Multiple sclerosis (MS), is a debilitating neurological disease that currently has various treatments, like disease-modifying therapies, monoclonal antibodies, corticosteroids, and hormonal derivatives. Melatonin has several actions, like regulating circadian rhythms, which are usually used for insomnia. This scoping review aimed to explore the efficacy of melatonin, both as a standalone treatment and in conjunction with other drugs, in the management of MS in animal models.
We searched PubMed, Web of Science, EMBASE, and Google Scholar using (“melatonin” OR “melatonin receptor”) AND (“multiple sclerosis”) AND (“animal”). Animal studies that evaluated the effects of melatonin on the development, progression, and outcomes of MS were included. Human studies and other types of studies like case reports were excluded. We used narrative synthesis for reporting the results.
Overall, 21 studies were included, conducted on mice (n = 15) and rats (n = 6). Mostly, studies reported that melatonin led to normal circadian rhythms in animals. Melatonin in doses of both 50 and 100 mg/kg were useful in nociception latency. Melatonin in combination with other drugs like H-89, diisopropylamine dichloroacetate, gibberellins, and IFN-1β improved outcomes, while there was not improved cognition in combination with mesenchymal stem cells. In some tests, male subjects showed significantly better responses. There were controversial results regarding the effects of melatonin on cytokines, but overall, it led to a reduction in proinflammatory cytokines.
Melatonin overall demonstrated favorable outcomes regarding oxidative stress, anti-inflammation, and cytokine levels across various doses. It is recommended conducting systematic reviews and meta-analyses with a larger number of primary studies to provide more comprehensive insights.
Citation: Heliya Bandehagh, Farnaz Gozalpour, Ali Mousavi, Mahdi Hemmati Ghavshough. Effects of melatonin on the management of multiple sclerosis: A scoping review on animal studies[J]. AIMS Medical Science, 2024, 11(2): 137-156. doi: 10.3934/medsci.2024012
[1] | Yudan Ma, Ming Zhao, Yunfei Du . Impact of the strong Allee effect in a predator-prey model. AIMS Mathematics, 2022, 7(9): 16296-16314. doi: 10.3934/math.2022890 |
[2] | Chaoxiong Du, Wentao Huang . Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model. AIMS Mathematics, 2023, 8(11): 26715-26730. doi: 10.3934/math.20231367 |
[3] | Yougang Wang, Anwar Zeb, Ranjit Kumar Upadhyay, A Pratap . A delayed synthetic drug transmission model with two stages of addiction and Holling Type-II functional response. AIMS Mathematics, 2021, 6(1): 1-22. doi: 10.3934/math.2021001 |
[4] | Jawdat Alebraheem . Asymptotic stability of deterministic and stochastic prey-predator models with prey herd immigration. AIMS Mathematics, 2025, 10(3): 4620-4640. doi: 10.3934/math.2025214 |
[5] | Komal Bansal, Trilok Mathur, Narinderjit Singh Sawaran Singh, Shivi Agarwal . Analysis of illegal drug transmission model using fractional delay differential equations. AIMS Mathematics, 2022, 7(10): 18173-18193. doi: 10.3934/math.20221000 |
[6] | Binfeng Xie, Na Zhang . Influence of fear effect on a Holling type III prey-predator system with the prey refuge. AIMS Mathematics, 2022, 7(2): 1811-1830. doi: 10.3934/math.2022104 |
[7] | Sahabuddin Sarwardi, Hasanur Mollah, Aeshah A. Raezah, Fahad Al Basir . Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response. AIMS Mathematics, 2024, 9(10): 27930-27954. doi: 10.3934/math.20241356 |
[8] | Ruizhi Yang, Dan Jin, Wenlong Wang . A diffusive predator-prey model with generalist predator and time delay. AIMS Mathematics, 2022, 7(3): 4574-4591. doi: 10.3934/math.2022255 |
[9] | Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen . Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445 |
[10] | Ming Wu, Hongxing Yao . Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119 |
Multiple sclerosis (MS), is a debilitating neurological disease that currently has various treatments, like disease-modifying therapies, monoclonal antibodies, corticosteroids, and hormonal derivatives. Melatonin has several actions, like regulating circadian rhythms, which are usually used for insomnia. This scoping review aimed to explore the efficacy of melatonin, both as a standalone treatment and in conjunction with other drugs, in the management of MS in animal models.
We searched PubMed, Web of Science, EMBASE, and Google Scholar using (“melatonin” OR “melatonin receptor”) AND (“multiple sclerosis”) AND (“animal”). Animal studies that evaluated the effects of melatonin on the development, progression, and outcomes of MS were included. Human studies and other types of studies like case reports were excluded. We used narrative synthesis for reporting the results.
Overall, 21 studies were included, conducted on mice (n = 15) and rats (n = 6). Mostly, studies reported that melatonin led to normal circadian rhythms in animals. Melatonin in doses of both 50 and 100 mg/kg were useful in nociception latency. Melatonin in combination with other drugs like H-89, diisopropylamine dichloroacetate, gibberellins, and IFN-1β improved outcomes, while there was not improved cognition in combination with mesenchymal stem cells. In some tests, male subjects showed significantly better responses. There were controversial results regarding the effects of melatonin on cytokines, but overall, it led to a reduction in proinflammatory cytokines.
Melatonin overall demonstrated favorable outcomes regarding oxidative stress, anti-inflammation, and cytokine levels across various doses. It is recommended conducting systematic reviews and meta-analyses with a larger number of primary studies to provide more comprehensive insights.
In the last two decades, the fractional difference equations have recently received considerable attention in many fields of science and engineering, see [1,2,3,4] and the references therein. On the other hand, the q-difference equations have numerous applications in diverse fields in recent years and has gained intensive interest [5,6,7,8,9]. It is well know that the q-fractional difference equations can be used as a bridge between fractional difference equations and q-difference equations, many papers have been published on this research direction, see [10,11,12,13,14,15] for examples. We recommend the monograph [16] and the papers cited therein.
For 0<q<1, we define the time scale Tq={qn:n∈Z}∪{0}, where Z is the set of integers. For a=qn0 and n0∈Z, we denote Ta=[a,∞)q={q−ia:i=0,1,2,...}.
In [17], Abdeljawad et.al generalized the q-fractional Gronwall-type inequality in [18], they obtained the following q-fractional Gronwall-type inequality.
Theorem 1.1 ([17]). Let α>0, u and ν be nonnegative functions and w(t) be nonnegative and nondecreasing function for t∈[a,∞)q such that w(t)≤M where M is a constant. If
u(t)≤ν(t)+w(t)q∇−αau(t), |
then
u(t)≤ν(t)+∞∑k=1(w(t)Γq(α))kq∇−kαaν(t). | (1.1) |
Based on the above result, Abdeljawad et al. investigated the following nonlinear delay q-fractional difference system:
{qCαax(t)=A0x(t)+A1x(τt)+f(t,x(t),x(τt)),t∈[a,∞)q,x(t)=ϕ(t),t∈Iτ, | (1.2) |
where qCαa means the Caputo fractional difference of order α∈(0,1), ˉIτ={τa,q−1τa,q−2τa,...,a}, τ=qd∈Tq with d∈N0={0,1,2,...}.
Remark 1.1. The domain of t in (1.2) is inaccurate, please see the reference [19].
In [20], Sheng and Jiang gave the following extended form of the fractional Gronwall inequality :
Theorem 1.2 ([20]). Suppose α>0, β>0, a(t) is a nonnegative function locally integrable on [0,T), ˜g(t), and ˉg(t) are nonnegative, nondecreasing, continuous functions defined on [0,T); ˜g(t)≤˜M, ˉg(t)≤ˉM, where ˜M and ˉM are constants. Suppose x(t) is a nonnegative and locally integrable on [0,T) with
x(t)≤a(t)+˜g(t)∫t0(t−s)α−1x(s)ds+ˉg(t)∫t0(t−s)β−1x(s)ds,t∈[0,T). |
Then
x(t)≤a(t)+∫t0∞∑n=1[g(t)]nn∑k=0Ckn[Γ(α)]n−k[Γ(β)]kΓ[(n−k)α+kβ](t−s)(n−k)α+kβ−1a(s)ds, | (1.3) |
where t∈[0,T), g(t)=˜g(t)+ˉg(t) and Ckn=n(n−1)⋯(n−k+1)k!.
Corollary 1.3 [20] Under the hypothesis of Theorem 1.2, let a(t) be a nondecreasing function on [0,T). Then
x(t)≤a(t)Eγ[g(t)(Γ(α)tα+Γ(β)tβ)], | (1.4) |
where γ=min{α,β}, Eγ is the Mittag-Leffler function defined by Eγ(z)=∞∑k=0zkΓ(kγ+1).
Finite-time stability is a more practical method which is much valuable to analyze the transient behavior of nature of a system within a finite interval of time. It has been widely studied of integer differential systems. In recent decades, the finite-time stability analysis of fractional differential systems has received considerable attention, for instance [21,22,23,24,25] and the references therein. In [26], Du and Jia studied the finite-time stability of a class of nonlinear fractional delay difference systems by using a new discrete Gronwall inequality and Jensen inequality. Recently, Du and Jia in [27] obtained a criterion on finite time stability of fractional delay difference system with constant coefficients by virtue of a discrete delayed Mittag-Leffler matrix function approach. In [28], Ma and Sun investigated the finite-time stability of a class of fractional q-difference equations with time-delay by utilizing the proposed delayed q-Mittag-Leffler type matrix and generalized q-Gronwall inequality, respectively. Based on the generalized fractional (q,h)-Gronwall inequality, Du and Jia in [19] derived the finite-time stability criterion of nonlinear fractional delay (q,h)-difference systems.
Motivated by the above works, we will extend the q-fractional Gronwall-type inequality (Theorem 1.1) to the spreading form of the q-fractional Gronwall inequality. As applications, we consider the existence and uniqueness of the solution of the following nonlinear delay q-fractional difference damped system :
{qCαax(t)−A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t∈[a,b)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ, | (1.5) |
where [a,b)q=[a,b)∩Ta, b∈Ta, Iτ={qτa,τa,q−1τa,q−2τa,...,a}, τ=qd∈Tq with d∈N0={0,1,2,...}, qCαa and qCβa mean the Caputo fractional difference of order α∈(1,2) and order β∈(0,1), respectively, and the constant matrices A0, B0 and B1 are of appropriate dimensions. Moreover, a novel criterion of finite-time stability criterion of (1.5) is established. We generalized the main results of [17] in this paper.
The organization of this paper is given as follows: In Section 2, we give some notations, definitions and preliminaries. Section 3 is devoted to proving a spreading form of the q-fractional Gronwall inequality. In Section 4, the existence and uniqueness of the solution of system (1.5) are given and proved, and the finite-time stability theorem of nonlinear delay q-fractional difference damped system is obtained. In Section 5, an example is given to illustrate our theoretical result. Finally, the paper is concluded in Section 6.
In this section, we provided some basic definitions and lemmas which are used in the sequel.
Let f:Tq→R (q∈(0,1)), the nabla q-derivative of f is defined by Thabet et al. as follows:
∇qf(t)=f(t)−f(qt)(1−q)t,t∈Tq∖{0}, |
and q-derivatives of higher order by
∇nqf(t)=∇q(∇n−1qf)(t),n∈N. |
The nabla q-integral of f has the following form
∫t0f(s)∇qs=(1−q)t∞∑i=0qif(tqi) | (2.1) |
and for 0≤a∈Tq
∫taf(s)∇qs=∫t0f(s)∇qs−∫a0f(s)∇qs. | (2.2) |
The definition of the q-factorial function for a nonpositive integer α is given by
(t−s)αq=tα∞∏i=01−stqi1−stqi+α. | (2.3) |
For a function f:Tq→R, the left q-fractional integral q∇−αa of order α≠0,−1,−2,... and starting at 0<a∈Tq is defined by
q∇−αaf(t)=1Γq(α)∫ta(t−qs)α−1qf(s)∇qs, | (2.4) |
where
Γq(α+1)=1−qα1−qΓq(α),Γq(1)=1, α>0. | (2.5) |
The left q-fractional derivative q∇βa of order β>0 and starting at 0<a∈Tq is defined by
q∇βaf(t)=(q∇maq∇−(m−β)af)(t), | (2.6) |
where m is the smallest integer greater or equal than β.
Definition 2.1 ([11]). Let 0<α∉N and f:Ta→R. Then the Caputo left q-fractional derivative of order α of a function f is defined by
qCαaf(t):=q∇−(n−α)a∇nqf(t)=1Γq(n−α)∫ta(t−qs)n−α−1q∇nqf(s)∇qs,t∈Ta, | (2.7) |
where n=[α]+1.
Let us now list some properties which are needed to obtain our results.
Lemma 2.1 ([29]). Let α,β>0 and f be a function defined on (0,b). Then the following formulas hold:
(q∇−βaq∇−αaf)(t)=q∇−(α+β)af(t),0<a<t<b, |
(q∇αaq∇−αaf)(t)=f(t),0<a<t<b. |
Lemma 2.2 ([11]). Let α>0 and f be defined in a suitable domain. Thus
q∇−αaqCαaf(t)=f(t)−n−1∑k=0(t−a)kqΓq(k+1)∇kqf(a) | (2.8) |
and if 0<α≤1 we have
q∇−αaqCαaf(t)=f(t)−f(a). | (2.9) |
The following identity plays a crucial role in solving the linear q-fractional equations:
q∇−αa(x−a)μq=Γq(μ+1)Γq(α+μ+1)(x−a)μ+αq,0<a<x<b, | (2.10) |
where α∈R+ and μ∈(−1,∞).
Apply q∇αa on both sides of (2.10), by virtue of Lemma 2.1, one can obtain
q∇αa(x−a)μ+αq=Γq(α+μ+1)Γq(μ+1)(x−a)μq,0<a<x<b, | (2.11) |
where α∈R+ and μ∈(−1,∞).
By Theorem 7 in [11], for any 0<β<1, one has
(qCβaf)(t)=(q∇βaf)(t)−(t−a)−βqΓq(1−β)f(a). | (2.12) |
For any 1<α≤2, by (2.8), one has
q∇−αaqCαaf(t)=f(t)−f(a)−(t−a)1q∇qf(a). | (2.13) |
Apply q∇αa on both sides of (2.13), by Lemma 2.1 and (2.11), we get
(qCαaf)(t)=(q∇αaf)(t)−f(a)q∇αa(t−a)0q−f(a)q∇αa(t−a)1q=(q∇αaf)(t)−(t−a)−αqΓq(1−α)f(a)−(t−a)1−αqΓq(2−α)∇qf(a). | (2.14) |
In this section, we give and prove the following spreading form of generalized q-fractional Gronwall inequality, which extend a q-fractional Gronwall inequality in Theorem 1.1.
Theorem 3.1. Let α>0 and β>0. Assume that u(t) and g(t) are nonnegative functions for t∈[a,T)q. Let wi(t) (i=1,2) be nonnegative and nondecreasing functions for t∈[a,T)q with wi(t)≤Mi, where Mi are positive constants (i=1,2) and
[Γq(α)Tα(1−q)α+Γq(β)Tβ(1−q)β]max{M1Γq(α), M2Γq(β)}<1. | (3.1) |
If
u(t)≤g(t)+w1(t)q∇−αau(t)+w2(t)q∇−βau(t),t∈[a,T)q, | (3.2) |
then
u(t)≤g(t)+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)ag(t),t∈[a,T)q, | (3.3) |
where w(t)=max{w1(t)Γq(α), w2(t)Γq(β)}.
Proof. Define the operator
Au(t)=w(t)∫ta[(t−qs)α−1q+(t−qs)β−1q]u(s)∇qs,t∈[a,T)q. | (3.4) |
According to (3.2), one has
u(t)≤g(t)+Au(t). | (3.5) |
By (3.5) and the monotonicity of the operator A, we obtain
u(t)≤n−1∑k=0Akg(t)+Anu(t),t∈[a,T)q. | (3.6) |
In the following, we will prove that
Anu(t)≤w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)au(t),t∈[a,T)q, | (3.7) |
and
limn→∞Anu(t)=0. | (3.8) |
Obviously, the inequality (3.7) holds for n=1. Assume that (3.7) is true for n=m, that is
Amu(t)≤w(t)mm∑k=0CkmΓq(α)m−kΓq(β)kq∇−((m−k)α+kβ)au(t)=w(t)mm∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)∫ta(t−qs)(m−k)α+kβ−1qu(s)∇qs,t∈[a,T)q. | (3.9) |
When n=m+1, by using (3.4), (3.9), (2.10) and the nondecreasing of function w(t), we get
Am+1u(t)=A(Amu(t))
≤w(t)∫ta[(t−qs)α−1q+(t−qs)β−1q]
×(w(s)mm∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr)∇qs
≤w(t)m+1∫tam∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[(t−qs)α−1q+(t−qs)β−1q]
×[∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr]∇qs
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[∫ta(t−qs)α−1q∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs
+∫ta(t−qs)β−1q∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs]
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[∫ta∫tqr(t−qs)α−1q(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs
+∫ta∫tqr(t−qs)β−1q(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs]
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)∫ta[1Γq(α)∫tqr(t−qs)α−1q(s−qr)(m−k)α+kβ−1q∇qs]u(r)∇qr
+Γq(β)∫ta[1Γq(β)∫tqr(t−qs)β−1q(s−qr)(m−k)α+kβ−1q∇qs]u(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)∫taq∇−αqr(t−qr)(m−k)α+kβ−1qu(r)∇qr
+Γq(β)∫taq∇−βqr(t−qr)(m−k)α+kβ−1qu(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)Γq((m−k)α+kβ)Γq((m−k+1)α+kβ)∫ta(t−qr)(m−k+1)α+kβ−1qu(r)∇qr
+Γq(β)Γq((m−k)α+kβ)Γq((m−k)α+(k+1)β)∫ta(t−qr)(m−k)α+(k+1)β−1qu(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)k
×(Γq(α)q∇−((m−k+1)α+kβ)au(t)+Γq(β)q∇−((m−k)α+(k+1)β)au(t))
=w(t)m+1m∑k=0CkmΓq(α)m+1−kΓq(β)kq∇−((m−k+1)α+kβ)au(t)
+w(t)m+1m+1∑k=1Ck−1mΓq(α)m+1−kΓq(β)kq∇−((m+1−k)α+kβ)au(t)
=w(t)m+1[C0mΓq(α)m+1q∇−((m+1)α)au(t)
+m∑k=1(Ckm+Ck−1m)Γq(α)m+1−kΓq(β)kq∇−((m−k+1)α+kβ)au(t)
+CmmΓq(β)m+1q∇−((m+1)β)au(t)]
=w(t)m+1m+1∑k=0Ckm+1Γq(α)m+1−kΓq(β)kq∇−((m+1−k)α+kβ)au(t).
Thus, (3.7) is proved.
Using Stirling's formula of the q-gamma function [30], yields that
Γq(x)=[2]1/2qΓq2(1/2)(1−q)12−xeθqx(1−q)−qx,0<θ<1, |
that is
Γq(x)∼D(1−q)12−x,x→∞, | (3.10) |
where D=[2]1/2qΓq2(1/2). Moreover, if t>a>0 and γ>0 (γ is not a positive integer), then 1−atqj<1−atqγ+j for each j=0,1,..., and
(t−a)γq=tγ∞∏j=01−atqj1−atqγ+j<tγ. | (3.11) |
By w1(t)<M1 and w2(t)<M2, one has that w(t)<max{M1Γq(α), M2Γq(β)}:=M. Applying the first mean value theorem for definite integrals [31], (3.10) and (3.11), there exists a ξ∈[a,t]q such that
limn→∞Anu(t)≤limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ)∫ta(t−qr)(n−k)α+kβ−1q∇qs=limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq≤limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)t(n−k)α+kβ=limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kD(1−q)12−((n−k)α+kβ+1)t(n−k)α+kβ=limn→∞u(ξ)√1−qDn∑k=0MnCkn[Γq(α)tα(1−q)α]n−k[Γq(β)tβ(1−q)β]k=limn→∞u(ξ)√1−qD[M(Γq(α)(1−q)αtα+Γq(β)(1−q)βtβ)]n. |
From (3.1), for each t∈[a,T)q, we have
[M(Γq(α)(1−q)αtα+Γq(β)(1−q)βtβ)]n→0,as n→∞. |
Thus, Anu(t)→0 as n→∞. Let n→∞ in (3.6), by (3.8) we get
u(t)≤g(t)+∞∑k=1Akg(t). | (3.12) |
From (3.7) and (3.12), we obtain (3.3). This completes the proof.
Corollary 3.2. Under the hypothesis of Theorem 3.1, let g(t) be a nondecreasing function on t∈[a,T)q. Then
u(t)≤g(t)∞∑n=0w(t)nn∑k=0CknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq | (3.13) |
Proof. By (3.3), (2.10) and the assumption that g(t) is nondecreasing function for t∈[a,T)q, we have
u(t)≤g(t)[1+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)a1]=g(t)[1+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)k1Γq((n−k)α+kβ+1)(t−a)(n−k)α+kβq]=g(t)∞∑n=0w(t)nn∑k=0CknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq. |
Throughout this paper, we make the following assumptions:
(H1) f∈D(Tq×Rn×Rn,Rn) is a Lipschitz-type function. That is, for any x,y:Tτa→Rn, there exists a positive constant L>0 such that
‖f(t,y(t),y(τt))−f(t,x(t),x(τt))‖≤L(‖y(t)−x(t)‖+‖y(τt)−x(τt)‖), | (4.1) |
for t∈[a,T)q.
(H2)
f(t,0,0)=[0,0,...,0]⏟nT. | (4.2) |
(H3)
[Γq(α)Tα(1−q)α+Γq(α−β)Tα−β(1−q)α−β]max{‖B0‖+‖B1‖+2LΓq(α), ‖A0‖Γq(α−β)}<1. | (4.3) |
Definition 4.1. The system (1.5) is finite-time stable w.r.t.{δ,ϵ,Te}, with δ<ϵ, if and only if max{‖ϕ‖,‖ψ‖}<δ implies ‖x(t)‖<ϵ, ∀t∈[a,Te]q=[a,Te]∩[a,T)q.
Theorem 4.1. Assume that (H1) and (H3) hold. Then the problem (1.5) has a unique solution.
Proof. First we have to prove that x:Tτa→Rm is a solution of system (1.5) if and only if
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs,t∈[a,T)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ. | (4.4) |
For t∈Iτ, it is clear that x(t)=ϕ(t) with ∇qx(t)=ψ(t) is the solution of (1.5). For t∈[a,T)q, we apply q∇αa on both sides of (4.4) to obtain
q∇αax(t)=ϕ(a)(t−a)−αqΓq(1−α)+ψ(a)(t−a)1−αqΓq(2−α)−ϕ(a)A0(t−a)−βqΓq(1−β)+A0q∇βax(t)+B0x(t)+B1x(τt)+f(t,x(t),x(τt)), | (4.5) |
where (q∇αaq∇−αax)(t)=x(t) and (q∇αaq∇−(α−β)ax)(t)=q∇βax(t) (by Lemma 2.1) have been used. By using (2.12) and (2.14), we get
qCαax(t)−A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t∈[a,T)q. |
Conversely, from system (1.5), we can see that x(t)=ϕ(t) and ∇qx(t)=ψ(t) for t∈Iτ. For t∈[a,T)q, we apply q∇−αa on both sides of (1.5) to get
q∇−αa[qCαax(t)−A0qCβax(t)]=1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs. |
According to Lemma 2.2, we obtain
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs,t∈[a,T)q. |
Secondly, we will prove the uniqueness of solution to system (1.5). Let x and y be two solutions of system (1.5). Denote z by z(t)=x(t)−y(t). Obviously, z(t)=0 for t∈Iτ, which implies that system (1.5) has a unique solution for t∈Iτ.
For t∈[a,T)q, one has
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+B1z(τs)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs. | (4.6) |
If t∈Jτ={a,q−1a,...,τ−1a}, then τt∈Iτ and z(τt)=0. Hence,
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs, |
which implies that
‖z(t)‖≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+‖f(s,x(s),x(τs))−f(s,y(s),y(τs))‖]∇qs≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+L(‖z(s)‖+‖z(τs)‖)]∇qs(by (H1))=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1q‖z(s)‖∇qs. | (4.7) |
By applying Corollary 3.2 and (H3), we get
‖z(t)‖≤0⋅∞∑n=0wn1n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q=0, | (4.8) |
where w1=max{‖A0‖Γ(α−β),‖B0‖+LΓ(α)}. This implies x(t)=y(t) for t∈Jτ.
For t∈[τ−1a,T)q, we obtain
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs+1Γq(α)∫ta(t−qs)α−1qB1z(τs)∇qs. | (4.9) |
Therefore,
‖z(t)‖=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+‖f(s,x(s),x(τs))−f(s,y(s),y(τs))‖]∇qs+1Γq(α)∫ta(t−qs)α−1q‖B1‖‖z(τs)‖∇qs≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1q‖z(s)‖∇qs+‖B1‖+LΓq(α)∫ta(t−qs)α−1q‖z(τs)‖∇qs. | (4.10) |
Let z∗(t)=maxθ∈[a,t]q{‖z(θ)‖,‖z(τθ)‖} for t∈[τ−1a,T)q, where [a,t]q=[a,t]∩Ta, it is obvious that z∗(t) is a increasing function. From (4.10), we obtain that
z∗(t)≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qz∗(s)∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs+‖B1‖+LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qz∗(s)∇qs+‖B0‖+‖B1‖+2LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs. | (4.11) |
By applying Corollary 3.2 and (H3) again, we get
‖z(t)‖≤z∗(t)≤0⋅∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q=0, |
where w2=max{‖A0‖Γ(α−β),‖B0‖+‖B1‖+2LΓ(α)}. Thus, we end up with x(t)=y(t) for t∈[τ−1a,T)q. The proof is completed.
Theorem 4.2. Assume that the conditions (H1), (H2) and (H3) hold. Then the system (1.5) is finite-time stable if the following condition is satisfied:
(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q<εδ, | (4.12) |
where w2=max{‖B0‖+‖B1‖+2LΓq(α),‖A0‖Γq(α−β)}.
Proof. Applying left q-fractional integral on both sides of (1.5), we obtain
q∇−αa(qCαax(t))−A0q∇−αa(qCβax(t))=qΔ−αa(B0x(t)+B1x(τt)+f(t,x(t),x(τt))). | (4.13) |
By (4.12) and utilizing Lemma 2.2 we have
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs. |
Thus, by (H1) and (H2), we get
‖x(t)‖≤‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖x(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖x(s)‖+‖B1‖‖x(τs)‖+‖f(s,x(s),x(τs))‖]∇qs≤‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖x(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[(‖B0‖+L)‖x(s)‖+(‖B1‖+L)‖x(τs)‖]∇qs. | (4.14) |
Let g(t)=‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1), then g is a nondecreasing function.
Set ˉx(t)=maxθ∈[a,t]q{‖x(θ)‖,‖x(τθ)‖}, then by (4.14) we get
ˉx(t)≤g(t)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qˉx(s)∇qs+‖B0‖+‖B1‖+2LΓq(α)∫ta(t−qs)α−1qˉx(s)∇qs=g(t)+(‖B0‖+‖B1‖+2L)q∇−αaˉx(t)+‖A0‖q∇−(α−β)aˉx(t). | (4.15) |
Applying the result of Corollary 3.2, we have
‖x(t)‖≤ˉx(t)≤g(t)∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q≤δ(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q<ε. | (4.16) |
Therefore, the system (1.5) is finite-time stable. The proof is completed.
If x∈Rn, then ‖x‖=∑ni=1|xi|. If A∈Rn×n, then the induced norm ‖⋅‖ is defined as ‖A‖=max1≤j≤n∑ni=1|aij|.
Example 5.1. Consider the nonlinear delay q-fractional differential difference system
{qC1.8ax(t)−(00.620.560)qC0.8ax(t)=(00.080.1090)x(t)+(0.15000.12)x(τt)+f(t,x(t),x(τt)),t∈[a,T)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ, | (5.1) |
where α=1.8, β=0.8, q=0.6, a=q5=0.65, T=q−1=0.6−1, τ=q3=0.63, x(t)=[x1(t),x2(t)]T∈R2,
f(t,x(t),x(τt))=14[sinx1(t),sinx2(τt)]T−15[arctanx1(τt),arctanx2(τt)]T, |
and
ϕ(t)=[0.05,0.035]T,ψ(t)=[0.04,0.045]T,t∈Iτ={0.69,0.68,0.67,0.66,0.65}. |
Obviously, ‖ϕ‖=‖ψ‖=0.0085<0.1=δ, ϵ=1. We can see that f satisfies conditions (H1) (L=14) and (H2). We can calculate ‖A0‖=0.62, ‖B0‖=0.109, ‖B1‖=0.15.
When T=0.6−1, it is easy to check that
[Γq(α)Tα(1−q)α+Γq(α−β)Tα−β(1−q)α−β]max{‖B0‖+‖B1‖+2LΓq(α),‖A0‖Γq(α−β)}=0.8992<1, |
that is, (H3) holds. By using Matlab (the pseudo-code to compute different values of Γq(σ), see [32]), when t=1∈[a,T)q,
(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q≈8.4593<10=ϵδ. |
Thus, we obtain Te=1.
In this paper, we introduced and proved new generalizations for q-fractional Gronwall inequality. We examined the validity and applicability of our results by considering the existence and uniqueness of solutions of nonlinear delay q-fractional difference damped system. Moreover, a novel and easy to verify sufficient conditions have been provided in this paper which are easy to determine the finite-time stability of the solutions for the considered system. Finally, an example is given to illustrate the effectiveness and feasibility of our criterion. Motivated by previous works [33,34], the possible applications of fractional q-difference in the field of stability theory will be considered in the future.
The authors are grateful to the anonymous referees for valuable comments and suggestions that helped to improve the quality of the paper. This work is supported by Natural Science Foundation of China (11571136).
The authors declare that there is no conflicts of interest.
[1] |
Jakimovski D, Bittner S, Zivadinov R, et al. (2023) Multiple sclerosis. Lancet 403: 183-202. https://doi.org/10.1016/S0140-6736(23)01473-3 ![]() |
[2] |
Thompson AJ, Baranzini SE, Geurts J, et al. (2018) Multiple sclerosis. Lancet 391: 1622-1636. https://doi.org/10.1016/S0140-6736(18)30481-1 ![]() |
[3] |
McGinley MP, Goldschmidt CH, Rae-Grant AD (2021) Diagnosis and treatment of multiple sclerosis: a review. JAMA 325: 765-779. https://doi.org/10.1001/jama.2020.26858 ![]() |
[4] |
Hauser SL, Cree BAC (2020) Treatment of multiple sclerosis: a review. Am J Med 133: 1380-1390.e2. https://doi.org/10.1016/j.amjmed.2020.05.049 ![]() |
[5] |
Qian Z, Li Y, Guan Z, et al. (2023) Global, regional, and national burden of multiple sclerosis from 1990 to 2019: findings of global burden of disease study 2019. Front Public Health 11: 1073278. https://doi.org/10.3389/fpubh.2023.1073278 ![]() |
[6] |
Català-Senent JF, Andreu Z, Hidalgo MR, et al. (2023) A deep transcriptome meta-analysis reveals sex differences in multiple sclerosis. Neurobiol Dis 181: 106113. https://doi.org/10.1016/j.nbd.2023.106113 ![]() |
[7] |
Cardinali DP (2019) Melatonin: clinical perspectives in neurodegeneration. Front Endocrinol 10: 480. https://doi.org/10.3389/fendo.2019.00480 ![]() |
[8] |
Gunata M, Parlakpinar H, Acet HA (2020) Melatonin: a review of its potential functions and effects on neurological diseases. Rev Neurol 176: 148-165. https://doi.org/10.1016/j.neurol.2019.07.025 ![]() |
[9] |
Hardeland R (2018) Melatonin and inflammation—story of a double-edged blade. J Pineal Res 65: e12525. https://doi.org/10.1111/jpi.12525 ![]() |
[10] |
Loloei S, Sepidarkish M, Heydarian A, et al. (2019) The effect of melatonin supplementation on lipid profile and anthropometric indices: a systematic review and meta-analysis of clinical trials. Diabetes Metab Syndr 13: 1901-1910. https://doi.org/10.1016/j.dsx.2019.04.043 ![]() |
[11] |
Razmaray H, Nasiri E, Vakilipour P, et al. (2024) The effects of melatonin supplementation on neurobehavioral outcomes and clinical severity in rodent models of multiple sclerosis; a systematic review and meta-analysis. Inflammopharmacology 32: 927-944. https://doi.org/10.1007/s10787-023-01414-7 ![]() |
[12] |
Morsali S, Sabahi Z, Kakaei J, et al. (2023) Clinical efficacy and safety of melatonin supplementation in multiple sclerosis: a systematic review. Inflammopharmacology 31: 2213-2220. https://doi.org/10.1007/s10787-023-01271-4 ![]() |
[13] |
Skarlis C, Anagnostouli M (2020) The role of melatonin in multiple sclerosis. Neurol Sci 41: 769-781. https://doi.org/10.1007/s10072-019-04137-2 ![]() |
[14] |
Muñoz-Jurado A, Escribano BM, Caballero-Villarraso J, et al. (2022) Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 30: 1569-1596. https://doi.org/10.1007/s10787-022-01011-0 ![]() |
[15] |
Tricco AC, Lillie E, Zarin W, et al. (2018) PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 169: 467-473. https://doi.org/10.7326/M18-0850 ![]() |
[16] |
Abo Taleb HA, Alghamdi BS (2020) Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J Mol Neurosci 70: 386-402. https://doi.org/10.1007/s12031-019-01425-6 ![]() |
[17] |
Wen J, Ariyannur PS, Ribeiro R, et al. (2016) Efficacy of N-acetylserotonin and melatonin in the EAE model of multiple sclerosis. J Neuroimmune Pharmacol 11: 763-773. https://doi.org/10.1007/s11481-016-9702-9 ![]() |
[18] |
Escribano BM, Muñoz-Jurado A, Caballero-Villarraso J, et al. (2022) Protective effects of melatonin on changes occurring in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Mult Scler Relat Disord 58: 103520. https://doi.org/10.1016/j.msard.2022.103520 ![]() |
[19] |
Ghareghani M, Dokoohaki S, Ghanbari A, et al. (2017) Melatonin exacerbates acute experimental autoimmune encephalomyelitis by enhancing the serum levels of lactate: a potential biomarker of multiple sclerosis progression. Clin Exp Pharmacol Physiol 44: 52-61. https://doi.org/10.1111/1440-1681.12678 ![]() |
[20] |
Ortíz GG, Briones-Torres AL, Benitez-King G, et al. (2022) Beneficial effect of melatonin alone or in combination with glatiramer acetate and interferon β-1b on experimental autoimmune encephalomyelitis. Molecules 27: 4217. https://doi.org/10.3390/molecules27134217 ![]() |
[21] |
Ghareghani M, Farhadi Z, Rivest S, et al. (2022) PDK4 inhibition ameliorates melatonin therapy by modulating cerebral metabolism and remyelination in an EAE Demyelinating mouse model of multiple sclerosis. Front Immunol 13: 862316. https://doi.org/10.3389/fimmu.2022.862316 ![]() |
[22] |
Ghareghani M, Pons V, Laflamme N, et al. (2023) Inhibiting nighttime melatonin and boosting cortisol increase patrolling monocytes, phagocytosis, and myelination in a murine model of multiple sclerosis. Exp Mol Med 55: 215-227. https://doi.org/10.1038/s12276-023-00925-1 ![]() |
[23] | Gharib D, Rashed L, Yousuf A, et al. (2022) Therapeutic effect of microvesicles derived from BM-MSCS transplantation and/or melatonin in cuprizone model of multiple sclerosis: a pharmacodynamic biochemical assay. Egypt J Chem 65: 153-169. |
[24] |
González EJR, Jirano LJ, Martínez DZG, et al. (2021) A comparative study of melatonin and immunomodulatory therapy with interferon beta and glatiramer acetate in a mouse model of multiple sclerosis. Neurología 36: 262-270. https://doi.org/10.1016/j.nrleng.2018.01.004 ![]() |
[25] |
Ghareghani M, Scavo L, Arnoult D, et al. (2018) Melatonin therapy reduces the risk of osteoporosis and normalizes bone formation in multiple sclerosis. Fundam Clin Pharmacol 32: 181-187. https://doi.org/10.1111/fcp.12337 ![]() |
[26] |
Jand Y, Ghahremani MH, Ghanbari A, et al. (2022) Melatonin ameliorates disease severity in a mouse model of multiple sclerosis by modulating the kynurenine pathway. Sci Rep 12: 15963. https://doi.org/10.1038/s41598-022-20164-0 ![]() |
[27] |
Labunets I, Rodnichenko A, Savosko S, et al. (2023) Reaction of different cell types of the brain on neurotoxin cuprizone and hormone melatonin treatment in young and aging mice. Front Cell Neurosci 17: 1131130. https://doi.org/10.3389/fncel.2023.1131130 ![]() |
[28] |
Álvarez-Sánchez N, Cruz-Chamorro I, López-González A, et al. (2015) Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain Behav Immun 50: 101-114. https://doi.org/10.1016/j.bbi.2015.06.021 ![]() |
[29] |
Chen SJ, Huang SH, Chen JW, et al. (2016) Melatonin enhances interleukin-10 expression and suppresses chemotaxis to inhibit inflammation in situ and reduce the severity of experimental autoimmune encephalomyelitis. Int Immunopharmacol 31: 169-177. https://doi.org/10.1016/j.intimp.2015.12.020 ![]() |
[30] |
Long T, Yang Y, Peng L, et al. (2018) Neuroprotective effects of melatonin on experimental allergic encephalomyelitis mice via anti-oxidative stress activity. J Mol Neurosci 64: 233-241. https://doi.org/10.1007/s12031-017-1022-x ![]() |
[31] |
Ghareghani M, Zibara K, Sadeghi H, et al. (2018) Spasticity treatment ameliorates the efficacy of melatonin therapy in Experimental Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis. Cell Mol Neurobiol 38: 1145-1151. https://doi.org/10.1007/s10571-018-0580-y ![]() |
[32] |
Dokoohaki S, Ghareghani M, Ghanbari A, et al. (2017) Corticosteroid therapy exacerbates the reduction of melatonin in multiple sclerosis. Steroids 128: 32-36. https://doi.org/10.1016/j.steroids.2017.10.006 ![]() |
[33] |
Alghamdi BS, AboTaleb HA (2020) Melatonin improves memory defects in a mouse model of multiple sclerosis by up-regulating cAMP-response element-binding protein and synapse-associated proteins in the prefrontal cortex. J Integr Neurosci 19: 229-237. https://doi.org/10.31083/j.jin.2020.02.32 ![]() |
[34] |
Sharif R, Aghsami M, Gharghabi M, et al. (2017) Melatonin reverses H-89 induced spatial memory deficit: involvement of oxidative stress and mitochondrial function. Behav Brain Res 316: 115-124. https://doi.org/10.1016/j.bbr.2016.08.040 ![]() |
[35] |
Labunets IF, Utko NA, Toporova OK (2021) Effects of multipotent mesenchymal stromal cells of the human umbilical cord and their combination with melatonin in adult and aging mice with a toxic cuprizone model of demyelination. Adv Gerontol 11: 173-180. https://doi.org/10.1134/S2079057021020077 ![]() |
[36] |
Vakilzadeh G, Khodagholi F, Ghadiri T, et al. (2016) The effect of melatonin on behavioral, molecular, and histopathological changes in cuprizone model of demyelination. Mol Neurobiol 53: 4675-4684. https://doi.org/10.1007/s12035-015-9404-y ![]() |
[37] |
Pivovarova-Ramich O, Zimmermann HG, Paul F (2023) Multiple sclerosis and circadian rhythms: can diet act as a treatment?. Acta Physiol 237: e13939. https://doi.org/10.1111/apha.13939 ![]() |
[38] |
Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol 277: 58-67. https://doi.org/10.1016/j.expneurol.2015.11.010 ![]() |
[39] |
Pereira GM, Soares NM, Souza AR, et al. (2018) Basal cortisol levels and the relationship with clinical symptoms in multiple sclerosis: a systematic review. Arq Neuropsiquiatr 76: 622-634. https://doi.org/10.1590/0004-282X20180091 ![]() |
[40] |
Cohen JA (2013) Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci 333: 43-49. https://doi.org/10.1016/j.jns.2012.12.009 ![]() |
[41] |
Hu C, Li L (2019) Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res Ther 10: 13. https://doi.org/10.1186/s13287-018-1114-8 ![]() |
[42] |
Farhadi N, Oryan S, Nabiuni M (2014) Serum levels of melatonin and cytokines in multiple sclerosis. Biomed J 37: 90-92. https://doi.org/10.4103/2319-4170.125885 ![]() |
1. | Wellington F. da Silva, Ricardo B. Viana, Naiane S. Morais, Thalles G. Costa, Rodrigo L. Vancini, Gustavo C. T. Costa, Marilia S. Andrade, Claudio A. B. de Lira, Acute effects of exergame-based calisthenics versus traditional calisthenics on state-anxiety levels in young adult men: a randomized trial, 2022, 18, 1824-7490, 715, 10.1007/s11332-021-00841-9 | |
2. | Myungjin Jung, Emily Frith, Minsoo Kang, Paul D. Loprinzi, Effects of Acute Exercise on Verbal, Mathematical, and Spatial Insight Creativity, 2023, 5, 2096-6709, 87, 10.1007/s42978-021-00158-6 | |
3. | Sedat Sen, Süreyya Yörük, A Reliability Generalization Meta‐Analysis of the Kaufman Domains of Creativity Scale, 2023, 0022-0175, 10.1002/jocb.620 | |
4. | Ramón Romance, Adriana Nielsen-Rodríguez, Rui Sousa Mendes, Juan Carlos Dobado-Castañeda, Gonçalo Dias, The influence of physical activity on the creativity of 10 and 11-year-old school children, 2023, 48, 18711871, 101295, 10.1016/j.tsc.2023.101295 | |
5. | Petra J. Luteijn, Inge S. M. van der Wurff, Piet van Tuijl, Amika S. Singh, Hans H. C. M. Savelberg, Renate H. M. de Groot, The Effect of Standing Versus Sitting on Creativity in Adolescents—A Crossover Randomized Trial: The PHIT2LEARN Study, 2023, 17, 1751-2271, 209, 10.1111/mbe.12381 | |
6. | Myungjin Jung, Matthew B. Pontifex, Charles H. Hillman, Minsoo Kang, Michelle W. Voss, Kirk I. Erickson, Paul D. Loprinzi, A mechanistic understanding of cognitive performance deficits concurrent with vigorous intensity exercise, 2024, 180, 02782626, 106208, 10.1016/j.bandc.2024.106208 |