In this paper, we introduce a generalized fractional operator in the setting of Hilfer fractional derivatives, the ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function. The proposed operator can be viewed as an interpolator between the Riemann-Liouville and Caputo generalized proportional fractional operators. The properties of the proposed operator are established under some classical and standard assumptions. As an application, we formulate a nonlinear fractional differential equation with a nonlocal initial condition and investigate its equivalence with Volterra integral equations, existence, and uniqueness of solutions. Finally, illustrative examples are given to demonstrate the theoretical results.
Citation: Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha. On ψ-Hilfer generalized proportional fractional operators[J]. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
[1] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[2] | Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja . On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative. AIMS Mathematics, 2021, 6(10): 10920-10946. doi: 10.3934/math.2021635 |
[3] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[4] | Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720 |
[5] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[6] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[7] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[8] | Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions. AIMS Mathematics, 2024, 9(5): 12982-13005. doi: 10.3934/math.2024633 |
[9] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[10] | Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450 |
In this paper, we introduce a generalized fractional operator in the setting of Hilfer fractional derivatives, the ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function. The proposed operator can be viewed as an interpolator between the Riemann-Liouville and Caputo generalized proportional fractional operators. The properties of the proposed operator are established under some classical and standard assumptions. As an application, we formulate a nonlinear fractional differential equation with a nonlocal initial condition and investigate its equivalence with Volterra integral equations, existence, and uniqueness of solutions. Finally, illustrative examples are given to demonstrate the theoretical results.
The fractional calculus, which analyses the integrals and derivatives of arbitrary order, attracted the attention of many researchers in the last century and continues to do so even in the present century, as it is perceived as one of the most solid and powerful mathematical tools both in theory and applications [1,2,3,4,5,6,7,8,9]. One of the pivotal efficacy of fractional calculus is that there are copious types of fractional operators that appear from different aspects. The most illustrious ones are the Riemann-Liouville and Caputo's fractional operators that were effectively applied in developing models of long-term memory processes and the problems that came to the fore in many areas of science and technology [10,11,12,13,14,15,16,17,18]. Being incapacitated to model all the veracious problems of the world with the operators in the traditional calculus, and for the sake of enhanced understanding and modeling the real-world problems more accurately, researchers continuously observe the need to develop and discover new types of fractional operators for the said cause that were confined to Riemann-Liouville fractional derivatives and Caputo's fractional derivatives before the hit of this century.
Katugampola[19,20] in 2011, came up with a new type of fractional operators called generalized fractional operators to combine Riemann-Liouville and Hadamard fractional operators. Later Jarad et al. in [21] modified these operators to include Caputo and Caputo-Hadamard fractional derivatives. In [22], the authors established a new derivative and named it as a Conformable fractional derivative. But this derivative faulted that it does not give the original function if the order tends to 0 and that is a dearth. However, it is mandatory for any derivative that it should give the original function when the order is zero and if the order is 1, it provides the first-order derivative of the function. To evade this issue in conformable derivative, the authors in [23] provided a modification generated from the former definition of the conformable derivative. Also, some more generalizations of these operators are mentioned in [24]. Following the same trend, very recently some authors constructed new types of derivative operators by replacing the singular kernel of Riemann-Liouville and Caputo with non-singular (bounded) kernels. Although these operators suffer from various drawbacks which makes it hard to use them, still discrete authors [25,26,27,28] and many more became enthusiastic in working with these operators as they hold profits of Riemann-Liouville and Caputo derivative operators.
Jarad et al. in [29] developed a new class of generalized fractional operators in the sense of Riemann-Liouville and Caputo involving a special case of proportional derivatives. After that, the authors in [30] generalize the work done in [29] by using the concept of proportional derivatives of a function with respect to another function. Moreover, in [31], Idris et al., constructed a new operator called Hilfer generalized proportional fractional derivative that merges the operators defined in [29]. They also provide some fundamental properties and important lemmas.
Motivated by [31,32], we study a proportional derivatives and provide a generalization of the operator defined in [31] and named it as ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function which acts as a connection between proportional fractional derivatives in Riemann-Liouville and Caputo sense as defined in [30].
The paper is organized as follows: In Section 2, we mention some preliminary definitions, lemmas, and theorems that are used in other sections of the paper. In Section 3, we define the new operator, the ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function, together with some of its properties and important results. Furthermore, we discuss the equivalence between a generalized Cauchy problem and the Volterra integral equation with this operator. The existence and uniqueness results for the proposed problem are also conferred. In Section 4, three illustrative examples were given, which show the theoretical analysis. In Section 5, we discuss conclusions obtained from the analysis.
In this section, we recall some definitions, theorems, lemmas, corollaries and propositions which we use later in this paper [21,30,32,33,34].
Let Ω=[a,b](0≤a<b<∞) be a finite interval and γ be a parameter such that n−1≤γ<n. The space of continuous functions f on Ω is denoted by C[a,b] and the associated norm is defined by [1,34]
||f||C[a,b]=maxy∈[a,b]|f(y)|, |
and
ACn[a,b]={f:[a,b]→R;f(n−1)∈AC[a,b]}, |
be the space of n times absolutely continuous differentiable functions.
The weighted space Cγ,ψ[a,b] of functions f on (a,b] is defined by
Cγ,ψ[a,b]={f:(a,b]→R;(ψ(y)−ψ(a))γf(y)∈C[a,b]}, |
having norm
||f||Cγ,ψ[a,b]=‖(ψ(y)−ψ(a))γf(y)‖C[a,b]=maxy∈[a,b]|(ψ(y)−ψ(a))γf(y)|. |
The weighted space Cnγ,ψ[a,b] of functions f on (a,b] is defined by
Cnγ,ψ[a,b]={f:[a,b]→R;f(y)∈Cn−1[a,b];f(n)(y)∈Cγ,ψ[a,b]}, |
along the with norm
||f||Cnγ,ψ[a,b]=n−1∑k=0‖f(k)‖C[a,b]+‖f(n)‖Cγ,ψ[a,b]. |
The above spaces satisfy the following properties:
(i) C0γ,ψ[a,b]=Cγ,ψ[a,b], for n=0.
(ii) For n−1≤γ1<γ2<n, Cγ1,ψ[a,b]⊂Cγ2,ψ[a,b].
Definition 2.1. ([30,32]) Let φ0, φ1 : [0, 1] × R → [0,∞) be two continuous functions such that for all y ∈ R and for ϑ ∈ [0,1], we have
limϑ→0+φ0(ϑ,y)=0,limϑ→0+φ1(ϑ,y)=1,limϑ→1−φ0(ϑ,y)=1,limϑ→1−φ1(ϑ,y)=0, |
and φ0(ϑ,y)≠0, ϑ ∈ (0,1]; φ1(ϑ,y)≠0 for ϑ ∈ [0,1). Also let ψ(y) be a strictly positive increasing continuous function. Then,
Dϑ,ψf(y)=φ1(ϑ,y)f(y)+φ0(ϑ,y)f′(y)ψ′(y), | (2.1) |
gives the proportional differential operator of order ϑ with respect to function ψ(y) of a function f(y).
In particular, when φ0(ϑ,y)=ϑ and φ1(ϑ,y)=1−ϑ. Then, the operator Dϑ,ψ (2.1) becomes
Dϑ,ψf(y)=(1−ϑ)f(y)+ϑf′(y)ψ′(y), | (2.2) |
and the integral corresponding to proportional derivative (2.2) is given as
J1,ϑ,ψaf(y)=1ϑ∫yaeϑ−1ϑ(ψ(y)−ψ(s))f(s)ψ′(s)ds, | (2.3) |
where we assume that J0,ϑ,ψaf(y)=f(y).
The generalized proportional integral of order n corresponding to proportional derivative Dn,ϑ,ψf(y), is given as follows
(Jn,ϑ,ψaf)(y)=1ϑnΓ(n)∫yaeϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))n−1ψ′(s)f(s)ds, | (2.4) |
where, Dn,ϑ,ψ = Dϑ,ψ⋅Dϑ,ψ⋅Dϑ,ψ⋯Dϑ,ψ⏟n−times.
Now the general proportional fractional integral based on (2.4) is defined as;
Definition 2.2. ([30,32]) If ϑ ∈ (0,1] and α∈C with Re(α)>0. Then the fractional integral
(Jα,ϑ,ψa+f)(y)=1ϑαΓ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−1ψ′(s)f(s)ds,y>a, | (2.5) |
is called the left-sided generalized fractional proportional integral of order α of the function f with respect to another function ψ.
Definition 2.3. ([30,32]) For ϑ ∈ (0,1], α∈C, Re(α)≥0 and ψ∈C[a,b], where ψ′(s)>0, the generalized left proportional fractional derivative of order α of the function f with respect to ψ is defined as
(Dα,ϑ,ψa+f)(y)=Dn,ϑ,ψyϑn−αΓ(n−α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))n−α−1ψ′(s)f(s)ds, |
where Γ(⋅) is the gamma function and n=[Re(α)]+1.
Proposition 2.1. ([30,32]) If α,β∈C such that Re(α)≥0 and Re(β)>0, then for any ϑ>0, we have
(i)(Jα,ϑ,ψa+eϑ−1ϑ(ψ(s)−ψ(a))(ψ(s)−ψ(a))β−1)(y)=Γ(β)ϑαΓ(α+β)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))α+β−1,(ii)(Dα,ϑ,ψa+eϑ−1ϑ(ψ(s)−ψ(a))(ψ(s)−ψ(a))β−1)(y)=ϑαΓ(β)Γ(β−α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))β−α−1. |
Theorem 2.1. ([30,32,33]) Suppose ϑ ∈ (0,1], Re(α)>0 and Re(β)>0. Then, if f is continuous and defined for y≥a, we have
Jα,ϑ,ψa+(Jβ,ϑ,ψa+f)(y)=Jβ,ϑ,ψa+(Jα,ϑ,ψa+f)(y)=(Jα+β,ϑ,ψa+f)(y). |
Theorem 2.2. ([30,32]) Suppose ϑ ∈ (0,1], 0≤n<[Re(α)]+1 with n∈N. If f∈L1(a,b), then
Dn,ϑ,ψa+(Jα,ϑ,ψa+f)(y)=(Jα−n,ϑ,ψa+f)(y). | (2.6) |
In particular, for n=1, by using the Leibnitz rule, we have
D1,ϑ,ψa+(Jα,ϑ,ψa+f)(y)=α−1ϑα−1Γ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−2ψ′(s)f(s)ds. | (2.7) |
Corollary 2.1. ([30,32]) If 0<Re(β)<Re(α) and n−1<Re(β)≤n, n∈N. then, we have
Dβ,ϑ,ψa+Jα,ϑ,ψa+f(y)=Jα−β,ϑ,ψa+f(y). | (2.8) |
Theorem 2.3. ([30,32]) Suppose f∈L1(a,b) and Re(α)>0, ϑ ∈ (0,1], n=[Re(α)]+1. Then, the following equality holds
Dα,ϑ,ψa+Jα,ϑ,ψa+f(y)=f(y),y≥a. | (2.9) |
Lemma 2.4. ([32]) If α>n, ϑ∈(0,1] and n is positive integer, then we have
(Jα,ϑ,ψa+Dn,ϑ,ψa+f)(y)=(Dn,ϑ,ψa+Jα,ϑ,ψa+f)(y)−n−1∑k=0eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))α−n+kϑα−n+kΓ(α+k−n+1)(Dk,ϑ,ψf)(a). | (2.10) |
Theorem 2.5. ([32]) Assume that Re(α)>0, n=−[−Re(α)], f∈L1(a,b), and (Jα,ϑ,ψa+f)(y)∈ACn[a,b]. Then,
(Jα,ϑ,ψa+Dα,ϑ,ψa+f)(y)=f(y)−n∑j=1eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))α−jϑα−jΓ(α−j+1)(Jj−α,ϑ,ψa+f)(a). | (2.11) |
Definition 2.4. ([30,32]) If ϑ ∈ (0,1] and α∈C with Re(α)≥0, then the generalized left Caputo proportional fractional derivative of function f with respect to function ψ is defined as
(CDα,ϑ,ψa+f)(y)=Jn−α,ϑ,ψa+(Dn,ϑ,ψf)(y)=1ϑn−αΓ(n−α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))n−α−1ψ′(s)(Dn,ϑ,ψsf)(s)ds, | (2.12) |
where, n=[Re(α)]+1.
Corollary 2.2. [32] Let α∈C with Re(α)>0 and ϑ∈(0,], n=[Re(α)]+1. If f∈Cn[a,b] then
(CDα,ϑ,ψa+f)(y)=Dα,ϑ,ψa+[f(y)−n−1∑k=0eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))kϑk⋅k!(Dk,ϑ,ψa+f)(a)]. | (2.13) |
Proposition 2.2. ([30,32]) If α,β∈C with Re(α)>0 and Re(β)>0, then for any ϑ>0 and n=[Re(α)]+1, we obtain as follows
(CDα,ϑ,ψa+eϑ−1ϑ(ψ(s)−ψ(a))(ψ(s)−ψ(a))β−1)(y)=ϑαΓ(β)Γ(β−α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))β−α−1. |
For k=0,1,2,…,n−1, we have
(CDα,ϑ,ψa+eϑ−1ϑ(ψ(s)−ψ(a))(ψ(s)−ψ(a))k)(y)=0. |
In particular, (CDα,ϑ,ψa+eϑ−1ϑ(ψ(s)−ψ(a)))(y)=0.
Definition 3.1. Let I=[a,b], where −∞≤a<b≤∞ be an interval and f, ψ ∈ Cn[a,b] be two functions such that ψ is positive, strictly increasing and ψ′(y)≠0, for all y∈I. The ψ-Hilfer generalized proportional fractional derivatives (left-sided/right-sided) of order α and type β of f with respect to another function ψ are defined by
(Dα,β,ϑ,ψa±f)(y)=(Jβ(n−α),ϑ,ψa±(Dn,ϑ,ψ)J(1−β)(n−α),ϑ,ψa±f)(y), | (3.1) |
where n−1<α<n, 0≤β≤1 with n∈N and ϑ∈(0,1]. Also, Dϑ,ψf(y)=(1−ϑ)f(y)+ϑf′(y)ψ′(y) and J is the generalized proportional fractional derivative defined in (2.5).
In particular, if n=1, then 0<α<1 and 0≤β≤1, so (3.1) becomes,
(Dα,β,ϑ,ψa±f)(y)=(Jβ(1−α),ϑ,ψa±(D1,ϑ,ψ)J(1−β)(1−α),ϑ,ψa±f)(y). |
Remark 3.1. From the Definition 3.1, we can view the operator Dα,β,ϑ,ψa± as an interpolator between the Riemann–Liouville and Caputo generalized proportional fractional derivatives, respectively, since
Dα,β,ϑ,ψa±f={Dn,ϑ,ψJn−α,ϑ,ψa±f,ifβ=0,Jβ(n−α),ϑ,ψa±Dn,ϑ,ψf,ifβ=1. |
Remark 3.2. In this paper we discuss our results involving ψ-Hilfer generalized proportional fractional derivatives using only one sided (left) operator. The similar procedure can be developed for the right-sided operator.
The operator Dα,β,ϑ,ψa+ can be expressed in terms of the operators given in Definition 2.2 and Definition 2.3. This is given by the following property:
Property 3.1. The ψ-Hilfer generalized proportional fractional derivatives Dα,β,ϑ,ψa+ is equivalent to
(Dα,β,ϑ,ψa+f)(y)=(Jβ(n−α),ϑ,ψa+(Dn,ϑ,ψ)J(1−β)(n−α),ϑ,ψa+f)(y)=(Jβ(n−α),ϑ,ψa+Dγ,ϑ,ψa+f)(y), |
where γ=α+β(n−α).
Proof. By the Definition 3.1 of Dα,β,ϑ,ψa+ and using (2.2), (2.5), we have
(Dα,β,ϑ,ψa+f)(y)=(Jβ(n−α),ϑ,ψa+(Dn,ϑ,ψ)J(1−β)(n−α),ϑ,ψa+f)(y)=Jβ(n−α),ϑ,ψa+Dn−1,ϑ,ψ{D1,ϑ,ψϑn−γΓ(n−γ)×∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))n−γ−1ψ′(s)f(s)ds}, |
this gives by using (2.7)
=Jβ(n−α),ϑ,ψa+(Dn−1,ϑ,ψ){1ϑn−γ−1Γ(n−γ−1)×∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))n−γ−2ψ′(s)f(s)ds}. |
Now repeating the above process (n−1) times and using (2.7), we obtain the required result.
Theorem 3.1. Let n−1<α<n, with n∈N, 0≤β≤1, ϑ∈(0,1] and γ=α+β(n−α). For η∈R such that η>n, then the image of the function f(y)=eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))η−1 under the operator Dα,β,ϑ,ψa+ is given as
Dα,β,ϑ,ψa+f(y)=ϑαΓ(η)Γ(η−α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))η−α−1. |
Proof. From Proposition 2.1. and (3.1), we obtain
Dα,β,ϑ,ψa+f(y)=Jγ−α,ϑ,ψa+Dγ,ϑ,ψa+f(y)=Jγ−α,ϑ,ψa+(Dγ,ϑ,ψa+eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))η−1)=ϑγΓ(η)Γ(η−γ)Jγ−α,ϑ,ψa+(eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))η−γ−1)=ϑαΓ(η)Γ(η−α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))η−α−1. |
Lemma 3.2. Let n−1<α<n, with n∈N 0≤β≤1, ϑ∈(0,1] and γ=α+β(n−α). For θ>0, consider the function f(y)=eϑ−1ϑ(ψ(y)−ψ(a))Eα(θ(ψ(y)−ψ(a))α), where Eα(⋅) is the Mittag-Leffler function with one parameter. Then,
Dα,β,ϑ,ψa+f(y)=θϑαf(y). |
Proof. Using the definition of Mittag-Leffler function and the Theorem 3.1., we have
Dα,β,ϑ,ψa+f(y)=Dα,β,ϑ,ψa+{eϑ−1ϑ(ψ(y)−ψ(a))Eα(θ(ψ(y)−ψ(a))α)}=∞∑j=0θjΓ(αj+1)Dα,β,ϑ,ψa+eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))αj=θϑαeϑ−1ϑ(ψ(y)−ψ(a))∞∑j=1θj−1(ψ(y)−ψ(a))αj−αΓ(α(j−1)+1)=θϑαf(y). |
Property 3.2. Assume that the parameters α,β,γ satisfying the relations as
γ=α+β(n−α),n−1<α,γ≤n,0≤β≤1, |
and
γ≥α,γ>β,n−γ<n−β(n−α). |
Therefore, we consider the following weighted spaces of continuous functions on (a,b] as follows:
Cα,βn−γ,ψ[a,b]={f∈Cn−γ,ψ[a,b],Dα,β,ϑ,ψa+f∈Cγ,ψ[a,b]}, |
and
Cγn−γ,ψ[a,b]={f∈Cn−γ,ψ[a,b],Dγ,ϑ,ψa+f∈Cn−γ,ψ[a,b]}. |
Since Dα,β,ϑ,ψa+f=Jβ(n−α),ϑ,ψa+Dγ,ϑ,ψa+, it follows that
Cγn−γ,ψ[a,b]⊂Cα,βn−γ,ψ[a,b]. |
Lemma 3.3. Let n−1≤γ<n, n−1<α<n with n∈N and ϑ∈(0,1]. If f∈Cγ[a,b] then
Jα,ϑ,ψa+f(a)=limy→a+Jα,ϑ,ψa+f(y)=0,n−1≤γ<α. | (3.2) |
Proof. Since f∈Cγ[a,b], then (ψ(y)−ψ(a))γf(y) is continuous on [a, b] and hence
|(ψ(y)−ψ(a))γf(y)|<N, |
where y∈[a,b] and N>0 is a constant. Therefore,
|Jα,ϑ,ψa+eϑ−1ϑ(ψ(y)−ψ(a))f(y)|<N[Jα,ϑ,ψa+eϑ−1ϑ(ψ(s)−ψ(a))(ψ(s)−ψ(a))−γ](y), |
and by Proposition 2.1, we can write
|Jα,ϑ,ψa+eϑ−1ϑ(ψ(y)−ψ(a))f(y)|<N[Γ(n−γ)ϑαΓ(α−γ+n)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))α−γ]. |
As α>γ, the RHS of above equation approaches to 0 as y→a+.
Lemma 3.4. Let n−1<α<n, ϑ∈(0,1], 0≤β≤1, with n∈N and γ=α+β(n−α). If f∈Cγn−γ[a,b] then
Jγ,ϑ,ψa+Dγ,ϑ,ψa+f=Jα,ϑ,ψa+Dα,β,ϑ,ψa+f, |
and
Dγ,ϑ,ψa+Jα,ϑ,ψa+f=Dβ(n−α),ϑ,ψa+f. |
Proof. Using Theorem 2.1 and Property 3.1, we can write
Jγ,ϑ,ψa+Dγ,ϑ,ψa+f=Jγ,ϑ,ψa+(J−β(n−α),ϑ,ψa+Dα,β,ϑ,ψa+f)=Jα+β(n−α),ϑ,ψa+J−β(n−α),ϑ,ψa+Dα,β,ϑ,ψa+f=Jα,ϑ,ψa+Dα,β,ϑ,ψa+f. |
Again using Definition 2.3 and Theorem 2.1, we obtain
Dγ,ϑ,ψa+Jα,ϑ,ψa+f=Dn,ϑ,ψJn−γ,ϑ,ψa+Jα,ϑ,ψa+f=Dn,ϑ,ψJn−β(n−α),ϑ,ψa+f=Dβ(n−α),ϑ,ψa+f. |
Lemma 3.5. Let f∈L1(a,b). If Dβ(n−α),ϑ,ψf exists in L1(a,b), then
Dα,β,ϑ,ψa+Jα,ϑ,ψa+f=Jβ(n−α),ϑ,ψa+Dβ(n−α),ϑ,ψa+f. |
Proof. From Definition 2.3., Theorem 2.1. and (3.1), we have
Dα,β,ϑ,ψa+Jα,ϑ,ψa+f=Jβ(n−α),ϑ,ψa+Dγ,ϑ,ψa+Jα,ϑ,ψa+f=Jβ(n−α),ϑ,ψa+(Dn,ϑ,ψa+Jn−γ,ϑ,ψa+)Jα,ϑ,ψa+f=Jβ(n−α),ϑ,ψa+Dn,ϑ,ψa+Jn−β(n−α),ϑ,ψa+f=Jβ(n−α),ϑ,ψa+Dβ(n−α),ϑ,ψa+f. |
Lemma 3.6. Assume n−1<α<n for n∈N; ϑ∈(0,1], 0≤β≤1, and γ=α+β(n−α). If f∈Cγn−γ[a,b] and Jn−β(n−α),ϑ,ψa+f∈Cnn−γ,ψ[a,b], then Dα,β,ϑ,ψa+Jα,ϑ,ψa+f exists in (a,b] and
Dα,β,ϑ,ψa+Jα,ϑ,ψa+f(y)=f(y),y∈(a,b]. |
Proof. With the help of Theorem 2.5, Lemma 3.3 and Lemma 3.5, we get as follows
(Dα,β,ϑ,ψa+Jα,ϑ,ψa+f)(y)=(Jβ(n−α),ϑ,ψa+Dβ(n−α),ϑ,ψa+f)(y)=f(y)−n∑k=1eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))β(n−α)−kϑβ(n−α)−kΓ(β(n−α)−k+1)(Jk−β(n−α),ϑ,ψa+)(a)=f(y). |
Theorem 3.7. For n−1<α<n, with n∈N, ϑ∈(0,1], and 0≤β≤1. If f∈Cn[a,b], then
(Dα,β,ϑ,ψa+f(y)=Dn−β(n−α),ϑ,ψa+[Jn−γ,ϑ,ψa+f(y)−n−1∑k=0eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))kϑkk!(Dγ,ϑ,ψa+f)(a)], |
where γ=α+β(k−α).
Proof. Suppose that g(y)=J(1−β)(n−α),ϑ,ψa+f(y) and η=n−β(n−α), then, by using Definition 2.4 and Corollary 2.2, we get from (3.1) as
Dα,β,ϑ,ψa+f(y)=CDη,ϑ,ψa+g(y)=Dη,ϑ,ψa+[g(y)−n−1∑k=0eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))kϑkk!(Dk,ϑ,ψa+g)(a)]=Dη,ϑ,ψa+[J(1−β)(n−α),ϑ,ψa+f(y)−n−1∑k=0eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))kϑkk!×{Dk,ϑ,ψa+(J(1−β)(k−α),ϑ,ψa+f)(a)}]=Dη,ϑ,ψa+[J(1−β)(n−α),ϑ,ψa+f(y)−n−1∑k=0eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))kϑkk!(Dγ,ϑ,ψa+f)(a)]. |
Lemma 3.8. Let n−1<α<n where n∈N, ϑ∈(0,1], 0≤β≤1, with γ=α+β(n−α) such that n−1<γ<n. If f∈Cγ[a,b] and Jn−γ,ϑ,ψa+f∈Cnγ,ψ[a,b], then
Jα,ϑ,ψa+Dα,β,ϑ,ψa+f(y)=f(y)−n∑k=1eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−kϑγ−kΓ(γ−k+1)(Jk−γ,ϑ,ψa+)(a). | (3.3) |
Proof. Using Theorem 2.1 and Property 3.1, we get as
Jα,ϑ,ψa+Dα,β,ϑ,ψa+f(y)=Jα,ϑ,ψa+(Jβ(n−α),ϑ,ψa+Dγ,ϑ,ψa+f)(y)=Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y). |
Now,
Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y)=1ϑγΓ(γ)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))γ−1ψ′(s)Dγ,ϑ,ψa+f(s)ds=1ϑγΓ(γ)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))γ−1ψ′(s){Dn,ϑ,ψa+(Jn−γ,ϑ,ψa+f)(s)}ds=1ϑγΓ(γ)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))γ−1ψ′(s)D1,ϑ,ψa+{Dn−1,ϑ,ψa+(Jn−γ,ϑ,ψa+f)(s)}ds. |
Using (2.2) and then integrating by parts, we obtain
Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y)=−1ϑγ−1Γ(γ)[eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1{Dn−1,ϑ,ψa+(Jn−γ,ϑ,ψa+f)(a)}]+1ϑγ−1Γ(γ−1)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))γ−2ψ′(s){Dn−1,ϑ,ψa+(Jn−γ,ϑ,ψa+f)(s)}ds. |
Now, continue the above process (n−1) times, we get
Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y)=1ϑγ−nΓ(γ−n)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))γ−(n−1)ψ′(s)Jn−γ,ϑ,ψa+f(s)ds−n∑k=1eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−kϑγ−kΓ(γ−k+1){Dn−k,ϑ,ψa+(Jn−γ,ϑ,ψa+f)(a)}=Jγ−n,ϑ,ψa+Jn−γ,ϑ,ψa+f(y)−n∑k=1eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−kϑγ−kΓ(γ−k+1){Dn−k,ϑ,ψa+(Jn−γ,ϑ,ψa+f)(a)}. |
Therefore, by using Theorem 2.1 and Theorem 2.2, we arrive at (3.3).
We consider the following nonlinear ψ-Hilfer generalized proportional fractional differential equation:
Dα,β,ϑ,ψa+ϕ(y)=f(y,ϕ(y)),y∈I=[a,b],b>a≥0, | (3.4) |
where 0<α<1, 0≤β≤1 and f:I×R→R is a continuous function subject to the following nonlocal initial condition
J1−γ,ϑ,ψa+ϕ(a)=m∑i=1μiϕ(τi),γ=α+β(1−α),τi∈(a,b)andμi∈R. | (3.5) |
Now, to shows the equivalence between the Cauchy problem (3.4)–(3.5) and the Volterra integral equation
ϕ(y)=ΛϑαΓ(α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1×m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds+1ϑαΓ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds, | (3.6) |
where
Λ=1ϑγ−1Γ(γ)−m∑i=1μieϑ−1ϑ(ψ(τi)−ψ(a))(ψ(τi)−ψ(a))γ−1. |
We state and prove the following lemma.
Lemma 3.9. Let 0<α<1, 0≤β≤1, γ=α+β(1−α), and assume that f(⋅,ϕ(⋅))∈C1−γ[a,b] for any ϕ∈C1−γ[a,b] where f:(a,b]×R→R be a function. If ϕ∈Cγ1−γ[a,b], then ϕ satisfies (3.4)–(3.5) if and only if ϕ satisfies (3.6).
Proof. Assume that ϕ∈Cγ1−γ[a,b] be a solution of (3.4)–(3.5). We prove that ϕ is also solution of (3.6). From the Lemma (3.8) with n=1, we have
Jα,ϑ,ψa+Dα,β,ϑ,ψa+ϕ(y)=ϕ(y)−eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1ϑγ−1Γ(γ)(J1−γ,ϑ,ψa+ϕ)(a), |
which implies that
ϕ(y)=eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1ϑγ−1Γ(γ)J1−γ,ϑ,ψa+ϕ(a)+1ϑαΓ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds. | (3.7) |
Next, taking y=τi and then multiplying on both side by μi in (3.7), we obtain
μiϕ(τi)=(ψ(τi)−ψ(a))γ−1ϑγ−1Γ(γ)μieϑ−1ϑ(ψ(τi)−ψ(a))J1−γ,ϑ,ψa+ϕ(a)+μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi), |
this implies that
m∑i=1μiϕ(τi)=1ϑγ−1Γ(γ)m∑i=1μieϑ−1ϑ(ψ(τi)−ψ(a))(ψ(τi)−ψ(a))γ−1J1−γ,ϑ,ψa+ϕ(a)+1ϑαΓ(α)m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds,τi>a. | (3.8) |
From the initial condition (3.5, we obtain
J1−γ,ϑ,ψa+ϕ(a)=ϑγ−1Γ(γ)ϑαΓ(α)Λm∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds. | (3.9) |
Thus, the required result is obtained by replacing (3.9) in (3.7), which shows that ϕ(y) satisfies (3.6).
Conversely, suppose that ϕ∈Cγ1−γ[a,b] satisfies (3.6), we show that ϕ also satisfies (3.4)–(3.5). Now by applying the operator Dγ,ϑ,ψa+ on both sides of (3.6) and then using Proposition 2.1 and Lemma 3.4, yields
Dγ,ϑ,ψa+ϕ(y)=Dγ,ϑ,ψa+(ΛϑαΓ(α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1×m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds)+Dγ,ϑ,ψa+(1ϑαΓ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds)=Dβ(1−α),ϑ,ψa+f(s,ϕ(s))(y). | (3.10) |
Since by hypothesis ϕ∈Cγ1−γ[a,b] and by the definition of Cγ1−γ[a,b] we have Dγ,ϑ,ψa+ϕ∈C1−γ[a,b]; so from (3.10), we have
Dβ(1−α),ϑ,ψa+f=D1,ϑ,ψJ1−β(1−α),ϑ,ψf∈C1−γ,ψ[a,b]. |
Also for f(⋅,ϕ(⋅))∈C1−γ[a,b] and from Theorem 2.3, it follows that
J1−β(1−α),ϑ,ψa+f∈C1−γ,ψ[a,b], |
this implies from the definition of Cn1−γ,ψ[a,b], that
J1−β(1−α),ϑ,ψa+f∈C11−γ,ψ[a,b]. |
Now, applying the operator Jβ(1−α),ϑ,ψa+ on both sides of (3.10) and with the help of Theorem 2.5 and Lemma 3.3, we obtain
Jβ(1−α),ϑ,ψa+Dγ,ϑ,ψa+ϕ(y)=Jβ(1−α),ϑ,ψa+Dβ(1−α),ϑ,ψa+f(s,ϕ(s))(y)=f(y,ϕ(y))−eϑ−1ϑ(ψ(y)−ψ(a))(J1−β(1−α),ϑ,ψa+f)(a)ϑβ(1−α)−1Γ(β(1−α))(ψ(y)−ψ(a))β(1−α)−1=f(y,ϕ(y)). | (3.11) |
Hence,
Dα,β,ϑ,ψa+ϕ(y)=f(y,ϕ(y)),y∈[a,b]. |
Next, we prove that the initial condition of (3.4) also holds. To prove this, applying J1−γ,ϑ,ψa+ to both sides of (3.6) and then using Proposition 2.1 and Theorem 2.1, we get
J1−γ,ϑ,ψa+ϕ(y)=J1−γ,ϑ,ψa+(ΛϑαΓ(α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1×m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds)+J1−γ,ϑ,ψa+(1ϑαΓ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds)=ϑγ−1Γ(γ)ϑαΓ(α)Λeϑ−1ϑ(ψ(y)−ψ(a))m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds+J1−β(1−α),ϑ,ψa+f(s,ϕ(s))(y). | (3.12) |
Since 1−γ<β(1−α), so taking the limit as y→a+ and using Lemma 3.3 in (3.12), we get
J1−γ,ϑ,ψa+ϕ(a+)=ϑγ−1Γ(γ)ϑαΓ(α)Λm∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds. | (3.13) |
Now, substituting y=τi and then multiplying through out by μi in (3.6),
μiϕ(τi)=ΛϑαΓ(α)μieϑ−1ϑ(ψ(τi)−ψ(a))(ψ(τi)−ψ(a))γ−1×m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds+μiϑαΓ(α)∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds, |
this implies that
m∑i=1μiϕ(τi)=Λm∑i=1μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi)m∑i=1μieϑ−1ϑ(ψ(τi)−ψ(a))(ψ(τi)−ψ(a))γ−1+m∑i=1μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi)=m∑i=1μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi)(1+λm∑i=1μieϑ−1ϑ(ψ(τi)−ψ(a))(ψ(τi)−ψ(a))γ−1). |
Thus,
m∑i=1μiϕ(τi)=ϑγ−1Γ(γ)ϑαΓ(α)Λm∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds. | (3.14) |
Hence, from (3.13) and (3.14), we have
J1−γ,ϑ,ψa+ϕ(a+)=m∑i=1μiϕ(τi), | (3.15) |
and this completes the proof.
Utilizing the concepts of krasnoselskii's fixed point theorem, in this subsection, we state and prove the existence of at least one solution of problem (3.4)–(3.5) in the weighted space Cα,β1−γ,ψ[a,b].
Theorem 3.10. (Krasnoselskii's fixed point theorem) Let B be a nonempty bounded closed convex subset of a Banach space X. Let N,M:B→X be two continuous operators satisfying:
(i) Nx+My∈B whenever x,y∈B;
(ii) N is compact and continuous;
iii) M is contraction mapping;
then, there exist u∈B such that u=Nu+Mu.
For that firstly we called of the following assumptions:
(C1). Let f:(a,b]×R→R be a function such that f∈Cβ(1−α)1−γ,ψ[a,b],for anyϕ∈Cγ1−γ,ψ[a,b].
(C2). There exists a constant K>0 such that
|f(y,ω)−f(y,¯ω)|≤K|ω−¯ω|,for allω,¯ω∈Randy∈I. |
(C3). Assume that
KΨ<1, |
where
Ψ=B(γ,α)ϑαΓ(α)(|Λ|m∑i=1μi(ψ(τi)−ψ(a))α+γ−1+(ψ(b)−ψ(a))α), | (3.16) |
and
B(γ,α)=∫10yγ−1(1−y)α−1dy,Re(γ),Re(α)>0, |
is the beta function.
(C4). Also let
K△<1, |
where
△=B(γ,α)ϑαΓ(α)|Λ|m∑i=1μi(ψ(τi)−ψ(a))α+γ−1. | (3.17) |
Now, the following theorem yields the existence of at least one solution for the problem (3.4).
Theorem 3.11. Let 0<α<1, 0≤β≤1 and γ=α+β(1−α). Suppose that the assumptions (C1),(C2),and(C4) holds. Then the problem (3.4)–(3.5) has at least one solution in the space Cγ1−γ[a,b].
Proof. Given that ‖χ‖C1−γ,ψ[a,b]=supy∈J|(ψ(y)−ψ(a))1−γχ(y)| and choose ε≥M‖χ‖C1−γ,ψ[a,b], where
M=B(γ,α)ϑαΓ(α)(|Λ|m∑i=1μi(ψ(τi)−ψ(a))α+γ−1(ψ(b)−ψ(a))α), | (3.18) |
also consider Bε={ϕ∈C[a,b]:‖ϕ‖C1−γ[a,b]≤ε}. Thus, for all y∈[a,b] consider the operators N and M defined on Bε by
(Nϕ)(y)=1ϑαΓ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds,(Mϕ)(y)=ΛϑαΓ(α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1×m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds. |
Step 1. For all ϕ,ˉϕ∈Bε, yields
|(Nϕ(y)+Mˉϕ(y))(ψ(y)−ψ(a))1−γ|≤(ψ(y)−ψ(a))1−γϑαΓ(α)∫ya+(ψ(y)−ψ(s))α−1(ψ(s)−ψ(a))γ−1ψ′(s)|f(s,ϕ(s))(ψ(s)−ψ(a))1−γ|ds+|Λ|ϑαΓ(α)m∑i=1μi∫τia+(ψ(τi)−ψ(s))α−1(ψ(τi)−ψ(a))γ−1|f(s,ˉϕ(s))(ψ(τi)−ψ(a))1−γ|ds≤‖χ‖[B(γ,α)ϑαΓ(α)|Λ|m∑i=1μi(ψ(τi)−ψ(a))α+γ−1+(γ,α)ϑαΓ(α)(ψ(b)−ψ(a))α]≤‖χ‖M≤ϑ<∞, |
this implies that Nϕ+Mˉϕ ∈Bε.
Step 2. We show that M is a contraction. Let ϕ, ˉϕ∈C1−γ[a,b] and y∈I, then
|(Mϕ(y)−Mˉϕ(y))(ψ(y)−ψ(a))1−γ|=|Λeϑ−1ϑ(ψ(y)−ψ(a))m∑i=1μiJ1−β(1−α),ϑ,ψa+(f(s,ϕ(s))−f(s,ˉϕ(s)))(τi)|≤K|Λ|ϑαΓ(α)m∑i=1μi∫τia+(ψ(τi)−ψ(s))α−1(ψ(s)−ψ(a))γ−1ψ′(s)|ϕ(s)−ˉϕ(s)|ds≤[K|Λ|ϑαΓ(α)B(γ,α)m∑i=1μi(ψ(τi)−ψ(a))α+γ−1]‖ϕ−ˉϕ‖C1−γ,ψ[a,b]≤K△‖ϕ−ˉϕ‖C1−γ,ψ[a,b] | (3.19) |
Hence, it follows from (C4) that M is a contraction.
Step 3. Now we verify that the operator N is continuous and compact.
Since the function f is continuous, so the operator N is also continuous,
Hence, for any ϕ∈C1−γ[a,b], we obtain
‖Nϕ‖≤‖χ‖B(γ,α)ϑαΓ(α)(ψ(b)−ψ(a))α<∞. |
This shows that N is uniformly bounded on Bε. So, it remains to prove that the operator N is compact. Denoting sup(y,ϕ)∈I×Bε|f(y,ϕ(y))|=δ<∞ and for any a<τ1<τ2<b,
|(ψ(τ2)−ψ(a))1−γ(Nϕ(τ2))+(ψ(τ1)−ψ(a))1−γ(Nϕ(τ1))|=|(ψ(τ2)−ψ(a))1−γϑαΓ(α)∫τ2a+eϑ−1ϑ(ψ(τ2)−ψ(s))(ψ(τ2)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds+(ψ(τ1)−ψ(a))1−γϑαΓ(α)∫τ1a+eϑ−1ϑ(ψ(τ1)−ψ(s))(ψ(τ1)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds|≤1ϑαΓ(α)∫τ2a+[(ψ(τ2)−ψ(a))1−γ(ψ(τ2)−ψ(s))α−1(ψ(τ1)−ψ(a))1−γ(ψ(τ1)−ψ(s))α−1] | (3.20) |
×ψ′(s)|f(s,ϕ(s))|ds+1ϑαΓ(α)∫τ2τ1ψ(τ1)−ψ(a))1−γ(ψ(τ1)−ψ(s))α−1ψ′(s)|f(s,ϕ(s))|ds⟶0asτ2→τ1. | (3.21) |
As a consequence of Arzela-Ascoli theorem N is compact on Bε. Thus, as a result of Theorem 3.10, problem (3.4)–(3.5) has at least one solution.
In this subsection, we state and prove the uniqueness of solutions of problem (3.4)−(3.5) via Banach contraction principle, .
Theorem 3.12. (Contraction mapping principle) Let X be a Banach space, S⊂X be closed and T:S→S a contraction mapping i.e
‖Tz−Tˉz‖≤k‖z−ˉz‖,for allz,ˉz∈S,and somek∈(0,1). |
Then S has a unique fixed point.
Theorem 3.13. Let 0<α<1, 0≤β≤1 and γ=α+β(1−α). Suppose that the assumptions (C2)−(C3) holds, then the problem (3.4)–(3.5) has a unique solution in the space Cγ1−γ,ψ[a,b].
Proof. Consider the fractional operator T:C1−γ,ψ[a,b]→C1−γ,ψ[a,b] defined by:
(Tϕ)(y)=ΛϑαΓ(α)eϑ−1ϑ(ψ(y)−ψ(a))(ψ(y)−ψ(a))γ−1×m∑i=1μi∫τia+eϑ−1ϑ(ψ(τi)−ψ(s))(ψ(τi)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds+1ϑαΓ(α)∫ya+eϑ−1ϑ(ψ(y)−ψ(s))(ψ(y)−ψ(s))α−1ψ′(s)f(s,ϕ(s))ds. | (3.22) |
Clearly the operator T is well defined. Now for any ϕ1,ϕ2∈C1−γ[a,b],y∈I and |eϑ−1ϑψ(y)|<1, gives
|((Tϕ1)(y)−(Tϕ2)(y))(ψ(y)−ψ(a))1−γ|≤|Λ|ϑαΓ(α)m∑i=1μi∫τia+(ψ(τi)−ψ(s))α−1ψ′(s)|f(s,ϕ1(s))−f(s,ϕ2(s))|ds+(ψ(y)−ψ(a))1−γϑαΓ(α)∫ya+(ψ(y)−ψ(s))α−1ψ′(s)|f(s,ϕ1(s))−f(s,ϕ2(s))|ds≤K|Λ|ϑαΓ(α)(m∑i=1μi∫τia+(ψ(τi)−ψ(s))α−1(ψ(s)−ψ(a))γ−1ψ′(s)ds)‖ϕ1−ϕ2‖C1−γ,ψ[a,b]+KϑαΓ(α)(ψ(y)−ψ(a))1−γ(∫ya+(ψ(y)−ψ(s))α−1(ψ(s)−ψ(a))γ−1ψ′(s)ds)‖ϕ1−ϕ2‖C1−γ,ψ[a,b]≤K|Λ|ϑαΓ(α)B(γ,α)m∑i=1μi(ψ(τi)−ψ(s))α+γ−1‖ϕ1−ϕ2‖C1−γ,ψ[a,b]+KϑαΓ(α)(ψ(b)−ψ(a))αB(γ,α)‖ϕ1−ϕ2‖C1−γ,ψ[a,b] | (3.23) |
Hence,
‖(Tϕ1)−(Tϕ2)‖C1−γ,ψ[a,b]≤KϑαΓ(α)B(γ,α)(|Λ|m∑i=1μi(ψ(τi)−ψ(s))α+γ−1+(ψ(b)−ψ(a))α)‖ϕ1−ϕ2‖C1−γ,ψ[a,b]≤KΨ‖ϕ1−ϕ2‖C1−γ,ψ[a,b] | (3.24) |
Thus, from (C3) it follows that T is a contraction map. So, in view of the Theorem 3.12, there exists a unique solution of problem (3.4)–(3.5).
Example 4.1. Consider the following fractional differential equation with generalized Hilfer's proportional fractional derivative as:
{D12,23,45,ψ0+ϕ(y)=cosx4+190|ϕ(y)|1+|ϕ(y)|,y∈I=[0,1],J1−γ,45,ψ0+ϕ(0)=5ϕ(13)+√3ϕ(35). | (4.1) |
On comparing (3.4)–(3.5) with (4.1), we obtain the values as follows
α=12,β=23,ϑ=45,γ=56,a=0,b=1,μ1=5,μ2=√3,asm=2,soτ1=13,τ2=35∈I. |
Also f:I×R→R is a function defined by
f(y,ϕ(y))=cosy4+190|ϕ(y)|1+|ϕ(y)|,y∈I. |
Clearly, f is continuous function and
|f(y,ϕ1)−f(y,ϕ2)|≤190|ϕ1−ϕ2|. |
It follows that conditions (C1) and (C2) holds with K=190. Now, choose ψ(y)=y2+1, then it implies that ψ(y) is positive increasing and continuous function in [0,1] and ψ′(y)≠0 for all y∈I. Substituting these values and after simple calculation, yields
|Λ|=|1(45)56−1Γ(56)−(5e(−136)(19+1−1)56−1+√3e(−9100)(925+1−1)56−1)|≈0.12, |
and
Ψ=(56,12)(45)12Γ(12){|Λ|(5(19+1−1)12+56−1+√3(925+1−1)12+56−1)+(2−1)12}≈2.04, |
this implies that KΨ<1, which is (C3).
Furthermore, △≈0.61>0 and K△<1, which means that the assumption (C4) is also satisfied. Hence, by Theorem 3.11 and Theorem 3.13, problem (4.1) has at least one solution and hence is unique on the interval I.
Example 4.2. Consider the ψ-Hilfer generalized proportional fractional differential equation of the form
{D37,34,12,ψ0+ϕ(y)=y3+235|ϕ(y)|1+|ϕ(y)|,y∈I=[0,2],J1−γ,12,ψ0+ϕ(0)=−3ϕ(57)+52ϕ(1113)+3√2ϕ(910),τ1,τ2,τ3∈(0,2). | (4.2) |
After doing the same steps as in Example 1 above with ψ(y)=2y3+3y2+1, we obtain the values as |Λ|≈0.73, Ψ≈14.43 and △≈7.23. Therefore,
KΨ≈0.82<1, |
and
K△≈0.57<1, |
where, K=235. So, again in view of Theorem 3.11 and Theorem 3.13, the problem (4.2) has atleast one solution and hence a unique solution on I.
Example 4.3. Let
{D13,710,1,ψ0+ϕ(y)=sin2y40e2y(|ϕ(y)|2+|ϕ(y)|),y∈I=[0,4],J1−γ,1,ψ0+ϕ(0)=−ϕ(12)+2ϕ(32)+2√3ϕ(52)+4√2ϕ(72),τ1,τ2,τ3,τ4∈(0,4). | (4.3) |
be the ψ-Hilfer generalized proportional fractional differential equation.
On comparing (4.3) with (3.4), (3.5), we have the values of parameters as follows: α=13,β=710,ϑ=1,γ=45,a=0,b=4,μ1=−1,μ2=2,μ3=2√3,μ4=4√2asm=4,soτ1=12,τ2=32,τ3=52,τ4=72∈I. In addition, let ψ(y)=y3+2y+1. Now, after performing simple computations, we obtain the estimated values as |Λ|≈0.26, Ψ≈14.06 and △≈6.29. Since,
KΨ≈0.70<1, |
and
K△≈0.31<1, |
where, K=120. Thus, with the help of Theorem 3.11 and Theorem 3.13, the problem (4.3) has atleast one solution and hence a unique solution on I.
The main aim of this paper is to propose a generalized fractional derivative Dα,β,ϑ,ψa+ with three parameters α, β and ϑ of a function with respect to another function ψ, in the setting of Hilfer generalized proportional fractional derivative. We derived some important properties of the proposed derivative and we investigated conditions for which the semigroup properties are valid. Considering the nonlinear fractional differential equations in sense of the proposed derivative, we established the relationship between the Volterra integral equations and investigated its existence and uniqueness of solutions using Krasnoselskii's and Banach fixed point theorems. Furthermore, some examples are illustrated to support the theoretical analysis. In addition, this paper improves the preceding ones as it unifies two different derivatives which has many applications in science and engineering. Besides, its of great important to note that:
● Setting ψ(y)=y in problem (3.4)–(3.5), the formulation reduces to Hifer generalized proportional fractional derivative studied by Idris et al. [31].
● Setting ϑ=1, then the derivative operator Dα,β,ϑ,ψa+ reduces to the ψ-Hilfer fractional derivative Dα,β,ψa+ studied by J.Vanterler et al. [34].
Finally, we conclude that the results obtained are new and generalized the existence ones in the literature and this achievement can be regarded towards the improvement of qualitative aspect of fractional calculus.
The authors express their gratitude for the positive comments received by anonymous reviewers and the editors which have improved the readability and correctness of the paper. Moreover, these works were done while the second author visits Cankaya University, Ankara, Turkey.
The authors declare no conflict of interest.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, USA: North-Holl and Mathematics Studies, Elsevier Science Inc., 2006. doi: 10.1016/s0304-0208(06)x8001-5. |
[2] |
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. doi: 10.1155/S0161171203301486
![]() |
[3] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solutions and Some of Their Applications, Singapore: World Scientific Publishing Company, 2000. |
[4] | R. Hilfer, Applications of Fractional Calculus in Physics, New York: Academic Press (Elsevier), 1999. doi: 10.1142/3779. |
[5] | R. L. Magin, Fractional Calculus in Bioengineering, USA: Begell House Publishers Inc., 2006. |
[6] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, USA: Gordon and Breach Science Publishers, 1993. |
[7] |
S. Salahshour, A. Ahmadian, S. Abbasbandy, D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos Solit. Fractals, 117 (2018), 84–93. doi: 10.1016/j.chaos.2018.10.002. doi: 10.1016/j.chaos.2018.10.002
![]() |
[8] |
M. I. Asjad, M. Aleem, A. Ahmadian, S. Salahshour, M. Ferrara, New trends of fractional modeling and heat and mass transfer investigation of (swcnts and mwcnts)-cmc based nanofluids flow over inclined plate with generalized boundary conditions, Chin. J. Phys., 66 (2020), 497–516. doi: 10.1016/j.cjph.2020.05.026. doi: 10.1016/j.cjph.2020.05.026
![]() |
[9] |
S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for Caputo q-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 153–158. doi: 10.1016/j.cnsns.2014.12.014. doi: 10.1016/j.cnsns.2014.12.014
![]() |
[10] |
A. Atangana, E. F. D. Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 1–7. doi: 10.1155/2014/107535. doi: 10.1155/2014/107535
![]() |
[11] |
A. Atangana, E. F. D. Goufo, A model of the groundwater flowing within a leaky aquifer using the concept of local variable order derivative, J. Nonlinear Sci. Appl., 8 (2015), 763–775. doi: 10.22436/jnsa.008.05.27. doi: 10.22436/jnsa.008.05.27
![]() |
[12] |
A. Atangana, J. F. G. Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 1–22. doi: 10.1140/epjp/i2018-12021-3. doi: 10.1140/epjp/i2018-12021-3
![]() |
[13] | I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, I. Yusuf A mathematical model of coronavirus disease (covid-19) containing asymptomatic and symptomatic classes, Results Phys., 21 (2021), 1–15. doi: 10.1016/j.rinp.2020.103776. |
[14] |
M. Caputo, C. Cametti, Diffusion with memory in two cases of biological interest, J. Theor. Biol., 254 (2008), 697–703. doi: 10.1016/j.jtbi.2008.06.021. doi: 10.1016/j.jtbi.2008.06.021
![]() |
[15] |
M. Caputo, M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400–408. doi: 10.1016/j.jcp.2014.11.012. doi: 10.1016/j.jcp.2014.11.012
![]() |
[16] |
I. Ahmed, E. F. D. Gouf, A. Yusuf, P. Kumam, P. Chaipanya, K. Nonlaopon, An epidemic prediction from analysis of a combined hiv-covid-19 co-infection model via ABC-fractional operator, Alex. Eng. J., 60 (2021), 2979–2995. doi: 10.1016/j.aej.2021.01.041. doi: 10.1016/j.aej.2021.01.041
![]() |
[17] | I. Ahmed, A. Yusuf, M. A. Sani, F. Jarad, W. Kumam, P. Thounthong, Analysis of a caputo hiv and malaria co-infection epidemic model, Thai J. Math., 19 (2021), 897–912. |
[18] |
X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., 47 (2015), 54–60. doi: 10.1016/j.aml.2015.02.024. doi: 10.1016/j.aml.2015.02.024
![]() |
[19] |
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[20] | U. N. Katugampola, A new approach to generalized fractional derivatives, Appl. Math. Comput., 6 (2014), 1–15. |
[21] |
F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. doi: 10.22436/jnsa.010.05.27. doi: 10.22436/jnsa.010.05.27
![]() |
[22] |
R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002. doi: 10.1016/j.cam.2014.01.002
![]() |
[23] |
D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137. doi: 10.13140/RG.2.1.1744.9444. doi: 10.13140/RG.2.1.1744.9444
![]() |
[24] | D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Commun. Appl. Nonlinear Anal., 24 (2017), 17–48. |
[25] |
A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solit. Fractals, 114 (2018), 478–482. doi: 10.1016/j.chaos.2018.07.032. doi: 10.1016/j.chaos.2018.07.032
![]() |
[26] |
J. F. G. Aguilar, A. Atangana, Fractional derivatives with the power-law and the Mittag–Leffler kernel applied to the nonlinear Baggs–Freedman model, Fractal Fract., 2 (2018), 1–10. doi: 10.3390/fractalfract2010010. doi: 10.3390/fractalfract2010010
![]() |
[27] |
K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Math. Model. Nat. Phenom., 13 (2018), 1–7. doi: 10.1051/mmnp/2018006. doi: 10.1051/mmnp/2018006
![]() |
[28] |
M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 1–16. doi: 10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0
![]() |
[29] |
F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7. doi: 10.1140/epjst/e2018-00021-7
![]() |
[30] |
F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014. doi: 10.1515/math-2020-0014
![]() |
[31] |
I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 1 (2020), 1–18. doi: 10.1186/s13662-020-02792-w. doi: 10.1186/s13662-020-02792-w
![]() |
[32] |
F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 1–16. doi: 10.1186/s13662-020-02767-x. doi: 10.1186/s13662-020-02767-x
![]() |
[33] | S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu Inequalities by means of generalized proportional fractional integral operators with respect to another function, Math., 7 (2019), 1–16. doi: 10.3390/math7121225. |
[34] |
J. V. C. Sousa, E. C. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
![]() |
1. | Ricardo Almeida, Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives, 2022, 6, 2504-3110, 356, 10.3390/fractalfract6070356 | |
2. | Kishor D. Kucche, Ashwini D. Mali, Arran Fernandez, Hafiz Muhammad Fahad, On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations, 2022, 163, 09600779, 112547, 10.1016/j.chaos.2022.112547 | |
3. | Jessada Tariboon, Ayub Samadi, Sotiris K. Ntouyas, Nonlocal Boundary Value Problems for Hilfer Generalized Proportional Fractional Differential Equations, 2022, 6, 2504-3110, 154, 10.3390/fractalfract6030154 | |
4. | Surang Sitho, Sotiris K. Ntouyas, Chayapat Sudprasert, Jessada Tariboon, Integro-Differential Boundary Conditions to the Sequential ψ1-Hilfer and ψ2-Caputo Fractional Differential Equations, 2023, 11, 2227-7390, 867, 10.3390/math11040867 | |
5. | Sotiris Ntouyas, Bashir Ahmad, Jessada Tariboon, Nonlocal ψ-Hilfer Generalized Proportional Boundary Value Problems for Fractional Differential Equations and Inclusions, 2022, 2, 2673-9321, 377, 10.3390/foundations2020026 | |
6. | Weerawat Sudsutad, Chatthai Thaiprayoon, Bounmy Khaminsou, Jehad Alzabut, Jutarat Kongson, A Gronwall inequality and its applications to the Cauchy-type problem under ψ-Hilfer proportional fractional operators, 2023, 2023, 1029-242X, 10.1186/s13660-023-02929-x | |
7. | Ravi P. Agarwal, Snezhana Hristova, Boundary Value Problem for Multi-Term Nonlinear Delay Generalized Proportional Caputo Fractional Differential Equations, 2022, 6, 2504-3110, 691, 10.3390/fractalfract6120691 | |
8. | Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions, 2023, 8, 2473-6988, 14086, 10.3934/math.2023720 | |
9. | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon, Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems, 2023, 8, 2473-6988, 22009, 10.3934/math.20231122 | |
10. | Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, Coupled Systems of Nonlinear Proportional Fractional Differential Equations of the Hilfer-Type with Multi-Point and Integro-Multi-Strip Boundary Conditions, 2023, 3, 2673-9321, 241, 10.3390/foundations3020020 | |
11. | Bashir Ahmad, Sotiris K. Ntouyas, 2024, Chapter 1, 978-3-031-62512-1, 1, 10.1007/978-3-031-62513-8_1 | |
12. | Najeeb Alam Khan, Oyoon Abdul Razzaq, Areeba Azam Bajwa, Muhammad Ayaz, Global dynamics and Impact of Gaussian noise intensity on the stochastic epidemic model with local fractional derivative, 2023, 98, 0031-8949, 064002, 10.1088/1402-4896/accf46 | |
13. | Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Fractional Sequential Coupled Systems of Hilfer and Caputo Integro-Differential Equations with Non-Separated Boundary Conditions, 2024, 13, 2075-1680, 484, 10.3390/axioms13070484 | |
14. | Aurelian Cernea, On a Hilfer generalized proportional fractional integro-differential inclusion, 2024, 58, 24058963, 401, 10.1016/j.ifacol.2024.08.224 | |
15. | Sotiris K. Ntouyas, Phollakrit Wongsantisuk, Ayub Samadi, Jessada Tariboon, Hybrid System of Proportional Hilfer-Type Fractional Differential Equations and Nonlocal Conditions with Respect to Another Function, 2024, 12, 2227-7390, 1071, 10.3390/math12071071 | |
16. | Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions, 2024, 9, 2473-6988, 12982, 10.3934/math.2024633 | |
17. | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, On generalized $(k,\psi )$-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem, 2024, 2024, 1687-2770, 10.1186/s13661-024-01891-x | |
18. | James Viji, Velu Muthulakshmi, Pushpendra Kumar, Oscillatory behavior of Ψ$$ \Psi $$‐Hilfer generalized proportional fractional initial value problems, 2024, 0170-4214, 10.1002/mma.10557 | |
19. | V. M. Bulavatsky, On Some Generalizations of the Bi-Ordinal Hilfer’s Fractional Derivative, 2024, 60, 1060-0396, 541, 10.1007/s10559-024-00694-3 | |
20. | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan, A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system, 2024, 9, 2473-6988, 24443, 10.3934/math.20241191 | |
21. | Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions, 2024, 12, 2227-7390, 1361, 10.3390/math12091361 | |
22. | Feryal Aladsani, Ahmed Gamal Ibrahim, Existence and Stability of Solutions for p-Proportional ω-Weighted κ-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 475, 10.3390/fractalfract8080475 | |
23. | Ayub Samadi, Sotiris K. Ntouyas, Asawathep Cuntavepanit, Jessada Tariboon, Hilfer proportional nonlocal fractional integro-multipoint boundary value problems, 2023, 21, 2391-5455, 10.1515/math-2023-0137 | |
24. | V.M. Bulavatsky, ON SOME GENERALIZATIONS OF THE BI-ORDINAL HILFER’S FRACTIONAL DERIVATIVE, 2024, 10195262, 36, 10.34229/KCA2522-9664.24.4.3 | |
25. | Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan, Qualitative results and numerical approximations of the $ (k, \psi) $-Caputo proportional fractional differential equations and applications to blood alcohol levels model, 2024, 9, 2473-6988, 34013, 10.3934/math.20241622 |