The detrimental effects of high amounts of sedentary time on various health outcomes have been well documented. Particularly among youth, there are many sedentary pursuits that compete with active leisure time choices, which contribute to a high prevalence of insufficiently active children and adolescents. Therefore, the present study examined the time spent in various sedentary behaviors and the association with body weight in Austrian adolescents. Sedentary time was assessed with the “Heidelberg Questionnaire to Record the Sitting Behavior of Children and Adolescents” for 1225 (49.8% male) middle- and high-school students between 11 and 17 years of age. Their body weights and heights were measured with participants wearing gym clothes. The weight categories were established based on body mass index (BMI) percentiles using the German reference system. The average daily sedentary time across the entire sample was 12.0 ± 1.6 h, and 45% of the sedentary behaviors during the entire week were attributed to schoolwork. Normal weight participants reported a lower amount of sitting time compared to their overweight and obese peers, where they spent more time with physical activity and sleeping. Specifically, a higher body weight was associated with more time spent with recreational sedentary behaviors, while differences across the weight categories were limited for work-related sitting. Given the detrimental health effects of high amounts of sedentary behaviors, additional efforts are needed to promote physical activity in adolescents, particularly for those with an excess body weight. As almost half of the sedentary behaviors were attributed to work, schools could be a particularly viable setting for interventions that target an active lifestyle.
Citation: Klaus Greier, Clemens Drenowatz, Carla Greier, Gerhard Ruedl, Herbert Riechelmann. Sitting time in different contexts in Austrian adolescents and association with weight status[J]. AIMS Medical Science, 2024, 11(2): 157-169. doi: 10.3934/medsci.2024013
The detrimental effects of high amounts of sedentary time on various health outcomes have been well documented. Particularly among youth, there are many sedentary pursuits that compete with active leisure time choices, which contribute to a high prevalence of insufficiently active children and adolescents. Therefore, the present study examined the time spent in various sedentary behaviors and the association with body weight in Austrian adolescents. Sedentary time was assessed with the “Heidelberg Questionnaire to Record the Sitting Behavior of Children and Adolescents” for 1225 (49.8% male) middle- and high-school students between 11 and 17 years of age. Their body weights and heights were measured with participants wearing gym clothes. The weight categories were established based on body mass index (BMI) percentiles using the German reference system. The average daily sedentary time across the entire sample was 12.0 ± 1.6 h, and 45% of the sedentary behaviors during the entire week were attributed to schoolwork. Normal weight participants reported a lower amount of sitting time compared to their overweight and obese peers, where they spent more time with physical activity and sleeping. Specifically, a higher body weight was associated with more time spent with recreational sedentary behaviors, while differences across the weight categories were limited for work-related sitting. Given the detrimental health effects of high amounts of sedentary behaviors, additional efforts are needed to promote physical activity in adolescents, particularly for those with an excess body weight. As almost half of the sedentary behaviors were attributed to work, schools could be a particularly viable setting for interventions that target an active lifestyle.
[1] | Swift DL, Johannsen NM, Lavie CJ, et al. (2014) The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis 56: 441-447. https://doi.org/10.1016/j.pcad.2013.09.012 |
[2] | Sares-Jäske L, Grönqvist A, Mäki P, et al. (2022) Family socioeconomic status and childhood adiposity in Europe—A scoping review. Prev Med 160: 107095. https://doi.org/10.1016/j.ypmed.2022.107095 |
[3] | Hua Y, Xie D, Zhang Y, et al. (2023) Identification and analysis of key genes in adipose tissue for human obesity based on bioinformatics. Gene 888: 147755. https://doi.org/10.1016/j.gene.2023.147755 |
[4] | Obeid N, Flament MF, Buchholz A, et al. (2022) Examining shared pathways for eating disorders and obesity in a community sample of adolescents: the REAL study. Front Psychol 13: 805596. https://doi.org/10.3389/fpsyg.2022.805596 |
[5] | Katzmarzyk P, Barreira T, Broyles S, et al. (2015) Physical activity, sedentary time, and obesity in an international sample of children. Med Sci Sports Exerc 47: 2062-2069. https://doi.org/10.1249/MSS.0000000000000649 |
[6] | Chaput JP, Barnes JD, Tremblay MS, et al. (2018) Thresholds of physical activity associated with obesity by level of sedentary behaviour in children. Pediatr Obes 13: 450-457. https://doi.org/10.1111/ijpo.12276 |
[7] | Blair SN (2009) Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 43: 1-2. |
[8] | Aue K, Huber G (2014) Sitzende Lebensweise bei Kindern und Jugendlichen (Sedentary lifestyle in children and youth). Bewegungstherapie und Gesundheitssport 30: 104-108. https://doi.org/10.1055/s-0034-1373870 |
[9] | Sedentary Behaviour Research Network (2012) Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab 37: 540-542. https://doi.org/10.1139/h2012-024 |
[10] | Dunstan DW, Dogra S, Carter SE, et al. (2021) Sit less and move more for cardiovascular health: emerging insights and opportunities. Nat Rev Cardiol 18: 637-648. https://doi.org/10.1038/s41569-021-00547-y |
[11] | Pinto AJ, Bergouignan A, Dempsey PC, et al. (2023) Physiology of sedentary behavior. Physiol Rev 103: 2561-2622. https://doi.org/10.1152/physrev.00022.2022 |
[12] | Greier K, Drenowatz C, Greier C, et al. (2023) Correlates of sedentary behaviors in Austrian children and adolescents. AIMS Med Sci 10: 291-303. https://doi.org/10.3934/medsci.2023022 |
[13] | Bull FC, Al-Ansari SS, Biddle S, et al. (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 54: 1451-1462. https://doi.org/10.1136/bjsports-2020-102955 |
[14] | Rosenberg D, Cook A, Gell N, et al. (2015) Relationships between sitting time and health indicators, costs, and utilization in older adults. Prev Med Rep 2: 247-249. https://doi.org/10.1016/j.pmedr.2015.03.011 |
[15] | Scheers T, Philippaerts R, Lefevre J (2012) Patterns of physical activity and sedentary behavior in normal-weight, overweight and obese adults, as measured with a portable armband device and an electronic diary. Clin Nutr 31: 756-764. https://doi.org/10.1016/j.clnu.2012.04.011 |
[16] | Patterson R, McNamara E, Tainio M, et al. (2018) Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol 33: 811-829. https://doi.org/10.1007/s10654-018-0380-1 |
[17] | Zou L, Herold F, Cheval B, et al. (2024) Sedentary behavior and lifespan brain health. Trends Cogn Sci 28: 369-382. https://doi.org/10.1016/j.tics.2024.02.003 |
[18] | Curran F, Davis ME, Murphy K, et al. (2023) Correlates of physical activity and sedentary behavior in adults living with overweight and obesity: a systematic review. Obes Rev 24: e13615. https://doi.org/10.1111/obr.13615 |
[19] | Ekelund U, Brown WJ, Steene-Johannessen J, et al. (2019) Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850060 participants. Br J Sports Med 53: 886-894. https://doi.org/10.1136/bjsports-2017-098963 |
[20] | Blodgett JM, Ahmadi MN, Atkin AJ, et al. (2024) Device-measured physical activity and cardiometabolic health: the Prospective Physical Activity, Sitting, and Sleep (ProPASS) consortium. Eur Heart J 45: 458-471. https://doi.org/10.1093/eurheartj/ehad717 |
[21] | Sigmund E, Sigmundová D, Pavelka J, et al. (2023) Changes in the prevalence of obesity in Czech adolescents between 2018 and 2022 and its current non-genetic correlates—HBSC study. BMC Public Health 23: 2092. https://doi.org/10.1186/s12889-023-17010-x |
[22] | NCD Risk Factor Collaboration (NCD-RisC) (2024) Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403: 1027-1050. https://doi.org/10.1016/S0140-6736(23)02750-2 |
[23] | World Health Organization, WHO European Regional Obesity Report 2022. Copenhagen World Health Organization, 2022. Available from: https://iris.who.int/bitstream/handle/10665/353747/9789289057738-eng.pdf |
[24] | Felder-Puig R, Teutsch F, Winkler R (2023) Gesundheit und Gesundheitsverhalten von österreichischen Schülerinnen und Schülern. Ergebnisse des WHO-HBSC-Survey 2021/22. (Health and health behavior of Austrian students. Results of the WHO HBSC Survey 2021/22). Vienna: BMSGPK. Available from: https://goeg.at/sites/goeg.at/files/inline-files/%C3%96sterr.%20HBSC-Bericht%202023_bf.pdf. |
[25] | Cleven L, Krell-Roesch J, Nigg CR, et al. (2020) The association between physical activity with incident obesity, coronary heart disease, diabetes and hypertension in adults: a systematic review of longitudinal studies published after 2012. BMC Public Health 20: 726. https://doi.org/10.1186/s12889-020-08715-4 |
[26] | Silveira EA, Mendonça CR, Delpino FM, et al. (2022) Sedentary behavior, physical inactivity, abdominal obesity and obesity in adults and older adults: a systematic review and meta-analysis. Clin Nutr ESPEN 50: 63-73. https://doi.org/10.1016/j.clnesp.2022.06.001 |
[27] | Marcus C, Danielsson P, Hagman E (2022) Pediatric obesity-long-term consequences and effect of weight loss. J Intern Med 292: 870-891. https://doi.org/10.1111/joim.13547 |
[28] | Lerchen N, Köppel M, Huber G (2016) Reliabilitat und Validitat des Heidelberger Fragebogens zur Erfassung des Sitzverhaltens von Kindern und Jugendlichen im Alter von 5 bis 20 Jahren (Reliability and validity of the Heidelberg questionnaire to record the sitting behavior of children and adolescents aged 5 to 20 years). Bewegungstherapie und Gesundheitsspor 32: 109-112. https://doi.org/10.1055/s-0042-106337 |
[29] | Kolimechkov S, Petrov L (2020) The body mass index: a systematic review. J Exerc Physiol Health 3: 21-27. |
[30] | Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. (2001) Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben (Percentiles for the body mass index for children and adolescents using various German samples). Monatsschr Kinderheilkd 149: 807-818. https://doi.org/10.1007/s001120170107 |
[31] | Lauby-Secretan B, Scoccianti C, Loomis D, et al. (2016) Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med 375: 794-798. https://doi.org/10.1056/NEJMsr1606602 |
[32] | Brock JM, Billeter A, Müller-Stich BP, et al. (2020) Obesity and the lung: what we know today. Respiration 99: 856-866. https://doi.org/10.1159/000509735 |
[33] | Steinbeck KS, Lister NB, Gow ML, et al. (2018) Treatment of adolescent obesity. Nat Rev Endocrinol 14: 331-344. https://doi.org/10.1038/s41574-018-0002-8 |
[34] | Greier K, Drenowatz C, Riechelmann H, et al. (2020) Longitudinal association of motor development and body weight in elementary school children—A 4-year observational study. Adv Phys Educ 10: 364-377. https://doi.org/10.4236/ape.2020.104030 |
[35] | Ruedl G, Greier N, Niedermeier M, et al. (2019) Factors associated with physical fitness among overweight and non-overweight Austrian secondary school students. Int J Environ Res Public Health 16: 4117. https://doi.org/10.3390/ijerph16214117 |
[36] | Lemes VB, Sehn AP, Reuter CP, et al. (2024) Associations of sleep time, quality of life, and obesity indicators on physical literacy components: a structural equation model. BMC Pediatr 24: 159. https://doi.org/10.1186/s12887-024-04609-1 |
[37] | Chen S, Yang L, Yang Y, et al. (2024) Sedentary behavior, physical activity, sleep duration and obesity risk: Mendelian randomization study. PLoS One 19: e0300074. https://doi.org/10.1371/journal.pone.0300074 |
[38] | Miller MA (2023) Time for bed: diet, sleep and obesity in children and adults. Proc Nutr Soc 28: 1-8. https://doi.org/10.1017/S0029665123004846 |
[39] | Paruthi S, Brooks LJ, D'Ambrosio C, et al. (2016) Recommended amount of sleep for pediatric populations: a consensus statement of the American academy of sleep medicine. J Clin Sleep Med 12: 785-786. https://doi.org/10.5664/jcsm.5866 |
[40] | Kracht CL, Chaput JP, Martin CK, et al. (2019) Associations of sleep with food cravings, diet, and obesity in adolescence. Nutrients 11: 2899. https://doi.org/10.3390/nu11122899 |
[41] | López-Gil JF, Smith L, Victoria-Montesinos D, et al. (2023) Mediterranean dietary patterns related to sleep duration and sleep-related problems among adolescents: the EHDLA study. Nutrients 15: 665. https://doi.org/10.3390/nu15030665 |
[42] | Yuksel HS, Şahin FN, Maksimovic N, et al. (2020) School-based intervention programs for preventing obesity and promoting physical activity and fitness: a systematic review. Int J Environ Res Public Health 17: 347. https://doi.org/10.3390/ijerph17010347 |
[43] | Vanderwall C, Randall Clark R, Eickhoff J, et al. (2017) BMI is a poor predictor of adiposity in young overweight and obese children. BMC Pediatr 17: 135. https://doi.org/10.1186/s12887-017-0891-z |