Research article

On $ \psi $-Hilfer generalized proportional fractional operators

  • Received: 13 July 2021 Accepted: 22 September 2021 Published: 30 September 2021
  • MSC : 26A33, 34A12, 34A43, 34D20

  • In this paper, we introduce a generalized fractional operator in the setting of Hilfer fractional derivatives, the $ \psi $-Hilfer generalized proportional fractional derivative of a function with respect to another function. The proposed operator can be viewed as an interpolator between the Riemann-Liouville and Caputo generalized proportional fractional operators. The properties of the proposed operator are established under some classical and standard assumptions. As an application, we formulate a nonlinear fractional differential equation with a nonlocal initial condition and investigate its equivalence with Volterra integral equations, existence, and uniqueness of solutions. Finally, illustrative examples are given to demonstrate the theoretical results.

    Citation: Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha. On $ \psi $-Hilfer generalized proportional fractional operators[J]. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005

    Related Papers:

  • In this paper, we introduce a generalized fractional operator in the setting of Hilfer fractional derivatives, the $ \psi $-Hilfer generalized proportional fractional derivative of a function with respect to another function. The proposed operator can be viewed as an interpolator between the Riemann-Liouville and Caputo generalized proportional fractional operators. The properties of the proposed operator are established under some classical and standard assumptions. As an application, we formulate a nonlinear fractional differential equation with a nonlocal initial condition and investigate its equivalence with Volterra integral equations, existence, and uniqueness of solutions. Finally, illustrative examples are given to demonstrate the theoretical results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, USA: North-Holl and Mathematics Studies, Elsevier Science Inc., 2006. doi: 10.1016/s0304-0208(06)x8001-5.
    [2] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. doi: 10.1155/S0161171203301486
    [3] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solutions and Some of Their Applications, Singapore: World Scientific Publishing Company, 2000.
    [4] R. Hilfer, Applications of Fractional Calculus in Physics, New York: Academic Press (Elsevier), 1999. doi: 10.1142/3779.
    [5] R. L. Magin, Fractional Calculus in Bioengineering, USA: Begell House Publishers Inc., 2006.
    [6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, USA: Gordon and Breach Science Publishers, 1993.
    [7] S. Salahshour, A. Ahmadian, S. Abbasbandy, D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos Solit. Fractals, 117 (2018), 84–93. doi: 10.1016/j.chaos.2018.10.002. doi: 10.1016/j.chaos.2018.10.002
    [8] M. I. Asjad, M. Aleem, A. Ahmadian, S. Salahshour, M. Ferrara, New trends of fractional modeling and heat and mass transfer investigation of (swcnts and mwcnts)-cmc based nanofluids flow over inclined plate with generalized boundary conditions, Chin. J. Phys., 66 (2020), 497–516. doi: 10.1016/j.cjph.2020.05.026. doi: 10.1016/j.cjph.2020.05.026
    [9] S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for Caputo q-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 153–158. doi: 10.1016/j.cnsns.2014.12.014. doi: 10.1016/j.cnsns.2014.12.014
    [10] A. Atangana, E. F. D. Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 1–7. doi: 10.1155/2014/107535. doi: 10.1155/2014/107535
    [11] A. Atangana, E. F. D. Goufo, A model of the groundwater flowing within a leaky aquifer using the concept of local variable order derivative, J. Nonlinear Sci. Appl., 8 (2015), 763–775. doi: 10.22436/jnsa.008.05.27. doi: 10.22436/jnsa.008.05.27
    [12] A. Atangana, J. F. G. Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 1–22. doi: 10.1140/epjp/i2018-12021-3. doi: 10.1140/epjp/i2018-12021-3
    [13] I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, I. Yusuf A mathematical model of coronavirus disease (covid-19) containing asymptomatic and symptomatic classes, Results Phys., 21 (2021), 1–15. doi: 10.1016/j.rinp.2020.103776.
    [14] M. Caputo, C. Cametti, Diffusion with memory in two cases of biological interest, J. Theor. Biol., 254 (2008), 697–703. doi: 10.1016/j.jtbi.2008.06.021. doi: 10.1016/j.jtbi.2008.06.021
    [15] M. Caputo, M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400–408. doi: 10.1016/j.jcp.2014.11.012. doi: 10.1016/j.jcp.2014.11.012
    [16] I. Ahmed, E. F. D. Gouf, A. Yusuf, P. Kumam, P. Chaipanya, K. Nonlaopon, An epidemic prediction from analysis of a combined hiv-covid-19 co-infection model via ABC-fractional operator, Alex. Eng. J., 60 (2021), 2979–2995. doi: 10.1016/j.aej.2021.01.041. doi: 10.1016/j.aej.2021.01.041
    [17] I. Ahmed, A. Yusuf, M. A. Sani, F. Jarad, W. Kumam, P. Thounthong, Analysis of a caputo hiv and malaria co-infection epidemic model, Thai J. Math., 19 (2021), 897–912.
    [18] X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., 47 (2015), 54–60. doi: 10.1016/j.aml.2015.02.024. doi: 10.1016/j.aml.2015.02.024
    [19] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [20] U. N. Katugampola, A new approach to generalized fractional derivatives, Appl. Math. Comput., 6 (2014), 1–15.
    [21] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. doi: 10.22436/jnsa.010.05.27. doi: 10.22436/jnsa.010.05.27
    [22] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002. doi: 10.1016/j.cam.2014.01.002
    [23] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137. doi: 10.13140/RG.2.1.1744.9444. doi: 10.13140/RG.2.1.1744.9444
    [24] D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Commun. Appl. Nonlinear Anal., 24 (2017), 17–48.
    [25] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solit. Fractals, 114 (2018), 478–482. doi: 10.1016/j.chaos.2018.07.032. doi: 10.1016/j.chaos.2018.07.032
    [26] J. F. G. Aguilar, A. Atangana, Fractional derivatives with the power-law and the Mittag–Leffler kernel applied to the nonlinear Baggs–Freedman model, Fractal Fract., 2 (2018), 1–10. doi: 10.3390/fractalfract2010010. doi: 10.3390/fractalfract2010010
    [27] K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Math. Model. Nat. Phenom., 13 (2018), 1–7. doi: 10.1051/mmnp/2018006. doi: 10.1051/mmnp/2018006
    [28] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 1–16. doi: 10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0
    [29] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7. doi: 10.1140/epjst/e2018-00021-7
    [30] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014. doi: 10.1515/math-2020-0014
    [31] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 1 (2020), 1–18. doi: 10.1186/s13662-020-02792-w. doi: 10.1186/s13662-020-02792-w
    [32] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 1–16. doi: 10.1186/s13662-020-02767-x. doi: 10.1186/s13662-020-02767-x
    [33] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu Inequalities by means of generalized proportional fractional integral operators with respect to another function, Math., 7 (2019), 1–16. doi: 10.3390/math7121225.
    [34] J. V. C. Sousa, E. C. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3120) PDF downloads(364) Cited by(24)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog