Research article

On ψ-Hilfer generalized proportional fractional operators

  • Received: 13 July 2021 Accepted: 22 September 2021 Published: 30 September 2021
  • MSC : 26A33, 34A12, 34A43, 34D20

  • In this paper, we introduce a generalized fractional operator in the setting of Hilfer fractional derivatives, the ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function. The proposed operator can be viewed as an interpolator between the Riemann-Liouville and Caputo generalized proportional fractional operators. The properties of the proposed operator are established under some classical and standard assumptions. As an application, we formulate a nonlinear fractional differential equation with a nonlocal initial condition and investigate its equivalence with Volterra integral equations, existence, and uniqueness of solutions. Finally, illustrative examples are given to demonstrate the theoretical results.

    Citation: Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha. On ψ-Hilfer generalized proportional fractional operators[J]. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005

    Related Papers:

    [1] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [2] Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja . On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative. AIMS Mathematics, 2021, 6(10): 10920-10946. doi: 10.3934/math.2021635
    [3] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
    [4] Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720
    [5] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [6] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [7] Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191
    [8] Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions. AIMS Mathematics, 2024, 9(5): 12982-13005. doi: 10.3934/math.2024633
    [9] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [10] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
  • In this paper, we introduce a generalized fractional operator in the setting of Hilfer fractional derivatives, the ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function. The proposed operator can be viewed as an interpolator between the Riemann-Liouville and Caputo generalized proportional fractional operators. The properties of the proposed operator are established under some classical and standard assumptions. As an application, we formulate a nonlinear fractional differential equation with a nonlocal initial condition and investigate its equivalence with Volterra integral equations, existence, and uniqueness of solutions. Finally, illustrative examples are given to demonstrate the theoretical results.



    The fractional calculus, which analyses the integrals and derivatives of arbitrary order, attracted the attention of many researchers in the last century and continues to do so even in the present century, as it is perceived as one of the most solid and powerful mathematical tools both in theory and applications [1,2,3,4,5,6,7,8,9]. One of the pivotal efficacy of fractional calculus is that there are copious types of fractional operators that appear from different aspects. The most illustrious ones are the Riemann-Liouville and Caputo's fractional operators that were effectively applied in developing models of long-term memory processes and the problems that came to the fore in many areas of science and technology [10,11,12,13,14,15,16,17,18]. Being incapacitated to model all the veracious problems of the world with the operators in the traditional calculus, and for the sake of enhanced understanding and modeling the real-world problems more accurately, researchers continuously observe the need to develop and discover new types of fractional operators for the said cause that were confined to Riemann-Liouville fractional derivatives and Caputo's fractional derivatives before the hit of this century.

    Katugampola[19,20] in 2011, came up with a new type of fractional operators called generalized fractional operators to combine Riemann-Liouville and Hadamard fractional operators. Later Jarad et al. in [21] modified these operators to include Caputo and Caputo-Hadamard fractional derivatives. In [22], the authors established a new derivative and named it as a Conformable fractional derivative. But this derivative faulted that it does not give the original function if the order tends to 0 and that is a dearth. However, it is mandatory for any derivative that it should give the original function when the order is zero and if the order is 1, it provides the first-order derivative of the function. To evade this issue in conformable derivative, the authors in [23] provided a modification generated from the former definition of the conformable derivative. Also, some more generalizations of these operators are mentioned in [24]. Following the same trend, very recently some authors constructed new types of derivative operators by replacing the singular kernel of Riemann-Liouville and Caputo with non-singular (bounded) kernels. Although these operators suffer from various drawbacks which makes it hard to use them, still discrete authors [25,26,27,28] and many more became enthusiastic in working with these operators as they hold profits of Riemann-Liouville and Caputo derivative operators.

    Jarad et al. in [29] developed a new class of generalized fractional operators in the sense of Riemann-Liouville and Caputo involving a special case of proportional derivatives. After that, the authors in [30] generalize the work done in [29] by using the concept of proportional derivatives of a function with respect to another function. Moreover, in [31], Idris et al., constructed a new operator called Hilfer generalized proportional fractional derivative that merges the operators defined in [29]. They also provide some fundamental properties and important lemmas.

    Motivated by [31,32], we study a proportional derivatives and provide a generalization of the operator defined in [31] and named it as ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function which acts as a connection between proportional fractional derivatives in Riemann-Liouville and Caputo sense as defined in [30].

    The paper is organized as follows: In Section 2, we mention some preliminary definitions, lemmas, and theorems that are used in other sections of the paper. In Section 3, we define the new operator, the ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function, together with some of its properties and important results. Furthermore, we discuss the equivalence between a generalized Cauchy problem and the Volterra integral equation with this operator. The existence and uniqueness results for the proposed problem are also conferred. In Section 4, three illustrative examples were given, which show the theoretical analysis. In Section 5, we discuss conclusions obtained from the analysis.

    In this section, we recall some definitions, theorems, lemmas, corollaries and propositions which we use later in this paper [21,30,32,33,34].

    Let Ω=[a,b](0a<b<) be a finite interval and γ be a parameter such that n1γ<n. The space of continuous functions f on Ω is denoted by C[a,b] and the associated norm is defined by [1,34]

    ||f||C[a,b]=maxy[a,b]|f(y)|,

    and

    ACn[a,b]={f:[a,b]R;f(n1)AC[a,b]},

    be the space of n times absolutely continuous differentiable functions.

    The weighted space Cγ,ψ[a,b] of functions f on (a,b] is defined by

    Cγ,ψ[a,b]={f:(a,b]R;(ψ(y)ψ(a))γf(y)C[a,b]},

    having norm

    ||f||Cγ,ψ[a,b]=(ψ(y)ψ(a))γf(y)C[a,b]=maxy[a,b]|(ψ(y)ψ(a))γf(y)|.

    The weighted space Cnγ,ψ[a,b] of functions f on (a,b] is defined by

    Cnγ,ψ[a,b]={f:[a,b]R;f(y)Cn1[a,b];f(n)(y)Cγ,ψ[a,b]},

    along the with norm

    ||f||Cnγ,ψ[a,b]=n1k=0f(k)C[a,b]+f(n)Cγ,ψ[a,b].

    The above spaces satisfy the following properties:

    (i) C0γ,ψ[a,b]=Cγ,ψ[a,b], for n=0.

    (ii) For n1γ1<γ2<n, Cγ1,ψ[a,b]Cγ2,ψ[a,b].

    Definition 2.1. ([30,32]) Let φ0, φ1 : [0, 1] × R [0,) be two continuous functions such that for all y R and for ϑ [0,1], we have

    limϑ0+φ0(ϑ,y)=0,limϑ0+φ1(ϑ,y)=1,limϑ1φ0(ϑ,y)=1,limϑ1φ1(ϑ,y)=0,

    and φ0(ϑ,y)0, ϑ (0,1]; φ1(ϑ,y)0 for ϑ [0,1). Also let ψ(y) be a strictly positive increasing continuous function. Then,

    Dϑ,ψf(y)=φ1(ϑ,y)f(y)+φ0(ϑ,y)f(y)ψ(y), (2.1)

    gives the proportional differential operator of order ϑ with respect to function ψ(y) of a function f(y).

    In particular, when φ0(ϑ,y)=ϑ and φ1(ϑ,y)=1ϑ. Then, the operator Dϑ,ψ (2.1) becomes

    Dϑ,ψf(y)=(1ϑ)f(y)+ϑf(y)ψ(y), (2.2)

    and the integral corresponding to proportional derivative (2.2) is given as

    J1,ϑ,ψaf(y)=1ϑyaeϑ1ϑ(ψ(y)ψ(s))f(s)ψ(s)ds, (2.3)

    where we assume that J0,ϑ,ψaf(y)=f(y).

    The generalized proportional integral of order n corresponding to proportional derivative Dn,ϑ,ψf(y), is given as follows

    (Jn,ϑ,ψaf)(y)=1ϑnΓ(n)yaeϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))n1ψ(s)f(s)ds, (2.4)

    where, Dn,ϑ,ψ = Dϑ,ψDϑ,ψDϑ,ψDϑ,ψntimes.

    Now the general proportional fractional integral based on (2.4) is defined as;

    Definition 2.2. ([30,32]) If ϑ (0,1] and αC with Re(α)>0. Then the fractional integral

    (Jα,ϑ,ψa+f)(y)=1ϑαΓ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α1ψ(s)f(s)ds,y>a, (2.5)

    is called the left-sided generalized fractional proportional integral of order α of the function f with respect to another function ψ.

    Definition 2.3. ([30,32]) For ϑ (0,1], αC, Re(α)0 and ψC[a,b], where ψ(s)>0, the generalized left proportional fractional derivative of order α of the function f with respect to ψ is defined as

    (Dα,ϑ,ψa+f)(y)=Dn,ϑ,ψyϑnαΓ(nα)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))nα1ψ(s)f(s)ds,

    where Γ() is the gamma function and n=[Re(α)]+1.

    Proposition 2.1. ([30,32]) If α,βC such that Re(α)0 and Re(β)>0, then for any ϑ>0, we have

    (i)(Jα,ϑ,ψa+eϑ1ϑ(ψ(s)ψ(a))(ψ(s)ψ(a))β1)(y)=Γ(β)ϑαΓ(α+β)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))α+β1,(ii)(Dα,ϑ,ψa+eϑ1ϑ(ψ(s)ψ(a))(ψ(s)ψ(a))β1)(y)=ϑαΓ(β)Γ(βα)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))βα1.

    Theorem 2.1. ([30,32,33]) Suppose ϑ (0,1], Re(α)>0 and Re(β)>0. Then, if f is continuous and defined for ya, we have

    Jα,ϑ,ψa+(Jβ,ϑ,ψa+f)(y)=Jβ,ϑ,ψa+(Jα,ϑ,ψa+f)(y)=(Jα+β,ϑ,ψa+f)(y).

    Theorem 2.2. ([30,32]) Suppose ϑ (0,1], 0n<[Re(α)]+1 with nN. If fL1(a,b), then

    Dn,ϑ,ψa+(Jα,ϑ,ψa+f)(y)=(Jαn,ϑ,ψa+f)(y). (2.6)

    In particular, for n=1, by using the Leibnitz rule, we have

    D1,ϑ,ψa+(Jα,ϑ,ψa+f)(y)=α1ϑα1Γ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α2ψ(s)f(s)ds. (2.7)

    Corollary 2.1. ([30,32]) If 0<Re(β)<Re(α) and n1<Re(β)n, nN. then, we have

    Dβ,ϑ,ψa+Jα,ϑ,ψa+f(y)=Jαβ,ϑ,ψa+f(y). (2.8)

    Theorem 2.3. ([30,32]) Suppose fL1(a,b) and Re(α)>0, ϑ (0,1], n=[Re(α)]+1. Then, the following equality holds

    Dα,ϑ,ψa+Jα,ϑ,ψa+f(y)=f(y),ya. (2.9)

    Lemma 2.4. ([32]) If α>n, ϑ(0,1] and n is positive integer, then we have

    (Jα,ϑ,ψa+Dn,ϑ,ψa+f)(y)=(Dn,ϑ,ψa+Jα,ϑ,ψa+f)(y)n1k=0eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))αn+kϑαn+kΓ(α+kn+1)(Dk,ϑ,ψf)(a). (2.10)

    Theorem 2.5. ([32]) Assume that Re(α)>0, n=[Re(α)], fL1(a,b), and (Jα,ϑ,ψa+f)(y)ACn[a,b]. Then,

    (Jα,ϑ,ψa+Dα,ϑ,ψa+f)(y)=f(y)nj=1eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))αjϑαjΓ(αj+1)(Jjα,ϑ,ψa+f)(a). (2.11)

    Definition 2.4. ([30,32]) If ϑ (0,1] and αC with Re(α)0, then the generalized left Caputo proportional fractional derivative of function f with respect to function ψ is defined as

    (CDα,ϑ,ψa+f)(y)=Jnα,ϑ,ψa+(Dn,ϑ,ψf)(y)=1ϑnαΓ(nα)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))nα1ψ(s)(Dn,ϑ,ψsf)(s)ds, (2.12)

    where, n=[Re(α)]+1.

    Corollary 2.2. [32] Let αC with Re(α)>0 and ϑ(0,], n=[Re(α)]+1. If fCn[a,b] then

    (CDα,ϑ,ψa+f)(y)=Dα,ϑ,ψa+[f(y)n1k=0eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))kϑkk!(Dk,ϑ,ψa+f)(a)]. (2.13)

    Proposition 2.2. ([30,32]) If α,βC with Re(α)>0 and Re(β)>0, then for any ϑ>0 and n=[Re(α)]+1, we obtain as follows

    (CDα,ϑ,ψa+eϑ1ϑ(ψ(s)ψ(a))(ψ(s)ψ(a))β1)(y)=ϑαΓ(β)Γ(βα)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))βα1.

    For k=0,1,2,,n1, we have

    (CDα,ϑ,ψa+eϑ1ϑ(ψ(s)ψ(a))(ψ(s)ψ(a))k)(y)=0.

    In particular, (CDα,ϑ,ψa+eϑ1ϑ(ψ(s)ψ(a)))(y)=0.

    Definition 3.1. Let I=[a,b], where a<b be an interval and f, ψ Cn[a,b] be two functions such that ψ is positive, strictly increasing and ψ(y)0, for all yI. The ψ-Hilfer generalized proportional fractional derivatives (left-sided/right-sided) of order α and type β of f with respect to another function ψ are defined by

    (Dα,β,ϑ,ψa±f)(y)=(Jβ(nα),ϑ,ψa±(Dn,ϑ,ψ)J(1β)(nα),ϑ,ψa±f)(y), (3.1)

    where n1<α<n, 0β1 with nN and ϑ(0,1]. Also, Dϑ,ψf(y)=(1ϑ)f(y)+ϑf(y)ψ(y) and J is the generalized proportional fractional derivative defined in (2.5).

    In particular, if n=1, then 0<α<1 and 0β1, so (3.1) becomes,

    (Dα,β,ϑ,ψa±f)(y)=(Jβ(1α),ϑ,ψa±(D1,ϑ,ψ)J(1β)(1α),ϑ,ψa±f)(y).

    Remark 3.1. From the Definition 3.1, we can view the operator Dα,β,ϑ,ψa± as an interpolator between the Riemann–Liouville and Caputo generalized proportional fractional derivatives, respectively, since

    Dα,β,ϑ,ψa±f={Dn,ϑ,ψJnα,ϑ,ψa±f,ifβ=0,Jβ(nα),ϑ,ψa±Dn,ϑ,ψf,ifβ=1.

    Remark 3.2. In this paper we discuss our results involving ψ-Hilfer generalized proportional fractional derivatives using only one sided (left) operator. The similar procedure can be developed for the right-sided operator.

    The operator Dα,β,ϑ,ψa+ can be expressed in terms of the operators given in Definition 2.2 and Definition 2.3. This is given by the following property:

    Property 3.1. The ψ-Hilfer generalized proportional fractional derivatives Dα,β,ϑ,ψa+ is equivalent to

    (Dα,β,ϑ,ψa+f)(y)=(Jβ(nα),ϑ,ψa+(Dn,ϑ,ψ)J(1β)(nα),ϑ,ψa+f)(y)=(Jβ(nα),ϑ,ψa+Dγ,ϑ,ψa+f)(y),

    where γ=α+β(nα).

    Proof. By the Definition 3.1 of Dα,β,ϑ,ψa+ and using (2.2), (2.5), we have

    (Dα,β,ϑ,ψa+f)(y)=(Jβ(nα),ϑ,ψa+(Dn,ϑ,ψ)J(1β)(nα),ϑ,ψa+f)(y)=Jβ(nα),ϑ,ψa+Dn1,ϑ,ψ{D1,ϑ,ψϑnγΓ(nγ)×ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))nγ1ψ(s)f(s)ds},

    this gives by using (2.7)

    =Jβ(nα),ϑ,ψa+(Dn1,ϑ,ψ){1ϑnγ1Γ(nγ1)×ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))nγ2ψ(s)f(s)ds}.

    Now repeating the above process (n1) times and using (2.7), we obtain the required result.

    Theorem 3.1. Let n1<α<n, with nN, 0β1, ϑ(0,1] and γ=α+β(nα). For ηR such that η>n, then the image of the function f(y)=eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))η1 under the operator Dα,β,ϑ,ψa+ is given as

    Dα,β,ϑ,ψa+f(y)=ϑαΓ(η)Γ(ηα)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))ηα1.

    Proof. From Proposition 2.1. and (3.1), we obtain

    Dα,β,ϑ,ψa+f(y)=Jγα,ϑ,ψa+Dγ,ϑ,ψa+f(y)=Jγα,ϑ,ψa+(Dγ,ϑ,ψa+eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))η1)=ϑγΓ(η)Γ(ηγ)Jγα,ϑ,ψa+(eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))ηγ1)=ϑαΓ(η)Γ(ηα)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))ηα1.

    Lemma 3.2. Let n1<α<n, with nN 0β1, ϑ(0,1] and γ=α+β(nα). For θ>0, consider the function f(y)=eϑ1ϑ(ψ(y)ψ(a))Eα(θ(ψ(y)ψ(a))α), where Eα() is the Mittag-Leffler function with one parameter. Then,

    Dα,β,ϑ,ψa+f(y)=θϑαf(y).

    Proof. Using the definition of Mittag-Leffler function and the Theorem 3.1., we have

    Dα,β,ϑ,ψa+f(y)=Dα,β,ϑ,ψa+{eϑ1ϑ(ψ(y)ψ(a))Eα(θ(ψ(y)ψ(a))α)}=j=0θjΓ(αj+1)Dα,β,ϑ,ψa+eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))αj=θϑαeϑ1ϑ(ψ(y)ψ(a))j=1θj1(ψ(y)ψ(a))αjαΓ(α(j1)+1)=θϑαf(y).

    Property 3.2. Assume that the parameters α,β,γ satisfying the relations as

    γ=α+β(nα),n1<α,γn,0β1,

    and

    γα,γ>β,nγ<nβ(nα).

    Therefore, we consider the following weighted spaces of continuous functions on (a,b] as follows:

    Cα,βnγ,ψ[a,b]={fCnγ,ψ[a,b],Dα,β,ϑ,ψa+fCγ,ψ[a,b]},

    and

    Cγnγ,ψ[a,b]={fCnγ,ψ[a,b],Dγ,ϑ,ψa+fCnγ,ψ[a,b]}.

    Since Dα,β,ϑ,ψa+f=Jβ(nα),ϑ,ψa+Dγ,ϑ,ψa+, it follows that

    Cγnγ,ψ[a,b]Cα,βnγ,ψ[a,b].

    Lemma 3.3. Let n1γ<n, n1<α<n with nN and ϑ(0,1]. If fCγ[a,b] then

    Jα,ϑ,ψa+f(a)=limya+Jα,ϑ,ψa+f(y)=0,n1γ<α. (3.2)

    Proof. Since fCγ[a,b], then (ψ(y)ψ(a))γf(y) is continuous on [a, b] and hence

    |(ψ(y)ψ(a))γf(y)|<N,

    where y[a,b] and N>0 is a constant. Therefore,

    |Jα,ϑ,ψa+eϑ1ϑ(ψ(y)ψ(a))f(y)|<N[Jα,ϑ,ψa+eϑ1ϑ(ψ(s)ψ(a))(ψ(s)ψ(a))γ](y),

    and by Proposition 2.1, we can write

    |Jα,ϑ,ψa+eϑ1ϑ(ψ(y)ψ(a))f(y)|<N[Γ(nγ)ϑαΓ(αγ+n)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))αγ].

    As α>γ, the RHS of above equation approaches to 0 as ya+.

    Lemma 3.4. Let n1<α<n, ϑ(0,1], 0β1, with nN and γ=α+β(nα). If fCγnγ[a,b] then

    Jγ,ϑ,ψa+Dγ,ϑ,ψa+f=Jα,ϑ,ψa+Dα,β,ϑ,ψa+f,

    and

    Dγ,ϑ,ψa+Jα,ϑ,ψa+f=Dβ(nα),ϑ,ψa+f.

    Proof. Using Theorem 2.1 and Property 3.1, we can write

    Jγ,ϑ,ψa+Dγ,ϑ,ψa+f=Jγ,ϑ,ψa+(Jβ(nα),ϑ,ψa+Dα,β,ϑ,ψa+f)=Jα+β(nα),ϑ,ψa+Jβ(nα),ϑ,ψa+Dα,β,ϑ,ψa+f=Jα,ϑ,ψa+Dα,β,ϑ,ψa+f.

    Again using Definition 2.3 and Theorem 2.1, we obtain

    Dγ,ϑ,ψa+Jα,ϑ,ψa+f=Dn,ϑ,ψJnγ,ϑ,ψa+Jα,ϑ,ψa+f=Dn,ϑ,ψJnβ(nα),ϑ,ψa+f=Dβ(nα),ϑ,ψa+f.

    Lemma 3.5. Let fL1(a,b). If Dβ(nα),ϑ,ψf exists in L1(a,b), then

    Dα,β,ϑ,ψa+Jα,ϑ,ψa+f=Jβ(nα),ϑ,ψa+Dβ(nα),ϑ,ψa+f.

    Proof. From Definition 2.3., Theorem 2.1. and (3.1), we have

    Dα,β,ϑ,ψa+Jα,ϑ,ψa+f=Jβ(nα),ϑ,ψa+Dγ,ϑ,ψa+Jα,ϑ,ψa+f=Jβ(nα),ϑ,ψa+(Dn,ϑ,ψa+Jnγ,ϑ,ψa+)Jα,ϑ,ψa+f=Jβ(nα),ϑ,ψa+Dn,ϑ,ψa+Jnβ(nα),ϑ,ψa+f=Jβ(nα),ϑ,ψa+Dβ(nα),ϑ,ψa+f.

    Lemma 3.6. Assume n1<α<n for nN; ϑ(0,1], 0β1, and γ=α+β(nα). If fCγnγ[a,b] and Jnβ(nα),ϑ,ψa+fCnnγ,ψ[a,b], then Dα,β,ϑ,ψa+Jα,ϑ,ψa+f exists in (a,b] and

    Dα,β,ϑ,ψa+Jα,ϑ,ψa+f(y)=f(y),y(a,b].

    Proof. With the help of Theorem 2.5, Lemma 3.3 and Lemma 3.5, we get as follows

    (Dα,β,ϑ,ψa+Jα,ϑ,ψa+f)(y)=(Jβ(nα),ϑ,ψa+Dβ(nα),ϑ,ψa+f)(y)=f(y)nk=1eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))β(nα)kϑβ(nα)kΓ(β(nα)k+1)(Jkβ(nα),ϑ,ψa+)(a)=f(y).

    Theorem 3.7. For n1<α<n, with nN, ϑ(0,1], and 0β1. If fCn[a,b], then

    (Dα,β,ϑ,ψa+f(y)=Dnβ(nα),ϑ,ψa+[Jnγ,ϑ,ψa+f(y)n1k=0eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))kϑkk!(Dγ,ϑ,ψa+f)(a)],

    where γ=α+β(kα).

    Proof. Suppose that g(y)=J(1β)(nα),ϑ,ψa+f(y) and η=nβ(nα), then, by using Definition 2.4 and Corollary 2.2, we get from (3.1) as

    Dα,β,ϑ,ψa+f(y)=CDη,ϑ,ψa+g(y)=Dη,ϑ,ψa+[g(y)n1k=0eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))kϑkk!(Dk,ϑ,ψa+g)(a)]=Dη,ϑ,ψa+[J(1β)(nα),ϑ,ψa+f(y)n1k=0eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))kϑkk!×{Dk,ϑ,ψa+(J(1β)(kα),ϑ,ψa+f)(a)}]=Dη,ϑ,ψa+[J(1β)(nα),ϑ,ψa+f(y)n1k=0eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))kϑkk!(Dγ,ϑ,ψa+f)(a)].

    Lemma 3.8. Let n1<α<n where nN, ϑ(0,1], 0β1, with γ=α+β(nα) such that n1<γ<n. If fCγ[a,b] and Jnγ,ϑ,ψa+fCnγ,ψ[a,b], then

    Jα,ϑ,ψa+Dα,β,ϑ,ψa+f(y)=f(y)nk=1eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γkϑγkΓ(γk+1)(Jkγ,ϑ,ψa+)(a). (3.3)

    Proof. Using Theorem 2.1 and Property 3.1, we get as

    Jα,ϑ,ψa+Dα,β,ϑ,ψa+f(y)=Jα,ϑ,ψa+(Jβ(nα),ϑ,ψa+Dγ,ϑ,ψa+f)(y)=Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y).

    Now,

    Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y)=1ϑγΓ(γ)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))γ1ψ(s)Dγ,ϑ,ψa+f(s)ds=1ϑγΓ(γ)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))γ1ψ(s){Dn,ϑ,ψa+(Jnγ,ϑ,ψa+f)(s)}ds=1ϑγΓ(γ)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))γ1ψ(s)D1,ϑ,ψa+{Dn1,ϑ,ψa+(Jnγ,ϑ,ψa+f)(s)}ds.

    Using (2.2) and then integrating by parts, we obtain

    Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y)=1ϑγ1Γ(γ)[eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1{Dn1,ϑ,ψa+(Jnγ,ϑ,ψa+f)(a)}]+1ϑγ1Γ(γ1)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))γ2ψ(s){Dn1,ϑ,ψa+(Jnγ,ϑ,ψa+f)(s)}ds.

    Now, continue the above process (n1) times, we get

    Jγ,ϑ,ψa+Dγ,ϑ,ψa+f(y)=1ϑγnΓ(γn)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))γ(n1)ψ(s)Jnγ,ϑ,ψa+f(s)dsnk=1eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γkϑγkΓ(γk+1){Dnk,ϑ,ψa+(Jnγ,ϑ,ψa+f)(a)}=Jγn,ϑ,ψa+Jnγ,ϑ,ψa+f(y)nk=1eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γkϑγkΓ(γk+1){Dnk,ϑ,ψa+(Jnγ,ϑ,ψa+f)(a)}.

    Therefore, by using Theorem 2.1 and Theorem 2.2, we arrive at (3.3).

    We consider the following nonlinear ψ-Hilfer generalized proportional fractional differential equation:

    Dα,β,ϑ,ψa+ϕ(y)=f(y,ϕ(y)),yI=[a,b],b>a0, (3.4)

    where 0<α<1, 0β1 and f:I×RR is a continuous function subject to the following nonlocal initial condition

    J1γ,ϑ,ψa+ϕ(a)=mi=1μiϕ(τi),γ=α+β(1α),τi(a,b)andμiR. (3.5)

    Now, to shows the equivalence between the Cauchy problem (3.4)–(3.5) and the Volterra integral equation

    ϕ(y)=ΛϑαΓ(α)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1×mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds+1ϑαΓ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α1ψ(s)f(s,ϕ(s))ds, (3.6)

    where

    Λ=1ϑγ1Γ(γ)mi=1μieϑ1ϑ(ψ(τi)ψ(a))(ψ(τi)ψ(a))γ1.

    We state and prove the following lemma.

    Lemma 3.9. Let 0<α<1, 0β1, γ=α+β(1α), and assume that f(,ϕ())C1γ[a,b] for any ϕC1γ[a,b] where f:(a,b]×RR be a function. If ϕCγ1γ[a,b], then ϕ satisfies (3.4)–(3.5) if and only if ϕ satisfies (3.6).

    Proof. Assume that ϕCγ1γ[a,b] be a solution of (3.4)–(3.5). We prove that ϕ is also solution of (3.6). From the Lemma (3.8) with n=1, we have

    Jα,ϑ,ψa+Dα,β,ϑ,ψa+ϕ(y)=ϕ(y)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1ϑγ1Γ(γ)(J1γ,ϑ,ψa+ϕ)(a),

    which implies that

    ϕ(y)=eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1ϑγ1Γ(γ)J1γ,ϑ,ψa+ϕ(a)+1ϑαΓ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α1ψ(s)f(s,ϕ(s))ds. (3.7)

    Next, taking y=τi and then multiplying on both side by μi in (3.7), we obtain

    μiϕ(τi)=(ψ(τi)ψ(a))γ1ϑγ1Γ(γ)μieϑ1ϑ(ψ(τi)ψ(a))J1γ,ϑ,ψa+ϕ(a)+μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi),

    this implies that

    mi=1μiϕ(τi)=1ϑγ1Γ(γ)mi=1μieϑ1ϑ(ψ(τi)ψ(a))(ψ(τi)ψ(a))γ1J1γ,ϑ,ψa+ϕ(a)+1ϑαΓ(α)mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds,τi>a. (3.8)

    From the initial condition (3.5, we obtain

    J1γ,ϑ,ψa+ϕ(a)=ϑγ1Γ(γ)ϑαΓ(α)Λmi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds. (3.9)

    Thus, the required result is obtained by replacing (3.9) in (3.7), which shows that ϕ(y) satisfies (3.6).

    Conversely, suppose that ϕCγ1γ[a,b] satisfies (3.6), we show that ϕ also satisfies (3.4)–(3.5). Now by applying the operator Dγ,ϑ,ψa+ on both sides of (3.6) and then using Proposition 2.1 and Lemma 3.4, yields

    Dγ,ϑ,ψa+ϕ(y)=Dγ,ϑ,ψa+(ΛϑαΓ(α)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1×mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds)+Dγ,ϑ,ψa+(1ϑαΓ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α1ψ(s)f(s,ϕ(s))ds)=Dβ(1α),ϑ,ψa+f(s,ϕ(s))(y). (3.10)

    Since by hypothesis ϕCγ1γ[a,b] and by the definition of Cγ1γ[a,b] we have Dγ,ϑ,ψa+ϕC1γ[a,b]; so from (3.10), we have

    Dβ(1α),ϑ,ψa+f=D1,ϑ,ψJ1β(1α),ϑ,ψfC1γ,ψ[a,b].

    Also for f(,ϕ())C1γ[a,b] and from Theorem 2.3, it follows that

    J1β(1α),ϑ,ψa+fC1γ,ψ[a,b],

    this implies from the definition of Cn1γ,ψ[a,b], that

    J1β(1α),ϑ,ψa+fC11γ,ψ[a,b].

    Now, applying the operator Jβ(1α),ϑ,ψa+ on both sides of (3.10) and with the help of Theorem 2.5 and Lemma 3.3, we obtain

    Jβ(1α),ϑ,ψa+Dγ,ϑ,ψa+ϕ(y)=Jβ(1α),ϑ,ψa+Dβ(1α),ϑ,ψa+f(s,ϕ(s))(y)=f(y,ϕ(y))eϑ1ϑ(ψ(y)ψ(a))(J1β(1α),ϑ,ψa+f)(a)ϑβ(1α)1Γ(β(1α))(ψ(y)ψ(a))β(1α)1=f(y,ϕ(y)). (3.11)

    Hence,

    Dα,β,ϑ,ψa+ϕ(y)=f(y,ϕ(y)),y[a,b].

    Next, we prove that the initial condition of (3.4) also holds. To prove this, applying J1γ,ϑ,ψa+ to both sides of (3.6) and then using Proposition 2.1 and Theorem 2.1, we get

    J1γ,ϑ,ψa+ϕ(y)=J1γ,ϑ,ψa+(ΛϑαΓ(α)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1×mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds)+J1γ,ϑ,ψa+(1ϑαΓ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α1ψ(s)f(s,ϕ(s))ds)=ϑγ1Γ(γ)ϑαΓ(α)Λeϑ1ϑ(ψ(y)ψ(a))mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds+J1β(1α),ϑ,ψa+f(s,ϕ(s))(y). (3.12)

    Since 1γ<β(1α), so taking the limit as ya+ and using Lemma 3.3 in (3.12), we get

    J1γ,ϑ,ψa+ϕ(a+)=ϑγ1Γ(γ)ϑαΓ(α)Λmi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds. (3.13)

    Now, substituting y=τi and then multiplying through out by μi in (3.6),

    μiϕ(τi)=ΛϑαΓ(α)μieϑ1ϑ(ψ(τi)ψ(a))(ψ(τi)ψ(a))γ1×mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds+μiϑαΓ(α)τia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds,

    this implies that

    mi=1μiϕ(τi)=Λmi=1μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi)mi=1μieϑ1ϑ(ψ(τi)ψ(a))(ψ(τi)ψ(a))γ1+mi=1μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi)=mi=1μi(Jα,ϑ,ψa+f(s,ϕ(s)))(τi)(1+λmi=1μieϑ1ϑ(ψ(τi)ψ(a))(ψ(τi)ψ(a))γ1).

    Thus,

    mi=1μiϕ(τi)=ϑγ1Γ(γ)ϑαΓ(α)Λmi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds. (3.14)

    Hence, from (3.13) and (3.14), we have

    J1γ,ϑ,ψa+ϕ(a+)=mi=1μiϕ(τi), (3.15)

    and this completes the proof.

    Utilizing the concepts of krasnoselskii's fixed point theorem, in this subsection, we state and prove the existence of at least one solution of problem (3.4)–(3.5) in the weighted space Cα,β1γ,ψ[a,b].

    Theorem 3.10. (Krasnoselskii's fixed point theorem) Let B be a nonempty bounded closed convex subset of a Banach space X. Let N,M:BX be two continuous operators satisfying:

    (i) Nx+MyB whenever x,yB;

    (ii) N is compact and continuous;

    iii) M is contraction mapping;

    then, there exist uB such that u=Nu+Mu.

    For that firstly we called of the following assumptions:

    (C1). Let f:(a,b]×RR be a function such that fCβ(1α)1γ,ψ[a,b],for anyϕCγ1γ,ψ[a,b].

    (C2). There exists a constant K>0 such that

    |f(y,ω)f(y,¯ω)|K|ω¯ω|,for allω,¯ωRandyI.

    (C3). Assume that

    KΨ<1,

    where

    Ψ=B(γ,α)ϑαΓ(α)(|Λ|mi=1μi(ψ(τi)ψ(a))α+γ1+(ψ(b)ψ(a))α), (3.16)

    and

    B(γ,α)=10yγ1(1y)α1dy,Re(γ),Re(α)>0,

    is the beta function.

    (C4). Also let

    K<1,

    where

    =B(γ,α)ϑαΓ(α)|Λ|mi=1μi(ψ(τi)ψ(a))α+γ1. (3.17)

    Now, the following theorem yields the existence of at least one solution for the problem (3.4).

    Theorem 3.11. Let 0<α<1, 0β1 and γ=α+β(1α). Suppose that the assumptions (C1),(C2),and(C4) holds. Then the problem (3.4)–(3.5) has at least one solution in the space Cγ1γ[a,b].

    Proof. Given that χC1γ,ψ[a,b]=supyJ|(ψ(y)ψ(a))1γχ(y)| and choose εMχC1γ,ψ[a,b], where

    M=B(γ,α)ϑαΓ(α)(|Λ|mi=1μi(ψ(τi)ψ(a))α+γ1(ψ(b)ψ(a))α), (3.18)

    also consider Bε={ϕC[a,b]:ϕC1γ[a,b]ε}. Thus, for all y[a,b] consider the operators N and M defined on Bε by

    (Nϕ)(y)=1ϑαΓ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α1ψ(s)f(s,ϕ(s))ds,(Mϕ)(y)=ΛϑαΓ(α)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1×mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds.

    Step 1. For all ϕ,ˉϕBε, yields

    |(Nϕ(y)+Mˉϕ(y))(ψ(y)ψ(a))1γ|(ψ(y)ψ(a))1γϑαΓ(α)ya+(ψ(y)ψ(s))α1(ψ(s)ψ(a))γ1ψ(s)|f(s,ϕ(s))(ψ(s)ψ(a))1γ|ds+|Λ|ϑαΓ(α)mi=1μiτia+(ψ(τi)ψ(s))α1(ψ(τi)ψ(a))γ1|f(s,ˉϕ(s))(ψ(τi)ψ(a))1γ|dsχ[B(γ,α)ϑαΓ(α)|Λ|mi=1μi(ψ(τi)ψ(a))α+γ1+(γ,α)ϑαΓ(α)(ψ(b)ψ(a))α]χMϑ<,

    this implies that Nϕ+Mˉϕ Bε.

    Step 2. We show that M is a contraction. Let ϕ, ˉϕC1γ[a,b] and yI, then

    |(Mϕ(y)Mˉϕ(y))(ψ(y)ψ(a))1γ|=|Λeϑ1ϑ(ψ(y)ψ(a))mi=1μiJ1β(1α),ϑ,ψa+(f(s,ϕ(s))f(s,ˉϕ(s)))(τi)|K|Λ|ϑαΓ(α)mi=1μiτia+(ψ(τi)ψ(s))α1(ψ(s)ψ(a))γ1ψ(s)|ϕ(s)ˉϕ(s)|ds[K|Λ|ϑαΓ(α)B(γ,α)mi=1μi(ψ(τi)ψ(a))α+γ1]ϕˉϕC1γ,ψ[a,b]KϕˉϕC1γ,ψ[a,b] (3.19)

    Hence, it follows from (C4) that M is a contraction.

    Step 3. Now we verify that the operator N is continuous and compact.

    Since the function f is continuous, so the operator N is also continuous,

    Hence, for any ϕC1γ[a,b], we obtain

    NϕχB(γ,α)ϑαΓ(α)(ψ(b)ψ(a))α<.

    This shows that N is uniformly bounded on Bε. So, it remains to prove that the operator N is compact. Denoting sup(y,ϕ)I×Bε|f(y,ϕ(y))|=δ< and for any a<τ1<τ2<b,

    |(ψ(τ2)ψ(a))1γ(Nϕ(τ2))+(ψ(τ1)ψ(a))1γ(Nϕ(τ1))|=|(ψ(τ2)ψ(a))1γϑαΓ(α)τ2a+eϑ1ϑ(ψ(τ2)ψ(s))(ψ(τ2)ψ(s))α1ψ(s)f(s,ϕ(s))ds+(ψ(τ1)ψ(a))1γϑαΓ(α)τ1a+eϑ1ϑ(ψ(τ1)ψ(s))(ψ(τ1)ψ(s))α1ψ(s)f(s,ϕ(s))ds|1ϑαΓ(α)τ2a+[(ψ(τ2)ψ(a))1γ(ψ(τ2)ψ(s))α1(ψ(τ1)ψ(a))1γ(ψ(τ1)ψ(s))α1] (3.20)
    ×ψ(s)|f(s,ϕ(s))|ds+1ϑαΓ(α)τ2τ1ψ(τ1)ψ(a))1γ(ψ(τ1)ψ(s))α1ψ(s)|f(s,ϕ(s))|ds0asτ2τ1. (3.21)

    As a consequence of Arzela-Ascoli theorem N is compact on Bε. Thus, as a result of Theorem 3.10, problem (3.4)–(3.5) has at least one solution.

    In this subsection, we state and prove the uniqueness of solutions of problem (3.4)(3.5) via Banach contraction principle, .

    Theorem 3.12. (Contraction mapping principle) Let X be a Banach space, SX be closed and T:SS a contraction mapping i.e

    TzTˉzkzˉz,for allz,ˉzS,and somek(0,1).

    Then S has a unique fixed point.

    Theorem 3.13. Let 0<α<1, 0β1 and γ=α+β(1α). Suppose that the assumptions (C2)(C3) holds, then the problem (3.4)–(3.5) has a unique solution in the space Cγ1γ,ψ[a,b].

    Proof. Consider the fractional operator T:C1γ,ψ[a,b]C1γ,ψ[a,b] defined by:

    (Tϕ)(y)=ΛϑαΓ(α)eϑ1ϑ(ψ(y)ψ(a))(ψ(y)ψ(a))γ1×mi=1μiτia+eϑ1ϑ(ψ(τi)ψ(s))(ψ(τi)ψ(s))α1ψ(s)f(s,ϕ(s))ds+1ϑαΓ(α)ya+eϑ1ϑ(ψ(y)ψ(s))(ψ(y)ψ(s))α1ψ(s)f(s,ϕ(s))ds. (3.22)

    Clearly the operator T is well defined. Now for any ϕ1,ϕ2C1γ[a,b],yI and |eϑ1ϑψ(y)|<1, gives

    |((Tϕ1)(y)(Tϕ2)(y))(ψ(y)ψ(a))1γ||Λ|ϑαΓ(α)mi=1μiτia+(ψ(τi)ψ(s))α1ψ(s)|f(s,ϕ1(s))f(s,ϕ2(s))|ds+(ψ(y)ψ(a))1γϑαΓ(α)ya+(ψ(y)ψ(s))α1ψ(s)|f(s,ϕ1(s))f(s,ϕ2(s))|dsK|Λ|ϑαΓ(α)(mi=1μiτia+(ψ(τi)ψ(s))α1(ψ(s)ψ(a))γ1ψ(s)ds)ϕ1ϕ2C1γ,ψ[a,b]+KϑαΓ(α)(ψ(y)ψ(a))1γ(ya+(ψ(y)ψ(s))α1(ψ(s)ψ(a))γ1ψ(s)ds)ϕ1ϕ2C1γ,ψ[a,b]K|Λ|ϑαΓ(α)B(γ,α)mi=1μi(ψ(τi)ψ(s))α+γ1ϕ1ϕ2C1γ,ψ[a,b]+KϑαΓ(α)(ψ(b)ψ(a))αB(γ,α)ϕ1ϕ2C1γ,ψ[a,b] (3.23)

    Hence,

    (Tϕ1)(Tϕ2)C1γ,ψ[a,b]KϑαΓ(α)B(γ,α)(|Λ|mi=1μi(ψ(τi)ψ(s))α+γ1+(ψ(b)ψ(a))α)ϕ1ϕ2C1γ,ψ[a,b]KΨϕ1ϕ2C1γ,ψ[a,b] (3.24)

    Thus, from (C3) it follows that T is a contraction map. So, in view of the Theorem 3.12, there exists a unique solution of problem (3.4)–(3.5).

    Example 4.1. Consider the following fractional differential equation with generalized Hilfer's proportional fractional derivative as:

    {D12,23,45,ψ0+ϕ(y)=cosx4+190|ϕ(y)|1+|ϕ(y)|,yI=[0,1],J1γ,45,ψ0+ϕ(0)=5ϕ(13)+3ϕ(35). (4.1)

    On comparing (3.4)–(3.5) with (4.1), we obtain the values as follows

    α=12,β=23,ϑ=45,γ=56,a=0,b=1,μ1=5,μ2=3,asm=2,soτ1=13,τ2=35I.

    Also f:I×RR is a function defined by

    f(y,ϕ(y))=cosy4+190|ϕ(y)|1+|ϕ(y)|,yI.

    Clearly, f is continuous function and

    |f(y,ϕ1)f(y,ϕ2)|190|ϕ1ϕ2|.

    It follows that conditions (C1) and (C2) holds with K=190. Now, choose ψ(y)=y2+1, then it implies that ψ(y) is positive increasing and continuous function in [0,1] and ψ(y)0 for all yI. Substituting these values and after simple calculation, yields

    |Λ|=|1(45)561Γ(56)(5e(136)(19+11)561+3e(9100)(925+11)561)|0.12,

    and

    Ψ=(56,12)(45)12Γ(12){|Λ|(5(19+11)12+561+3(925+11)12+561)+(21)12}2.04,

    this implies that KΨ<1, which is (C3).

    Furthermore, 0.61>0 and K<1, which means that the assumption (C4) is also satisfied. Hence, by Theorem 3.11 and Theorem 3.13, problem (4.1) has at least one solution and hence is unique on the interval I.

    Example 4.2. Consider the ψ-Hilfer generalized proportional fractional differential equation of the form

    {D37,34,12,ψ0+ϕ(y)=y3+235|ϕ(y)|1+|ϕ(y)|,yI=[0,2],J1γ,12,ψ0+ϕ(0)=3ϕ(57)+52ϕ(1113)+32ϕ(910),τ1,τ2,τ3(0,2). (4.2)

    After doing the same steps as in Example 1 above with ψ(y)=2y3+3y2+1, we obtain the values as |Λ|0.73, Ψ14.43 and 7.23. Therefore,

    KΨ0.82<1,

    and

    K0.57<1,

    where, K=235. So, again in view of Theorem 3.11 and Theorem 3.13, the problem (4.2) has atleast one solution and hence a unique solution on I.

    Example 4.3. Let

    {D13,710,1,ψ0+ϕ(y)=sin2y40e2y(|ϕ(y)|2+|ϕ(y)|),yI=[0,4],J1γ,1,ψ0+ϕ(0)=ϕ(12)+2ϕ(32)+23ϕ(52)+42ϕ(72),τ1,τ2,τ3,τ4(0,4). (4.3)

    be the ψ-Hilfer generalized proportional fractional differential equation.

    On comparing (4.3) with (3.4), (3.5), we have the values of parameters as follows: α=13,β=710,ϑ=1,γ=45,a=0,b=4,μ1=1,μ2=2,μ3=23,μ4=42asm=4,soτ1=12,τ2=32,τ3=52,τ4=72I. In addition, let ψ(y)=y3+2y+1. Now, after performing simple computations, we obtain the estimated values as |Λ|0.26, Ψ14.06 and 6.29. Since,

    KΨ0.70<1,

    and

    K0.31<1,

    where, K=120. Thus, with the help of Theorem 3.11 and Theorem 3.13, the problem (4.3) has atleast one solution and hence a unique solution on I.

    The main aim of this paper is to propose a generalized fractional derivative Dα,β,ϑ,ψa+ with three parameters α, β and ϑ of a function with respect to another function ψ, in the setting of Hilfer generalized proportional fractional derivative. We derived some important properties of the proposed derivative and we investigated conditions for which the semigroup properties are valid. Considering the nonlinear fractional differential equations in sense of the proposed derivative, we established the relationship between the Volterra integral equations and investigated its existence and uniqueness of solutions using Krasnoselskii's and Banach fixed point theorems. Furthermore, some examples are illustrated to support the theoretical analysis. In addition, this paper improves the preceding ones as it unifies two different derivatives which has many applications in science and engineering. Besides, its of great important to note that:

    ● Setting ψ(y)=y in problem (3.4)–(3.5), the formulation reduces to Hifer generalized proportional fractional derivative studied by Idris et al. [31].

    ● Setting ϑ=1, then the derivative operator Dα,β,ϑ,ψa+ reduces to the ψ-Hilfer fractional derivative Dα,β,ψa+ studied by J.Vanterler et al. [34].

    Finally, we conclude that the results obtained are new and generalized the existence ones in the literature and this achievement can be regarded towards the improvement of qualitative aspect of fractional calculus.

    The authors express their gratitude for the positive comments received by anonymous reviewers and the editors which have improved the readability and correctness of the paper. Moreover, these works were done while the second author visits Cankaya University, Ankara, Turkey.

    The authors declare no conflict of interest.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, USA: North-Holl and Mathematics Studies, Elsevier Science Inc., 2006. doi: 10.1016/s0304-0208(06)x8001-5.
    [2] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. doi: 10.1155/S0161171203301486
    [3] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solutions and Some of Their Applications, Singapore: World Scientific Publishing Company, 2000.
    [4] R. Hilfer, Applications of Fractional Calculus in Physics, New York: Academic Press (Elsevier), 1999. doi: 10.1142/3779.
    [5] R. L. Magin, Fractional Calculus in Bioengineering, USA: Begell House Publishers Inc., 2006.
    [6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, USA: Gordon and Breach Science Publishers, 1993.
    [7] S. Salahshour, A. Ahmadian, S. Abbasbandy, D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos Solit. Fractals, 117 (2018), 84–93. doi: 10.1016/j.chaos.2018.10.002. doi: 10.1016/j.chaos.2018.10.002
    [8] M. I. Asjad, M. Aleem, A. Ahmadian, S. Salahshour, M. Ferrara, New trends of fractional modeling and heat and mass transfer investigation of (swcnts and mwcnts)-cmc based nanofluids flow over inclined plate with generalized boundary conditions, Chin. J. Phys., 66 (2020), 497–516. doi: 10.1016/j.cjph.2020.05.026. doi: 10.1016/j.cjph.2020.05.026
    [9] S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for Caputo q-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 153–158. doi: 10.1016/j.cnsns.2014.12.014. doi: 10.1016/j.cnsns.2014.12.014
    [10] A. Atangana, E. F. D. Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 1–7. doi: 10.1155/2014/107535. doi: 10.1155/2014/107535
    [11] A. Atangana, E. F. D. Goufo, A model of the groundwater flowing within a leaky aquifer using the concept of local variable order derivative, J. Nonlinear Sci. Appl., 8 (2015), 763–775. doi: 10.22436/jnsa.008.05.27. doi: 10.22436/jnsa.008.05.27
    [12] A. Atangana, J. F. G. Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 1–22. doi: 10.1140/epjp/i2018-12021-3. doi: 10.1140/epjp/i2018-12021-3
    [13] I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, I. Yusuf A mathematical model of coronavirus disease (covid-19) containing asymptomatic and symptomatic classes, Results Phys., 21 (2021), 1–15. doi: 10.1016/j.rinp.2020.103776.
    [14] M. Caputo, C. Cametti, Diffusion with memory in two cases of biological interest, J. Theor. Biol., 254 (2008), 697–703. doi: 10.1016/j.jtbi.2008.06.021. doi: 10.1016/j.jtbi.2008.06.021
    [15] M. Caputo, M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400–408. doi: 10.1016/j.jcp.2014.11.012. doi: 10.1016/j.jcp.2014.11.012
    [16] I. Ahmed, E. F. D. Gouf, A. Yusuf, P. Kumam, P. Chaipanya, K. Nonlaopon, An epidemic prediction from analysis of a combined hiv-covid-19 co-infection model via ABC-fractional operator, Alex. Eng. J., 60 (2021), 2979–2995. doi: 10.1016/j.aej.2021.01.041. doi: 10.1016/j.aej.2021.01.041
    [17] I. Ahmed, A. Yusuf, M. A. Sani, F. Jarad, W. Kumam, P. Thounthong, Analysis of a caputo hiv and malaria co-infection epidemic model, Thai J. Math., 19 (2021), 897–912.
    [18] X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., 47 (2015), 54–60. doi: 10.1016/j.aml.2015.02.024. doi: 10.1016/j.aml.2015.02.024
    [19] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [20] U. N. Katugampola, A new approach to generalized fractional derivatives, Appl. Math. Comput., 6 (2014), 1–15.
    [21] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. doi: 10.22436/jnsa.010.05.27. doi: 10.22436/jnsa.010.05.27
    [22] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002. doi: 10.1016/j.cam.2014.01.002
    [23] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137. doi: 10.13140/RG.2.1.1744.9444. doi: 10.13140/RG.2.1.1744.9444
    [24] D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Commun. Appl. Nonlinear Anal., 24 (2017), 17–48.
    [25] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solit. Fractals, 114 (2018), 478–482. doi: 10.1016/j.chaos.2018.07.032. doi: 10.1016/j.chaos.2018.07.032
    [26] J. F. G. Aguilar, A. Atangana, Fractional derivatives with the power-law and the Mittag–Leffler kernel applied to the nonlinear Baggs–Freedman model, Fractal Fract., 2 (2018), 1–10. doi: 10.3390/fractalfract2010010. doi: 10.3390/fractalfract2010010
    [27] K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Math. Model. Nat. Phenom., 13 (2018), 1–7. doi: 10.1051/mmnp/2018006. doi: 10.1051/mmnp/2018006
    [28] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 1–16. doi: 10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0
    [29] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7. doi: 10.1140/epjst/e2018-00021-7
    [30] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014. doi: 10.1515/math-2020-0014
    [31] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 1 (2020), 1–18. doi: 10.1186/s13662-020-02792-w. doi: 10.1186/s13662-020-02792-w
    [32] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 1–16. doi: 10.1186/s13662-020-02767-x. doi: 10.1186/s13662-020-02767-x
    [33] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu Inequalities by means of generalized proportional fractional integral operators with respect to another function, Math., 7 (2019), 1–16. doi: 10.3390/math7121225.
    [34] J. V. C. Sousa, E. C. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
  • This article has been cited by:

    1. Ricardo Almeida, Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives, 2022, 6, 2504-3110, 356, 10.3390/fractalfract6070356
    2. Kishor D. Kucche, Ashwini D. Mali, Arran Fernandez, Hafiz Muhammad Fahad, On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations, 2022, 163, 09600779, 112547, 10.1016/j.chaos.2022.112547
    3. Jessada Tariboon, Ayub Samadi, Sotiris K. Ntouyas, Nonlocal Boundary Value Problems for Hilfer Generalized Proportional Fractional Differential Equations, 2022, 6, 2504-3110, 154, 10.3390/fractalfract6030154
    4. Surang Sitho, Sotiris K. Ntouyas, Chayapat Sudprasert, Jessada Tariboon, Integro-Differential Boundary Conditions to the Sequential ψ1-Hilfer and ψ2-Caputo Fractional Differential Equations, 2023, 11, 2227-7390, 867, 10.3390/math11040867
    5. Sotiris Ntouyas, Bashir Ahmad, Jessada Tariboon, Nonlocal ψ-Hilfer Generalized Proportional Boundary Value Problems for Fractional Differential Equations and Inclusions, 2022, 2, 2673-9321, 377, 10.3390/foundations2020026
    6. Weerawat Sudsutad, Chatthai Thaiprayoon, Bounmy Khaminsou, Jehad Alzabut, Jutarat Kongson, A Gronwall inequality and its applications to the Cauchy-type problem under ψ-Hilfer proportional fractional operators, 2023, 2023, 1029-242X, 10.1186/s13660-023-02929-x
    7. Ravi P. Agarwal, Snezhana Hristova, Boundary Value Problem for Multi-Term Nonlinear Delay Generalized Proportional Caputo Fractional Differential Equations, 2022, 6, 2504-3110, 691, 10.3390/fractalfract6120691
    8. Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions, 2023, 8, 2473-6988, 14086, 10.3934/math.2023720
    9. Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon, Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems, 2023, 8, 2473-6988, 22009, 10.3934/math.20231122
    10. Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, Coupled Systems of Nonlinear Proportional Fractional Differential Equations of the Hilfer-Type with Multi-Point and Integro-Multi-Strip Boundary Conditions, 2023, 3, 2673-9321, 241, 10.3390/foundations3020020
    11. Bashir Ahmad, Sotiris K. Ntouyas, 2024, Chapter 1, 978-3-031-62512-1, 1, 10.1007/978-3-031-62513-8_1
    12. Najeeb Alam Khan, Oyoon Abdul Razzaq, Areeba Azam Bajwa, Muhammad Ayaz, Global dynamics and Impact of Gaussian noise intensity on the stochastic epidemic model with local fractional derivative, 2023, 98, 0031-8949, 064002, 10.1088/1402-4896/accf46
    13. Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Fractional Sequential Coupled Systems of Hilfer and Caputo Integro-Differential Equations with Non-Separated Boundary Conditions, 2024, 13, 2075-1680, 484, 10.3390/axioms13070484
    14. Aurelian Cernea, On a Hilfer generalized proportional fractional integro-differential inclusion, 2024, 58, 24058963, 401, 10.1016/j.ifacol.2024.08.224
    15. Sotiris K. Ntouyas, Phollakrit Wongsantisuk, Ayub Samadi, Jessada Tariboon, Hybrid System of Proportional Hilfer-Type Fractional Differential Equations and Nonlocal Conditions with Respect to Another Function, 2024, 12, 2227-7390, 1071, 10.3390/math12071071
    16. Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions, 2024, 9, 2473-6988, 12982, 10.3934/math.2024633
    17. Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, On generalized $(k,\psi )$-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem, 2024, 2024, 1687-2770, 10.1186/s13661-024-01891-x
    18. James Viji, Velu Muthulakshmi, Pushpendra Kumar, Oscillatory behavior of Ψ$$ \Psi $$‐Hilfer generalized proportional fractional initial value problems, 2024, 0170-4214, 10.1002/mma.10557
    19. V. M. Bulavatsky, On Some Generalizations of the Bi-Ordinal Hilfer’s Fractional Derivative, 2024, 60, 1060-0396, 541, 10.1007/s10559-024-00694-3
    20. Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan, A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system, 2024, 9, 2473-6988, 24443, 10.3934/math.20241191
    21. Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions, 2024, 12, 2227-7390, 1361, 10.3390/math12091361
    22. Feryal Aladsani, Ahmed Gamal Ibrahim, Existence and Stability of Solutions for p-Proportional ω-Weighted κ-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 475, 10.3390/fractalfract8080475
    23. Ayub Samadi, Sotiris K. Ntouyas, Asawathep Cuntavepanit, Jessada Tariboon, Hilfer proportional nonlocal fractional integro-multipoint boundary value problems, 2023, 21, 2391-5455, 10.1515/math-2023-0137
    24. V.M. Bulavatsky, ON SOME GENERALIZATIONS OF THE BI-ORDINAL HILFER’S FRACTIONAL DERIVATIVE, 2024, 10195262, 36, 10.34229/KCA2522-9664.24.4.3
    25. Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan, Qualitative results and numerical approximations of the $ (k, \psi) $-Caputo proportional fractional differential equations and applications to blood alcohol levels model, 2024, 9, 2473-6988, 34013, 10.3934/math.20241622
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3605) PDF downloads(375) Cited by(25)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog