A gravity-based accessibility metric, the Two-Step Floating Catchment Area (2SFCA) enhanced with gaussian smoothing, is proposed to clarify the distribution of opportunities for compulsory education. Along with the physical locations of the homes and schools, the metric considers the population age structure and capacity to measure the population's accessibility to school services. The application of the 2SFCA within the '15-minute city' model and the analysis of València's urban environment revealed two main findings. First, the distribution of the accessibility scores after a spatial autocorrelation analysis closely reflected the per capita income across the city, irrespective of the type of school and level of compulsory education considered. Second, for most school age children, accessing a charter school is easier than access to a public school for primary and secondary education. The 2SFCA metric appears to adequately capture the uneven spatial distribution of educational opportunities, thus offering new insights into some of the forces the drive school segregation processes and their territorial foundations.
Citation: Aida Villalba, Luis E. Vila, Jose Miguel Carot. Analyzing patterns of accessibility to schools: A gravitational metrics study in València[J]. AIMS Mathematics, 2025, 10(1): 809-825. doi: 10.3934/math.2025038
[1] | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004 |
[2] | Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780 |
[3] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[4] | Huanhuan Zhang, Jia Mu . Periodic problem for non-instantaneous impulsive partial differential equations. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186 |
[5] | Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652 |
[6] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[7] | Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r∈(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548 |
[8] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[9] | M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229 |
[10] | Dumitru Baleanu, Rabha W. Ibrahim . Optical applications of a generalized fractional integro-differential equation with periodicity. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604 |
A gravity-based accessibility metric, the Two-Step Floating Catchment Area (2SFCA) enhanced with gaussian smoothing, is proposed to clarify the distribution of opportunities for compulsory education. Along with the physical locations of the homes and schools, the metric considers the population age structure and capacity to measure the population's accessibility to school services. The application of the 2SFCA within the '15-minute city' model and the analysis of València's urban environment revealed two main findings. First, the distribution of the accessibility scores after a spatial autocorrelation analysis closely reflected the per capita income across the city, irrespective of the type of school and level of compulsory education considered. Second, for most school age children, accessing a charter school is easier than access to a public school for primary and secondary education. The 2SFCA metric appears to adequately capture the uneven spatial distribution of educational opportunities, thus offering new insights into some of the forces the drive school segregation processes and their territorial foundations.
Fractional differential equations rise in many fields, such as biology, physics and engineering. There are many results about the existence of solutions and control problems (see [1,2,3,4,5,6]).
It is well known that the nonexistence of nonconstant periodic solutions of fractional differential equations was shown in [7,8,11] and the existence of asymptotically periodic solutions was derived in [8,9,10,11]. Thus it gives rise to study the periodic solutions of fractional differential equations with periodic impulses.
Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary differential equations with impulses periodic condition and obtained many existence and asymptotic stability results for the Caputo's fractional derivative with fixed and varying lower limits. In this paper, we study the Caputo's fractional evolution equations with varying lower limits and we prove the existence of periodic mild solutions to this problem with the case of general periodic impulses as well as small equidistant and shifted impulses. We also study the Caputo's fractional evolution equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild solutions. The current results extend some results in [12].
Set ξq(θ)=1qθ−1−1qϖq(θ−1q)≥0, ϖq(θ)=1π∑∞n=1(−1)n−1θ−nq−1Γ(nq+1)n!sin(nπq), θ∈(0,∞). Note that ξq(θ) is a probability density function defined on (0,∞), namely ξq(θ)≥0, θ∈(0,∞) and ∫∞0ξq(θ)dθ=1.
Define T:X→X and S:X→X given by
T(t)=∫∞0ξq(θ)S(tqθ)dθ, S(t)=q∫∞0θξq(θ)S(tqθ)dθ. |
Lemma 2.1. ([13,Lemmas 3.2,3.3]) The operators T(t) and S(t),t≥0 have following properties:
(1) Suppose that supt≥0‖S(t)‖≤M. For any fixed t≥0, T(⋅) and S(⋅) are linear and bounded operators, i.e., for any u∈X,
‖T(t)u‖≤M‖u‖ and ‖S(t)u‖≤MΓ(q)‖u‖. |
(2) {T(t),t≥0} and {S(t),t≥0} are strongly continuous.
(3) {T(t),t>0} and {S(t),t>0} are compact, if {S(t),t>0} is compact.
Let N0={0,1,⋯,∞}. We consider the following impulsive fractional equations
{cDqtk,tu(t)=Au(t)+f(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+Δk(u(t−k)), k∈N,u(0)=u0, | (2.1) |
where cDqtk,t denotes the Caputo's fractional time derivative of order q with the lower limit at tk, A:D(A)⊆X→X is the generator of a C0-semigroup {S(t),t≥0} on a Banach space X, f:R×X→X satisfies some assumptions. We suppose the following conditions:
(Ⅰ) f is continuous and T-periodic in t.
(Ⅱ) There exist constants a>0, bk>0 such that
{‖f(t,u)−f(t,v)‖≤a‖u−v‖,∀ t∈R, u,v∈X,‖u−v+Δk(u)−Δk(v)‖≤bk‖u−v‖,∀ k∈N, u,v∈X. |
(Ⅲ) There exists N∈N such that T=tN+1,tk+N+1=tk+T and Δk+N+1=Δk for any k∈N.
It is well known [3] that (2.1) has a unique solution on R+ if the conditions (Ⅰ) and (Ⅱ) hold. So we can consider the Poincaré mapping
P(u0)=u(T−)+ΔN+1(u(T−)). |
By [14,Lemma 2.2] we know that the fixed points of P determine T-periodic mild solutions of (2.1).
Theorem 2.2. Assume that (I)-(III) hold. Let Ξ:=∏Nk=0MbkEq(Ma(tk+1−tk)q), where Eq is the Mittag-Leffler function (see [3, p.40]), then there holds
‖P(u)−P(v)‖≤Ξ‖u−v‖, ∀u,v∈X. | (2.2) |
If Ξ<1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.
Proof. By the mild solution of (2.1), we mean that u∈C((tk,tk+1),X) satisfying
u(t)=T(t−tk)u(t+k)+∫ttkS(t−s)f(s,u(s))ds. | (2.3) |
Let u and v be two solutions of (2.3) with u(0)=u0 and v(0)=v0, respectively. By (2.3) and (II), we can derive
‖u(t)−v(t)‖≤‖T(t−tk)(u(t+k)−v(t+k))‖+∫ttk(t−s)q−1‖S(t−s)(f(s,u(s)−f(s,v(s))‖ds≤M‖u(t+k)−v(t+k)‖+MaΓ(q)∫ttk(t−s)q−1‖f(s,u(s)−f(s,v(s))‖ds. | (2.4) |
Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive
‖u(t)−v(t)‖≤M‖u(t+k)−v(t+k)‖Eq(Ma(t−tk)q), t∈(tk,tk+1), | (2.5) |
which implies
‖u(t−k+1)−v(t−k+1)‖≤MEq(Ma(tk+1−tk)q)‖u(t+k)−v(t+k)‖,k=0,1,⋯,N. | (2.6) |
By (2.6) and (Ⅱ), we derive
‖P(u0)−P(v0)‖=‖u(t−N+1)−v(t−N+1)+ΔN+1(u(t−N+1))−ΔN+1(v(t−N+1))‖≤bN+1‖u(t−N+1)−v(t−N+1)‖≤(N∏k=0MbkEq(Ma(tk+1−tk)q))‖u0−v0‖=Ξ‖u0−v0‖, | (2.7) |
which implies that (2.2) is satisfied. Thus P:X→X is a contraction if Ξ<1. Using Banach fixed point theorem, we obtain that P has a unique fixed point u0 if Ξ<1. In addition, since
‖Pn(u0)−Pn(v0)‖≤Ξn‖u0−v0‖, ∀v0∈X, |
we get that the corresponding periodic mild solution is asymptotically stable.
We study
{cDqkhu(t)=Au(t)+f(u(t)), q∈(0,1), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔhq, k∈N,u(0)=u0, | (2.8) |
where h>0, ˉΔ∈X, and f:X→X is Lipschitz. We know [3] that under above assumptions, (2.8) has a unique mild solution u(u0,t) on R+, which is continuous in u0∈X, t∈R+∖{kh|k∈N} and left continuous in t ant impulsive points {kh|k∈N}. We can consider the Poincaré mapping
Ph(u0)=u(u0,h+). |
Theorem 2.3. Let w(t) be a solution of following equations
{w′(t)=ˉΔ+1Γ(q+1)f(w(t)), t∈[0,T],w(0)=u0. | (2.9) |
Then there exists a mild solution u(u0,t) of (2.8) on [0,T], satisfying
u(u0,t)=w(tqq−1)+O(hq). |
If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of (2.8) in a neighborhood of w(t). Note that h is sufficiently small.
Proof. For any t∈(kh,(k+1)h),k∈N0, the mild solution of (2.8) is equivalent to
u(u0,t)=T(t−kh)u(kh+)+∫tkh(t−s)q−1S(t−s)f(u(u0,s))ds=T(t−kh)u(kh+)+∫t−kh0(t−kh−s)q−1S(t−kh−s)f(u(u(kh+),s))ds. | (2.10) |
So
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u(kh+),s))ds=Ph(u(kh+)), | (2.11) |
and
Ph(u0)=u(u0,h+)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u0,s))ds. | (2.12) |
Inserting
u(u0,t)=T(t)u0+hqv(u0,t), t∈[0,h], |
into (2.10), we obtain
v(u0,t)=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0+hqv(u0,t))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+1hq∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(hq), |
since
‖∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds‖≤∫t0(t−s)q−1‖S(t−s)‖‖f(T(t)u0+hqv(u0,t))−f(T(t)u0)‖ds≤MLlochqtqΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}≤h2qMLlocΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}, |
where Lloc is a local Lipschitz constant of f. Thus we get
u(u0,t)=T(t)u0+∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(h2q), t∈[0,h], | (2.13) |
and (2.12) gives
Ph(u0)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
So (2.11) becomes
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫(k+1)hkh((k+1)h−s)q−1S((k+1)h−s)f(T(h)u(kh+))ds+O(h2q). | (2.14) |
Since T(t) and S(t) are strongly continuous,
limt→0T(t)=I and limt→0S(t)=1Γ(q)I. | (2.15) |
Thus (2.14) leads to its approximation
w((k+1)h+)=w(kh+)+ˉΔhq+hqΓ(q+1)f(w(kh+)), |
which is the Euler numerical approximation of
w′(t)=ˉΔ+1Γ(q+1)f(w(t)). |
Note that (2.10) implies
‖u(u0,t)−T(t−kh)u(kh+)‖=O(hq), ∀t∈[kh,(k+1)h]. | (2.16) |
Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we obtain the result of Theorem 2.3.
Corollary 2.4. We can extend (2.8) for periodic impulses of following form
{cDqkhu(t)=Au(t)+f(u(t)), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔkhq, k∈N,u(0)=u0, | (2.17) |
where ˉΔk∈X satisfy ˉΔk+N+1=ˉΔk for any k∈N. Then Theorem 2.3 can directly extend to (2.17) with
{w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)), t∈[0,T], k∈N,w(0)=u0 | (2.18) |
instead of (2.9).
Proof. We can consider the Poincaré mapping
Ph(u0)=u(u0,(N+1)h+), |
with a form of
Ph=PN+1,h∘⋯∘P1,h |
where
Pk,h(u0)=ˉΔkhq+u(u0,h). |
By (2.13), we can derive
Pk,h(u0)=ˉΔkhq+u(u0,h)=T(h)u0+ˉΔkhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
Then we get
Ph(u0)=T(h)u0+N+1∑k=1ˉΔkhq+(N+1)∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
By (2.15), we obtain that Ph(u0) leads to its approximation
u0+N+1∑k=1ˉΔkhq+(N+1)hqΓ(q+1)f(u0). | (2.19) |
Moreover, equations
w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)) |
has the Euler numerical approximation
u0+hq(∑N+1k=1ˉΔkN+1+1Γ(q+1)f(u0)) |
with the step size hq, and its approximation of N+1 iteration is (2.19), the approximation of Ph. Thus Theorem 2.3 can directly extend to (2.17) with (2.18).
Now we consider following equations with small nonlinearities of the form
{cDq0u(t)=Au(t)+ϵf(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+ϵΔk(u(t−k)), k∈N,u(0)=u0, | (3.1) |
where ϵ is a small parameter, cDq0 is the generalized Caputo fractional derivative with lower limit at 0. Then (3.1) has a unique mild solution u(ϵ,t). Give the Poincaré mapping
P(ϵ,u0)=u(ϵ,T−)+ϵΔN+1(u(ϵ,T−)). |
Assume that
(H1) f and Δk are C2-smooth.
Then P(ϵ,u0) is also C2-smooth. In addition, we have
u(ϵ,t)=T(t)u0+ϵω(t)+O(ϵ2), |
where ω(t) satisfies
{cDq0ω(t)=Aω(t)+f(t,T(t)u0), t∈(tk,tk+1), k=0,1,⋯,N,ω(t+k)=ω(t−k)+Δk(T(tk)u0), k=1,2,⋯,N+1,ω(0)=0, |
and
ω(T−)=N∑k=1T(T−tk)Δk(T(tk)u0)+∫T0(T−s)q−1S(T−s)f(s,T(s)u0)ds. |
Thus we derive
{P(ϵ,u0)=u0+M(ϵ,u0)+O(ϵ2)M(ϵ,u0)=(T(T)−I)u0+ϵω(T−)+ϵΔN+1(T(T)u0). | (3.2) |
Theorem 3.1. Suppose that (I), (III) and (H1) hold.
1). If (T(T)−I) has a continuous inverse, i.e. (T(T)−I)−1 exists and continuous, then (3.1) has a unique T-periodic mild solution located near 0 for any ϵ≠0 small.
2). If (T(T)−I) is not invertible, we suppose that ker(T(T)−I)=[u1,⋯,uk] and X=im(T(T)−I)⊕X1 for a closed subspace X1 with dimX1=k. If there is v0∈[u1,⋯,uk] such that B(0,v0)=0 (see (3.7)) and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
3). If rσ(Du0M(ϵ,u0))<0, then the T-periodic mild solution is asymptotically stable. If rσ(Du0M(ϵ,u0))∩(0,+∞)≠∅, then the T-periodic mild solution is unstable.
Proof. The fixed point u0 of P(ϵ,x0) determines the T-periodic mild solution of (3.1), which is equivalent to
M(ϵ,u0)+O(ϵ2)=0. | (3.3) |
Note that M(0,u0)=(T(T)−I)u0. If (T(T)−I) has a continuous inverse, then (3.3) can be solved by the implicit function theorem to get its solution u0(ϵ) with u0(0)=0.
If (T(T)−I) is not invertible, then we take a decomposition u0=v+w, v∈[u1,⋯,uk], take bounded projections Q1:X→im(T(T)−I), Q2:X→X1, I=Q1+Q2 and decompose (3.3) to
Q1M(ϵ,v+w)+Q1O(ϵ2)=0, | (3.4) |
and
Q2M(ϵ,v+w)+Q2O(ϵ2)=0. | (3.5) |
Now Q1M(0,v+w)=(T(T)−I)w, so we can solve by implicit function theorem from (3.4), w=w(ϵ,v) with w(0,v)=0. Inserting this solution into (3.5), we get
B(ϵ,v)=1ϵ(Q2M(ϵ,v+w)+Q2O(ϵ2))=Q2ω(T−)+Q2ΔN+1(T(t)v+w(ϵ,v))+O(ϵ). | (3.6) |
So
B(0,v)=N∑k=1Q2T(T−tk)Δk(T(tk)v)+Q2∫T0(T−s)q−1S(T−s)f(s,T(s)v)ds. | (3.7) |
Consequently we get, if there is v0∈[u1,⋯,uk] such that B(0,v0)=0 and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
In addition, Du0P(ϵ,u0(ϵ))=I+Du0M(ϵ,u0)+O(ϵ2). Thus we can directly derive the stability and instability results by the arguments in [17].
In this section, we give an example to demonstrate Theorem 2.2.
Example 4.1. Consider the following impulsive fractional partial differential equation:
{ cD12tk,tu(t,y)=∂2∂y2u(t,y)+sinu(t,y)+cos2πt, t∈(tk,tk+1), k∈N0, y∈[0,π], Δk(u(t−k,y))=u(t+k,y)−u(t−k,y)=ξu(t−k,y), k∈N, y∈[0,π], u(t,0)=u(t,π)=0, t∈(tk,tk+1), k∈N0, u(0,y)=u0(y), y∈[0,π], | (4.1) |
for ξ∈R, tk=k3. Let X=L2[0,π]. Define the operator A:D(A)⊆X→X by Au=d2udy2 with the domain
D(A)={u∈X∣dudy,d2udy2∈X, u(0)=u(π)=0}. |
Then A is the infinitesimal generator of a C0-semigroup {S(t),t≥0} on X and ‖S(t)‖≤M=1 for any t≥0. Denote u(⋅,y)=u(⋅)(y) and define f:[0,∞)×X→X by
f(t,u)(y)=sinu(y)+cos2πt. |
Set T=t3=1, tk+3=tk+1, Δk+3=Δk, a=1, bk=|1+ξ|. Obviously, conditions (I)-(III) hold. Note that
Ξ=2∏k=0|1+ξ|E12(1√3)=|1+ξ|3(E12(1√3))3. |
Letting Ξ<1, we get −E12(1√3)−1<ξ<E12(1√3)−1. Now all assumptions of Theorem 2.2 hold. Hence, if −E12(1√3)−1<ξ<E12(1√3)−1, (4.1) has a unique 1-periodic mild solution, which is also asymptotically stable.
This paper deals with the existence and stability of periodic solutions of impulsive fractional evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential equations in finite dimensional Euclidean space, we extend some results to impulsive fractional evolution equation on Banach space by involving operator semigroup theory. Our results can be applied to some impulsive fractional partial differential equations and the proposed approach can be extended to study the similar problem for periodic impulsive fractional evolution inclusions.
The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. This research is supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Foundation of Postgraduate of Guizhou Province (YJSCXJH[2019]031), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17.
All authors declare no conflicts of interest in this paper.
[1] | F. Alcalá-Santaella, Díaz Orueta, X. Ginés Sanchez, M. L. Lourés Seoane, Políticas urbanas en España: Grandes ciudades, actores y gobiernos locales, Spain: Icaria, 1971. |
[2] | M. A. Alegre, Politiques de tria i assignació d’escola: Quines efectes tenen sobre la segregació escolar? Fundació Jaume Bofill-Institut Català d’Avaluació de Polítiques Públiques (ivàlua), 2017. Available from: https://fundaciobofill.cat/publicacions/politiques-de-tria-i-assignacio-descola-quins-efectes-tenen-sobre-la-segregacio-escolar. |
[3] |
C. Bagley, Black and white unite or flight? The racialised dimension of schooling and parental choice, Brit. Educ. Res. J., 22 (1996), 569–580. https://doi.org/10.1080/0141192960220504 doi: 10.1080/0141192960220504
![]() |
[4] |
W. Bell, A Probability Model for the Measure of Ecological Segregation, Soc. Forces, 32 (1954), 357–364. https://doi.org/10.2307/2574118 doi: 10.2307/2574118
![]() |
[5] | R. Benito, I. Gonzàlez, Processos de segragació escolar a Catalunya, Catalonia: Fundación Jaume Bofill, 2007. |
[6] |
I. Biazzo, B. Monechi, V. Loreto, General scores for accessibility and inequality measures in urban areas, R. Soc. Open Sci., 6 (2019), 19097. http://doi.org/10.1098/rsos.190979 doi: 10.1098/rsos.190979
![]() |
[7] | X. Bonal, Municipis contra la segregació escolar. Sis experiències de política educativa local, Fundación Jaume Bofill, 2012. Available from: https://www.fbofill.cat/sites/default/files/78.pdf. |
[8] | S. Carrasco, J. Pàmies, M. Ponferrada, B. Ballestín, M. Bertran, Segregación escolar e inmigración en Cataluña: Aproximaciones etnográficas, EMIGRA Work. Pap., 126 (2007), 357–364. |
[9] | Conselleria d'Educación, Cultura i Esport de la Generalitat Valenciana, Centros docentes de la Comunidad Valenciana (Valencia), 2021. Available from: https://ceice.gva.es/es/web/centros-docentes/descarga-base-de-datos. |
[10] |
T. H. Cormen, A Probability Model for the Measure of Ecological Segregation, Soc. Forces, 32 (1954), 357–364. https://doi.org/10.2307/2574118 doi: 10.2307/2574118
![]() |
[11] | T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3 Eds., United States of America: The MIT Press, 2009. |
[12] | O. D. Duncan, B. Duncan, Residential Distribution and Occupational Stratification, Am. J. Soc., 60 (1955), 493–503. |
[13] | European Comission Inspire Registry, Cadastral parcels, 2024. Available from: https://inspire.ec.europa.eu/theme/cp. |
[14] | FELIPE VI, Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación, 2020. Available from: https://www.boe.es/eli/es/lo/2020/12/29/3. |
[15] |
A. Franze, B. Duncan, Une école "difficile": Sur la concentration d'élèves d'origine immigrée à Madrid, REMi, 14 (1998), 105–120. https://doi.org/10.3406/remi.1998.1612 doi: 10.3406/remi.1998.1612
![]() |
[16] |
F. J. García Castaño, M. Rubio Gómez, "Juntos pero no revueltos": Procesos de concentración escolar del "alumnado extranjero" en determinados centros educativos, Rev. Antropol., 68 (2013), 7–31. https://doi.org/10.3989/rdtp.2013.01.001 doi: 10.3989/rdtp.2013.01.001
![]() |
[17] | S. Gorard, C. Taylor, What is Segregation? A comparison of Measures in Terms of 'Strong' and 'Weak' Compositional Invariance, Sociology, 36 (2002), 875–895. |
[18] |
R. Hutchens, Numerical measures of segregation: Desirable properties and their implications, Math. Soc. Sci., 42 (2001), 13–29. https://doi.org/10.1016/S0165-4896(00)00070-6 doi: 10.1016/S0165-4896(00)00070-6
![]() |
[19] | R. Hutchens, One measure of segregation, Int. Econ. Rev., 45 (2004), 555–578. https://doi.org/10.1111/j.1468-2354.2004.00136.x |
[20] | B. De Madaria, L. E. Vila, Segregaciones escolares y desigualdad de oportunidades educativas del alumnado extranjero en València, REICE, 18 (2020), 269–299. |
[21] | T. Monarrez, K. Washington, Racial and Ethnic Representation in Postsecondary Education, Research Report, 2020. Available from: https://vtechworks.lib.vt.edu/server/api/core/bitstreams/b4623931-4d41-45bb-82a9-3f2f9b5fd3d7/content. |
[22] |
C. Moreno, Z. Allam, D. Chabaud, C. Gall, F. Pratlong, Introducing the "15-Minute City": Sustainability, resilience and place identity in future post-pandemic cities, Smart Cities, 4 (2021), 93–111. https://doi.org/10.3390/smartcities4010006 doi: 10.3390/smartcities4010006
![]() |
[23] |
F. J. Murillo, C. Martínez-Garrido, Magnitud de la segregación escolar por nivel socioeconómico en España y sus Comunidades Autónomas y comparación con los países de la Unión Europea, Rev. Soc. Edu., 11 (2018), 37–58. https://doi.org/10.7203/RASE.11.1.10129 doi: 10.7203/RASE.11.1.10129
![]() |
[24] |
E. M. Murtagh, J. L. Mair, C. Tudor-Lake, M. H. Murphy, Outdoor Walking Speeds of Apparently Healthy Adults: A Systematic Review and Meta-analysis, Sports Med., 51 (2021), 121–141. https://doi.org/10.1007/s40279-020-01351-3 doi: 10.1007/s40279-020-01351-3
![]() |
[25] | P. Musset, School Choice and Equity. Current policies in OECD countries and a literature review, OECD Edu. Work. Pap., 2012, 66. https://doi.org/10.1787/5k9fq23507vc-en |
[26] | D. Nusche, What Works in Migrant Education? A Review of Evidence and Policy Options, OECD Edu. Work. Pap., 2009, 22. https://doi.org/10.1787/227131784531 |
[27] | Oficina d'Estadística de l'Ayuntament de València, Población residente en la ciudad de Valencia según sexo y edad año a año, 2020. Available from: https://www.valencia.es/cas/estadistica/. |
[28] | B. Pizzol, M. Giannotti, D. B. Tomasiello, Qualifying accessibility to education to investigate spatial equity, J. Transp. Geogr., 96 (2021), 103–199. |
[29] | QGIS Development Team, QGIS Geographic Information System. Open Source Geospatial Foundation Project, 2023. Available from: http://qgis.osgeo.org. |
[30] | J. M. Rodríguez-Victoriano, L. M. Junquero, B. De Madaria, La reproducción de las desigualdades sociales en el sistema educativo. El mapa escolar de València: Políticas de zonificación, libertad de elección y segregación escolar, València: Universitat de València, 2015. |
[31] | A. Sánchez Hugalde, La segregació escolar dels immigrants a Catalunya, Quaderns d'Avaluació, 13 (2009), 55–76. |
[32] | G. Van Rossum, F. L. Draje Jr, Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 2002. Available from: https://www.python.org/. |
[33] | A. Zancajo, Escolarización y segregación socioeconómica en los sistemas educativos europeos: Un análisis comparado, RASE, 13 (2020), 453–473. |
[34] |
L. Zhang, X. Zhang, H. Huang, L. Zhang, H. Li, Spatial Accessibility of Multiple Facilities for Affordable Housing Neighborhoods in Harbin, China, Land, 11 (2022), 37–58. https://doi.org/10.3390/land11111940 doi: 10.3390/land11111940
![]() |
1. | Xinguang Zhang, Lixin Yu, Jiqiang Jiang, Yonghong Wu, Yujun Cui, Gisele Mophou, Solutions for a Singular Hadamard-Type Fractional Differential Equation by the Spectral Construct Analysis, 2020, 2020, 2314-8888, 1, 10.1155/2020/8392397 | |
2. | Xinguang Zhang, Jiqiang Jiang, Lishan Liu, Yonghong Wu, Extremal Solutions for a Class of Tempered Fractional Turbulent Flow Equations in a Porous Medium, 2020, 2020, 1024-123X, 1, 10.1155/2020/2492193 | |
3. | Jingjing Tan, Xinguang Zhang, Lishan Liu, Yonghong Wu, Mostafa M. A. Khater, An Iterative Algorithm for Solving n -Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions, 2021, 2021, 1099-0526, 1, 10.1155/2021/8898859 | |
4. | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, 2022, 7, 2473-6988, 8314, 10.3934/math.2022463 | |
5. | Lianjing Ni, Liping Wang, Farooq Haq, Islam Nassar, Sarp Erkir, The Effect of Children’s Innovative Education Courses Based on Fractional Differential Equations, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0039 |