/mma.4633 |
[28] | A. Fiscella, P. Pucci, $p$-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal.-Real, 35 (2017), 350–378. https://doi.org/10.1016/j.nonrwa.2016.11.004 doi: 10.1016/j.nonrwa.2016.11.004 |
[29] | J. V. C. Sousa, K. D. Kucche, J. J. Nieto, Existence and multiplicity of solutions for fractional $\kappa(\xi)$-Kirchhoff-type equation, Qual. Theor. Dyn. Syst., 23 (2023), 27. https://doi.org/10.1007/s12346-023-00877-x doi: 10.1007/s12346-023-00877-x |
[30] | M. Ruzicka, Electrorheological fluids: Modelling and mathematical theory, Lecture notes in math., Berlin: Springer-Verlag, 1784 (2000). https://doi.org/10.1007/BFb0104029 |
[31] | A. Sahbani, Infinitely many solutions for problems involving Laplacian and biharmonic operators, Complex Var. Elliptic, 69 (2023), 2138–2151. https://doi.org/10.1080/17476933.2023.2287007 doi: 10.1080/17476933.2023.2287007 |
[32] | A. Sahbani, J. V. C. Sousa, Infinitely of solutions for fractional $\kappa(\xi) $-Kirchhoff equation in $\mathcal{H}^{\mu, \nu, \psi}_{\kappa(\xi) }(\Lambda)$, Math. Method. Appl. Sci., 2024. https://doi.org/10.1002/mma.10477 |
[33] | R. Chammem, A. Ghanmi, A. Sahbani, Nehari manifold for singular fractional $p(x, .)$-Laplacian problem, Complex Var. Elliptic, 68 (2022), 1603–1625. https://doi.org/10.1080/17476933.2022.2069757 doi: 10.1080/17476933.2022.2069757 |
[34] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |