Ecological aquaculture represents an important approach for maintaining sustainable economic income. Unreasonable aquaculture may result in resource wastage and population extinction. Human activities and behaviors such as predation among populations make the ecosystem very complex. Thus, seeking an appropriate intervention strategy is a favorable measure to overcome this situation. In this paper, we present a novel ecological aquaculture management model with stage-structure and impulsive nonlinear releasing larval predators. The sufficient conditions for the prey and the predators coexistence as well as global stability of a prey-vanishing periodic solution were obtained using the Floquet theorem and other analytic tactics. Subsequently, we verified our findings using mathematical software. We also found a system with a nonlinear impulse exhibiting rich dynamical properties by drawing bifurcation parameter graphs. These findings provide a firm theoretical basis for managing ecological aquaculture.
Citation: Lin Wu, Jianjun Jiao, Xiangjun Dai, Zeli Zhou. Dynamical analysis of an ecological aquaculture management model with stage-structure and nonlinear impulsive releases for larval predators[J]. AIMS Mathematics, 2024, 9(10): 29053-29075. doi: 10.3934/math.20241410
Ecological aquaculture represents an important approach for maintaining sustainable economic income. Unreasonable aquaculture may result in resource wastage and population extinction. Human activities and behaviors such as predation among populations make the ecosystem very complex. Thus, seeking an appropriate intervention strategy is a favorable measure to overcome this situation. In this paper, we present a novel ecological aquaculture management model with stage-structure and impulsive nonlinear releasing larval predators. The sufficient conditions for the prey and the predators coexistence as well as global stability of a prey-vanishing periodic solution were obtained using the Floquet theorem and other analytic tactics. Subsequently, we verified our findings using mathematical software. We also found a system with a nonlinear impulse exhibiting rich dynamical properties by drawing bifurcation parameter graphs. These findings provide a firm theoretical basis for managing ecological aquaculture.
[1] | A. J. Lynch, S. J. Cooke, A. M. Deines, S. D. Bower, D. B. Bunnell, I. G. Cowx, et al., The social, economic, and environmental importance of inland fish and fisheries, Environ. Rev., 24 (2016), 115–121. https://doi.org/10.1139/er-2015-0064 doi: 10.1139/er-2015-0064 |
[2] | J. B. C. Jackson, M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, et al., Historical overfishing and the recent collapse of coastal ecosystems, S cience, 293 (2001), 629–637. https://doi.org/10.1126/science.1059199 doi: 10.1126/science.1059199 |
[3] | M. Scheffer, S. Carpenter, B. de Young, Cascading effects of overfishing marine systems, Trends Ecol. Evol., 20 (2005), 579–581. https://doi.org/10.1016/j.tree.2005.08.018 doi: 10.1016/j.tree.2005.08.018 |
[4] | M. Coll, S. Libralato, S. Tudela, I. Palomera, F. Pranovi, Ecosystem overfishing in the ocean, PLoS One, 3 (2008), e3881. https://doi.org/10.1371/journal.pone.0003881 doi: 10.1371/journal.pone.0003881 |
[5] | D. Xiao, W. Li, M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14–29. https://doi.org/10.1016/j.jmaa.2005.11.048 doi: 10.1016/j.jmaa.2005.11.048 |
[6] | X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, J. Biol. Dyn., 12 (2018), 342–374. https://doi.org/10.1080/17513758.2018.1454515 doi: 10.1080/17513758.2018.1454515 |
[7] | L. Ji, C. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal., 11 (2010), 2285–2295. https://doi.org/10.1016/j.nonrwa.2009.07.003 doi: 10.1016/j.nonrwa.2009.07.003 |
[8] | M. G. Mortuja, M. K. Chaube, S. Kumar, Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response, Chaos Solitons Fract., 148 (2021), 111071. https://doi.org/10.1016/j.chaos.2021.111071 doi: 10.1016/j.chaos.2021.111071 |
[9] | C. Azar, J. Holmberg, K. Lindgren, Stability analysis of harvesting in a predator-prey model, J. Theoret. Biol., 174 (1995), 13–19. https://doi.org/10.1006/jtbi.1995.0076 doi: 10.1006/jtbi.1995.0076 |
[10] | D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis–Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010 |
[11] | F. Brauer, A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting, J. Math. Biology., 8 (1979), 55–71. https://doi.org/10.1007/bf00280586 doi: 10.1007/bf00280586 |
[12] | S. Mondal, G. P. Samanta, Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator, Phys. A, 534 (2019), 122301. https://doi.org/10.1016/j.physa.2019.122301 doi: 10.1016/j.physa.2019.122301 |
[13] | X. Wang, Y. Wang, Novel dynamics of a predator-prey system with harvesting of the predator guided by its population, Appl. Math. Model., 42 (2017), 636–654. https://doi.org/10.1016/j.apm.2016.10.006 doi: 10.1016/j.apm.2016.10.006 |
[14] | K. Belkhodja, A. Moussaoui, M. A. A. Alaoui, Optimal harvesting and stability for a prey–predator model, Nonlinear Anal. Real World Appl., 39 (2018), 321–336. https://doi.org/10.1016/j.nonrwa.2017.07.004 doi: 10.1016/j.nonrwa.2017.07.004 |
[15] | K. Pusawidjayanti, A. Suryanto, R. B. E. Wibowo, Dynamics of a predator-prey model incorporating prey refuge, predator infection and harvesting, Appl. Math. Sci, 9 (2015), 3751–3760. https://doi.org/10.12988/ams.2015.54340 doi: 10.12988/ams.2015.54340 |
[16] | T. J. Bowden, K. D. Thompson, A. L. Morgan, R. M. L. Gratacap, S. Nikoskelainen, Seasonal variation and the immune response: A fish perspective, Fish Shellfish Immun., 22 (2007), 695–706. https://doi.org/10.1016/j.fsi.2006.08.016 doi: 10.1016/j.fsi.2006.08.016 |
[17] | V. Lugert, G. Thaller, J. Tetens, C. Schulz, J. Krieter, A review on fish growth calculation: Multiple functions in fish production and their specific application, Rev. Aquacult., 8 (2016), 30–42. https://doi.org/10.1111/raq.12071 doi: 10.1111/raq.12071 |
[18] | K. L. Pope, D. W. Willis, Seasonal influences on freshwater fisheries sampling data, Rev. Fish. Sci., 4 (1996), 57–73. https://doi.org/10.1080/10641269609388578 doi: 10.1080/10641269609388578 |
[19] | E. D. Macusi, I. D. G. Morales, E. S. Macusi, A. Pancho, L. N. Digal, Impact of closed fishing season on supply, catch, price and the fisheries market chain, Mar. Policy, 138 (2022), 105008. https://doi.org/10.1016/j.marpol.2022.105008 doi: 10.1016/j.marpol.2022.105008 |
[20] | Y. Meng, Z. Lin, M. Pedersen, Effects of impulsive harvesting and an evolving domain in a diffusive logistic model, Nonlinearity, 34 (2021), 7005. |
[21] | J. Jiao, S. Cai, L. Li, Dynamics of a periodic switched predator-prey system with impulsive harvesting and hibernation of prey population, J. Franklin Inst., 353 (2016), 3818–3834. https://doi.org/10.1016/j.jfranklin.2016.06.035 doi: 10.1016/j.jfranklin.2016.06.035 |
[22] | X. Dai, J. Jiao, Q. Quan, A. Zhou, Dynamics of a predator-prey system with sublethal effects of pesticides on pests and natural enemies, Int. J. Biomath., 17 (2024), 2350007. https://doi.org/10.1142/s1793524523500079 doi: 10.1142/s1793524523500079 |
[23] | H. Xu, Z. Lin, C. A. Santos, Spatial dynamics of a juvenile-adult model with impulsive harvesting and evolving domain, Commun. Nonlinear Sci. Numer. Simul., 122 (2023), 107262. https://doi.org/10.1016/j.cnsns.2023.107262 doi: 10.1016/j.cnsns.2023.107262 |
[24] | Q. Quan, X. Dai, J. Jiao, Dynamics of a predator-prey model with impulsive diffusion and transient/nontransient impulsive harvesting, Mathematics, 11 (2023), 3254. https://doi.org/10.3390/math11143254 doi: 10.3390/math11143254 |
[25] | C. Li, S. Tang, Analyzing a generalized pest-natural enemy model with nonlinear impulsive control, Open Math., 16 (2018), 1390–1411. https://doi.org/10.1515/math-2018-0114 doi: 10.1515/math-2018-0114 |
[26] | S. Dong, Y. Dong, L. Cao, J. Verreth, Y. Olsen, W. Liu, et al., Optimization of aquaculture sustainability through ecological intensification in China, Rev. Aquacult., 14 (2022), 1249–1259. https://doi.org/10.1111/raq.12648 doi: 10.1111/raq.12648 |
[27] | H. E. Froehlich, R. R. Gentry, B. S. Halpern, Conservation aquaculture: Shifting the narrative and paradigm of aquaculture's role in resource management, Biol. Conserv., 215 (2017), 162–168. https://doi.org/10.1016/j.biocon.2017.09.012 doi: 10.1016/j.biocon.2017.09.012 |
[28] | V. Lakshmikantham, Theory of impulsive differential equations, World Scientific, 1989. http://dx.doi.org/10.1142/0906 |