
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(1): 826–838.
DOI: 10.3934/math.2025039
Received: 05 November 2024
Revised: 23 December 2024
Accepted: 06 January 2025
Published: 14 January 2025

Research article

Multiple solutions for a singular fractional Kirchhoff problem with variable
exponents

Najla Alghamdi1,* and Abdeljabbar Ghanmi2

1 Department of Mathematics and Statistics, Faculty of Sciences, University of Jeddah, Jeddah, Saudi
Arabia

2 ENIT-LAMSIN, BP. 37, 1002 Tunis-Belvédère, Tunis El Manar university, Tunis, Tunisia

* Correspondence: Email: nmalghamdi1@uj.edu.sa.

Abstract: In this work, we studied the multiplicity of solutions for a Kirchhoff problem involving the
κ(ξ)-fractional derivative and critical exponent. More precisely, we transformed the studied problem
into an integral equation that lead to the study of the critical point for the energy functional; after that,
we presented and proved some properties related to this functional and demonstrated that the energy
functional satisfied the geometry of the mountain pass geometry. Finally, by applying the mountain
pass theorem for the even functional, we proved that this functional admitted infinitely many critical
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1. Introduction

In this paper, we are concerned with the existence of infinitely many solutions for the following
fractional problem:

−S

(∫
Λ

L$,ε;ψ(ξ, ϕ) dξ
)

HD$,ε;ψ
T

(
L$,ε;ψ(ξ, ϕ)

)
= a(ξ)h(ϕ), in Λ,

ϕ = 0 on ∂Λ,

(1.1)

where Λ = (0,T ) × (0,T ),

L$,ε;ψ(ξ, ϕ) =
∣∣∣HD$,ε;ψ

0+
ϕ
∣∣∣κ1(ξ)−2 HD$,ε;ψ

0+
ϕ + µ(ξ)

∣∣∣HD$,ε;ψ
0+

ϕ
∣∣∣κ2(ξ)−2 HD$,ε;ψ

0+
ϕ, (1.2)
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L$,ε;ψ(ξ, ϕ) =
1

κ1(ξ)

∣∣∣HD$,ε;ψ
0+

ϕ
∣∣∣κ1(ξ)

+
µ(ξ)
κ2(ξ)

∣∣∣HD$,ε;ψ
0+

ϕ
∣∣∣κ2(ξ)

, (1.3)

and HD$,ε;ψ
T (·) and HD$,ε;ψ

0+
(·) are ψ-Hilfer fractional partial derivatives of order 1

κ+
1
< $ < 1 and type

0 ≤ ν ≤ 1. κ1, κ2 ∈ C+(Λ̄), 1 < κ−1 = inf
Λ
κ1(ξ) ≤ κ+

2 = sup
Λ

κ2(ξ) < 2.

S, h and a are functions that satisfy appropriate conditions which will be fixed later.
We note that fractional calculus can model several phenomena in sciences and engineering; one can

see the works of [1] (application in mechanics), [2] (application in engineering), [3] (application in
viscoelasticity), [4] (application in dynamical systems), and [5] (application in modeling blood alcohol
concentration), and other applications can be found in [6–8]. Due to the importance of fractional
calculus in several fields, many researchers have concentrated on the development of new fractional
operators. Recently, there have many papers dealing with the ψ-Hilifer fractional derivative and p-
Laplacian operator, we cite for instance the papers of Alsaedi and Ghanmi [9] (Variational method
combined with different versions of the mountain pass theorem), Ezati and Nymouradi [10] (genus
properties in critical point theory), Venterler et al. [12–14] (Nehari manifold in fractional Sobolev
spaces), and the references [15–18] (existence and stability of solutions). The first important point
in our study is that we consider a Kirchhoff problem with critical exponent. We also note that
Kirchhoff’s problem was introduced by Kirchhoff [19]; it is noted that Kirchhoff-type problems
generally refer to mathematical models related to the analysis of electrical circuits using Kirchhoff’s
laws, which are, in fact, fundamental principles in circuit theory. The second important point in our
study is that we consider a fractional Kirchhoff problem with a critical exponent. It is noted that to
manipulate the critical growth, we use the concentration-compactness principle which is introduced by
Lions [20]; this principle is particularly crucial when considering equations involving critical exponent.
For a more comprehensive understanding of this topic, we suggest referring to the references of
Azorero and Alonso [21] (multiplicity of solutions for an elliptic problem with a critical exponent
or nonsymmetric term), Bahri and Lions [22] (compactness issues of the variational formulation for
a nonlinear Maxwell-Dirac system), Ghanmi et al. [23] (combination of variational techniques with
a truncation argument for a singular fractional Kirchhoff problem), and Rabinowitz [24] (Minimax
methods in critical point theory).

The study of problems involving variable exponents has been extensively studied by several
authors; we cite, for instance, the papers of Dai et al. [25, 26] (combination of a direct
variational approach and the theory of the variable exponent Sobolev spaces), Ambrosio and
Isernia [27] (combination of penalization techniques with Ljusternik-Schnirelmann theory), and
Fiscella and Pucci [28] (combination of the variational method with the mountain pass theorem). The
p(ξ)-Laplacian possesses more complex nonlinearity which raises some of the essential difficulties;
for example, in [29], the authors consider the Kirchhoff’s fractional κ(ξ)-Laplacian problem without
critical exponent: S

(∫
Λ

1
κ(ξ)

∣∣∣HD$,ε;ψ
0+

ϕ
∣∣∣κ(ξ) dξ

)
L$,ε;ψ
κ(ξ) u = }(ξ, ϕ), in Λ = [0,T ] × [0,T ],

u = 0, on ∂Λ.
(P2)

The authors employed variational methods, the mountain pass theorem, and the Fountain theorem to
establish the existence and multiplicity of solutions for problem (P2).
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Motivated by the results presented in reference [29], our paper aims to contribute a study of a
more general problem; precisely, we consider a double-phase Kirchhoff problem involving critical
nonlinearity. To manipulate the critical exponent, we use a concentration-compactness principle. We
note that the double-phase problem (1.1) is inspired by various models in mathematical physics. For
example, consider the fourth-order relativistic operator

ϕ 7−→ div
(
|∇ϕ|2

(1 − |∇ϕ|4)
3
4

∇ϕ

)
,

which characterizes a wide range of phenomena in relativistic quantum mechanics. If we apply Taylor’s
formula to the function y2(1−y4)−

3
4 , then we can approximate the last operator by the following double-

phase operator

ϕ 7−→ ∆4ϕ +
3
4

∆8ϕ.

Our study provides a generalization and improvement of other aforementioned references in the
literature. More precisely, in the case when µ ≡ 0; we obtain the result of Sousa et al. [29]. Moreover,
if κ1 = κ2 = p constant, then we obtain the result of Nouf et al. [11].

To prove the existing result of this work, we introduce in the next section (Section 2) some results on
the functional space and we present the main tool used in the proof (symmetric version of the mountain
pass theorem); in Section 3, we present and prove the main result of this work.

2. Preliminaries

In this section, we begin by presenting a functional space and some of its properties. After that, we
recall some results about the modular of this space, and we finish this part by recalling the main tool
for proving the main result of this work. Since we study a double-phase problem, we introduced the
functionM, defined on Λ × [0,∞[, by:

M(ξ, t) = tκ1(ξ) + µ(ξ)tκ2(ξ).

Associated to the functionM , we define the following modular:

ρM(ϕ) =

∫
Λ

M(ξ, |ϕ|) dξ =

∫
Λ

|ϕ|κ1(ξ) + µ(ξ)|ϕ|κ2(ξ) dξ.

Next, we denote by B(Λ,R) the set of all Borel measurable functions, and we define the following
functional space:

LM(Λ) = {ϕ ∈ B(Λ,R) : ρM(ϕ) < ∞} .

We endow the last space with the following norm:

|ϕ|LM(Λ) = inf
{
$ > 0 : ρM(

ϕ

$
) ≤ 1

}
.

We recall from [13] that
(
LM(Λ), | · |LM(Λ)

)
is a Banach space, which generalizes the Lebegue space

with variable exponent; precisely, if µ(.) ≡ 0, then the space LM(Λ) is reduced to the space Lκ1(.)(Λ).
Also, we recall from [13] that the fractional Sobolev space is defined as follows:

H
$,ε;µ
M

(Λ) =
{
ϕ ∈ LM(Λ) :

∣∣∣D$,ε;µ
0+

ϕ
∣∣∣ ∈ LM(Λ)

}
AIMS Mathematics Volume 10, Issue 1, 826–838.
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with the norm
‖ϕ‖ = ‖ϕ‖LM(Λ) +

∥∥∥D$,ε;µ
0+

ϕ
∥∥∥

LM(Λ)
.

Denote by H$,ε;µ
M,0 (Λ) the subspace of H$,ε;µ

M
(Λ) defined as the closure of C∞0 (Λ) with respect to the

norm ‖.‖.
In the rest of this paper, we adopt the following notations: the letter j will denote one of the

integers 1 or 2, θ j and T j are nonnegative constants such that θ j < T j, $ j ∈ (0, 1), I j = [θ j,T j].
Next, we put Λ = I1 × I2, in the case when θ1 = θ2 = 0 and T1 = T2 = T , and we obtain the set Λ

introduced in our problem. Let µ be a positive function such that µ′(ξ j) > 0 for all ξ j ∈ [θ j,T j], and let
$ = ($1, $2) with 0 < $ j ≤ 1), and ε = (ε1, ε2) with 0 ≤ ν j ≤ 1. We recall from [12] the following
definition of the µ-Hilfer fractional derivatives.

D$,ε;µ
θ ϕ(ξ1, ξ2) = Iε(1−$),µ

θ

(
1

µ′(ξ1)µ′(ξ2)

(
∂2

∂ξ1∂ξ2

))
I(1−ε)(1−$),µ
θ ϕ(ξ1, ξ2), (2.1)

and

D$,ε;µ
T ϕ(ξ1, ξ2) = Iε(1−$),µ

T

(
−

1
µ′(ξ1)µ′(ξ2)

(
∂2

∂ξ1∂ξ2

))
I(1−ε)(1−$),µ

T ϕ(ξ1, ξ2), (2.2)

where Iα;µ
θ and Iα;µ

T are the µ-Riemann-Liouville fractional partial integrals (see also [12]). For
simplicity, in the rest of this work, D$,ε;µ

θ ϕ(ξ1, ξ2), D$,ε;µ
T ϕ(ξ1, ξ2), and I$;µ

θ ϕ(ξ1, ξ2) will be denoted,
respectively, by D$,ε;µ

θ ϕ, D$,ε;µ
T ϕ, and I$;µ

θ ϕ.
To manipulate any minimizing sequence for the energy functional, we need some properties of the

functional space; precisely, we have the following result.

Proposition 2.1. [29] LM(Λ) and H$,ε;µ
M,0 (Λ) are reflexive Banach spaces which are, in addition,

separable.

To transform the main equation in the integral equation defined by the functional energy, we need to
use the Hölder inequality which holds in our functional space. Precisely, we have the following result.

Proposition 2.2. [29–31]

(1) For each ϕ1 ∈ L
κ(ξ)(Λ) and ϕ2 ∈ L

κ′(ξ)(Λ) (with 1
κ(ξ) + 1

κ′(ξ) = 1), we have∣∣∣∣∣∫
Λ

ϕ1ϕ2 dξ
∣∣∣∣∣ ≤ (

1
κ−

+
1

(κ′)−

)
|ϕ1|κ(ξ)|ϕ2|κ′ (ξ).

(2) For each p1 and p2 in C+(Λ) with p1 ≤ p2 inΛ, we have a continuous embedding

Lp2(ξ)(Λ) ↪→ Lp1(ξ)(Λ),

where C+(Λ) =
{
r ∈ C(Λ) : 1 < r− ≤ r+ < ∞

}
.

Since we shall work in the space H$,ε;µ
M,0 (Λ), we use an equivalent norm, so we need to present the

following important inequality.

Proposition 2.3. [29, 32] For any ϕ ∈ H$,ε;µ
κ(ξ) (Λ), ∃ c > 0 such that

‖ϕ‖Lκ(ξ)(Λ) ≤ c
∥∥∥D$,ε;µ

0+
ϕ
∥∥∥
Lκ(ξ)(Λ)

.
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From the last inequality, we can consider the spaceH$,ε;µ
M,0 (Λ) with the following norm:

‖ϕ‖ =
∥∥∥D$,ε;µ

0+
ϕ
∥∥∥
LM(Λ)

.

The following proposition highlights further properties related to the functional space.

Proposition 2.4. [29] If q ∈ C+(Λ) with q(ξ) < κ∗(ξ) for all ξ ∈ Λ, then the embedding fromH$,ε;µ
M

(Λ)
into Lq(ξ)(Λ) is continuous; moreover, this embedding is compact. Here, κ∗(ξ) is defined as follows:

κ∗(ξ) =


2κ(ξ)

2−$κ(ξ) , if κ(ξ) < 2,

∞, if κ(ξ) ≥ 2.

For simplicity, let us denote

Γ$,ε(ϕ) =

∫
Λ

∣∣∣HD$,ε;ψ
0+

ϕ
∣∣∣κ1(ξ)

+ µ(ξ)
∣∣∣HD$,ε;ψ

0+
ϕ
∣∣∣κ2(ξ)

dξ.

The following proposition provides important properties of the functional Γ$,ε:

Proposition 2.5. [29] For each ϕ ∈ H$,ε;µ
M,0 (Λ), the following statements hold:

(1) Γ$,ε(ϕ) < 1 (= 1, > 1) ⇐⇒ ‖ϕ‖ < 1 (= 1, > 1).
(2) min

(
‖ϕ‖κ

−
1 , ‖ϕ‖κ

+
1

)
≤ Γ$,ε(ϕ) ≤ max

(
‖ϕ‖κ

−
1 , ‖ϕ‖κ

+
1

)
.

The next proposition provides properties of the functional ρM:

Proposition 2.6. [30, 33] For all ϕ ∈ LM(Λ), we have

(1) |ϕ|LM(Λ) < 1 (= 1, > 1) ⇐⇒ ρM(ϕ) < 1 (= 1, > 1).

(2) min
(
|ϕ|

κ−2
LM(Λ)

, |ϕ|
κ+

2

LM(Λ)

)
≤ ρM(ϕ) ≤ max

(
|ϕ|

κ−2
LM(Λ)

, |ϕ|
κ+

2

LM(Λ)

)
.

The next proposition relates the norms of a function in variable exponent Lebesgue spaces with its
pointwise behavior.

Proposition 2.7. [30, 33] Let p be a measurable function in L∞(RN), and let q be a measurable
function such that for each ξ ∈ RN , we have κ(ξ)q(ξ) ≥ 1, then for each nontrivial function ϕ in
Lq(ξ)(RN), we have

min
(
|ϕ|

q−

κ(ξ)q(ξ), |ϕ|
q+

κ(ξ)q(ξ)

)
≤ ||ϕ|κ(ξ)|q(ξ) ≤ max

(
|ϕ|

q−

κ(ξ)q(ξ), |ϕ|
q+

κ(ξ)q(ξ)

)
.

Theorem 2.1. (Symmetric mountain pass theorem [34]) Let X be an infinite dimensional real Banach
space. Let J ∈ C1(X,R), satisfying the following conditions:

(1) J is an even functional such that J(0) = 0.
(2) J satisfies the Palais-Smale condition.
(3) There exist positive constants η and ρ, such that if ||u|| = η, then, J(u) ≥ ρ.
(4) For each finite dimensional subspace X1 ⊂ X, the set {u ∈ X1,J(u) ≥ 0} is bounded in X. Then,
J has an unbounded sequence of critical values.

AIMS Mathematics Volume 10, Issue 1, 826–838.
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3. Main results

In this section, we present and prove the main result of this work. For this, we assume the following
hypotheses:

(C1) We assume that the functions a and h are measurable for which there is a positive constant c1, and
two functions P, q in C+(Λ) such that for each (ξ, ϕ) ∈ Λ × R, we have

a(ξ) ∈ L
P(ξ)

P(ξ)−q(ξ) (Λ), h(ϕ) ≤ c1 |ϕ|
q(ξ)−1 ,

and
κ+

2 < q(ξ) < P(ξ) < κ∗2(ξ). (3.1)

(C2) We assume that for some positive constants m0,M0, we have

m0 ≤ S(t) ≤ M0, ∀ t ≥ 0.

(C3) We assume that for any t ≥ 0, we have

Ŝ(t) :=
∫ t

0
S(s) ds ≥ (1 − ω)S(t)t,

for some satisfying 0 < ω ≤ 1 − 1
κ+

1
.

(C4) There exist M1 > 0 and θ > κ+
2

1−ω , such that for any ξ ∈ Λ, and any |ϕ| ≥ M1, we have

0 < θa(ξ)H(ϕ) := θa(ξ)
∫ ϕ

0
h(s) ds ≤ a(ξ)h(ϕ)ϕ.

(C5) We have
h(−ϕ) = −h(ϕ), ∀ϕ ∈ [0,T ].

We note that, if we define a function h by:

h(ϕ) = |ϕ|q(ξ)−2ϕ,

with q− > κ+
2

1−ω , and a is a positive function in L
P(ξ)

P(ξ)−q(ξ) (Λ), then assumptions (C1), (C4), and (C5) hold.
Next, we define a weak solution related to problem (1.1).

Definition 3.1. A function ϕ ∈ H$,ε;ψ
M,0 (Λ) is a weak solution for the Eq (1.1) if, for any v ∈ X, we have

S

(∫
Λ

L$,ε;ψ(ξ, ϕ)dξ
) ∫

Λ

L$,ε;ψ(ξ, ϕ) HD$,ε;ψ
0+

v(ξ) dξ =

∫
Λ

a(ξ)h(ϕ)v(ξ) dξ.

The main result of this work is the following theorem.

Theorem 3.1. Under the hypotheses (C1)–(C5), the problem (1.1) admits infinitely many weak
solutions.
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To prove the last theorem, we begin by defining onH$,ε;ψ
M,0 (Λ) the functional J by:

I(ϕ) = L(ϕ) − J(ϕ),

where L and J are defined onH$,ε;ψ
M,0 (Λ) by

L(ϕ) = Ŝ

(∫
Λ

L$,ε;ψ(ξ, ϕ(ξ))dξ
)
,

and
J(ϕ) =

∫
Λ

a(ξ)H(ϕ(ξ)) dξ.

It is proved in [33] that the functional L is of class C1, and for each (ϕ, v) ∈
(
H

$,ε;ψ
M,0 (Λ)

)2
, we have

< L
′

(ϕ), v > = S

(∫
Λ

L$,ε;ψ(ξ, ϕ)dξ
) ∫

Λ

L$,ε;ψ(ξ, ϕ) HD$,ε;ψ
0+

v dξ

:= S

(∫
Λ

L$,ε;ψ(ξ, ϕ)dξ
)
< L

′

(ϕ), v > .

The functional L
′

satisfies the following properties.

Proposition 3.1. [33] Then, the following statements hold:

(1) The operator L
′

: H$,ε;ψ
M,0 (Λ)→ H$,ε;ψ

M,0 (Λ)∗ is continuous, strictly monotone, and bounded.
(2) The mapping L

′

is of type (S +), which means that any sequence ϕn that converges weakly to ϕ in
L
′

: H$,ε;ψ
M,0 (Λ) and satisfies in addition,

lim sup
n→∞

< L
′

(ϕn) − L
′

(ϕ), ϕn − ϕ >≤ 0,

converges strongly to ϕ inH$,ε;ψ
M,0 (Λ).

Remark 3.1. It can be shown using (C1), Propositions 2.5 and 2.7, and the Hölder inequality that
J ∈ C1(L

′

: H$,ε;ψ
M,0 (Λ),R). Furthermore, for any (ϕ, v) ∈

(
H

$,ε;ψ
M,0 (Λ)

)2
, we have

< J
′

(ϕ), v >=

∫
Λ

a(ξ)h(ϕ(ξ))v(ξ) dξ.

So, Proposition 3.1 and Remark 3.1 imply that J ∈ C1(H$,ε;ψ
M,0 (Λ),R). Moreover, for each (ϕ, v) ∈(

H
$,ε;ψ
M,0 (Λ)

)2
, we get

< J ′(ϕ), v > = S

(∫
Λ

L$,ε;ψ(ξ, ϕ)dξ
)
< L

′

(ϕ), v > −
∫

Λ

a(ξ)h($(ξ))v(ξ) dξ.

By the last equation, we deduce that weak solutions of system (1.1) are critical points of J .
Next, we present an important property of the function in the variational method.
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Lemma 3.1. Assume that (C1)–(C3) are satisfied. Then, there exist positive constants η and ρ, such
that if ||ϕ|| = η, then, J(ϕ) ≥ ρ,

Proof. Let ϕ ∈ X, with ‖ϕ‖ < 1. Under the hypothesis (C1), we have for all ξ ∈ Ω,

H(ϕ) ≤
c1

q(ξ)
|ϕ|q(ξ). (3.2)

Since 1 < p(ξ) < κ∗2(ξ), and according to Proposition 2.4, we obtain the existence of c3 > 0, such that

|ϕ|Lp(ξ)(Ω) ≤ c3 ‖ϕ‖ . (3.3)

On the other hand, under hypotheses (C2) and (C3) and by Proposition 2.5, we get,

L(ϕ) = Ŝ

(∫
Ω

L(ξ, ϕ)dξ
)

≥ (1 − ω)S
(∫

Ω

L(ξ, ϕ)dξ
) ∫

Ω

L(ξ, ϕ)dξ

≥
(1 − ω)m0

κ+
2

Γ(ϕ) ≥
(1 − ω)m0

κ+
2

||ϕ||κ
+
2 . (3.4)

Now, by (3.2)–(3.4) and using Propositions 2.2, 2.5, and 2.7, we obtain,

J(ϕ) = Ŝ

(∫
Ω

L(ξ, ϕ)dξ
)
−

∫
Ω

a(ξ)H(ϕ)dξ,

≥
(1 − ω)m0

κ+
2

||ϕ||κ
+
2 −

c3

q−
|a|
L

P(ξ)
P(ξ)−q(ξ) (Ω)

||ϕ||q
−

≥ ||ϕ||κ
+
2

(
(1 − ω)m0

κ+
2

−
c3

q−
|a|
L

p(ξ)
p(ξ)−q(ξ) (Ω)

||ϕ||q
−

)
≥ ||ϕ||κ

+
2

(
(1 − ω)m0

κ+
2

− t||ϕ||q
−−κ+

2

)
,

where
t =

c3

q−
|a|
L

p(ξ)
p(ξ)−q(ξ) (Ω)

.

Since q− is greater than κ+, we can choose ‖ϕ‖ = η to be sufficiently small such that

(1 − ω)m0

κ+
2

− tηq−−κ+
2 > 0.

Finally, we conclude that

J(ϕ) ≥ ηκ
+
2

( (1 − ω)m0

κ+
2

− t ηq−−κ+
2

)
:= ρ > 0.

�

Lemma 3.2. Assume that (C1)–(C3) are satisfied. Then, J is coercive onH$,ε;ψ
M,0 (Λ).
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Proof. Let ϕ ∈ ξ, with ‖ϕ‖ > 1. By (3.2)–(3.4) and using Propositions 2.2, 2.5, and 2.7, we obtain,

J(ϕ) = Ŝ

(∫
Λ

L$,ε;ψ(ξ, ϕ)dξ
)
−

∫
Λ

a(ξ)H(ϕ) dξ

≥
(1 − ω)m0

κ+
2

||ϕ||κ
+
1 −

c3

q−
|a|
L

P(ξ)
P(ξ)−q(ξ) (Λ)

||ϕ||q
−

.

Since q− < κ+
1 , then J is coercive and bounded from below onH$,ε;ψ

M,0 (Λ). �

Next, we present the following lemma which establishes an important convergence result.

Lemma 3.3. Assume that conditions (C1)–(C4) are satisfied and let {ϕn} be a Palais-Smale sequence
inH$,ε;ψ

M,0 (Λ). Then, {ϕn} admits a subsequence that converges strongly inH$,ε;ψ
M,0 (Λ).

Proof. We begin by fixing a Palais-Smale sequence {ϕn} in H$,ε;ψ
M,0 (Λ). This means that, for some real

number c, we have
J(ϕn)→ c, and J ′(ϕn)→ 0.

From Lemma 3.2, we can prove that {ϕn} is bounded in the reflexive space H$,ε;ψ
M,0 (Λ). So, up to a

subsequence, we have ϕn ⇀ ϕ weakly in H$,ε;ψ
M,0 (Λ). Since P(ξ) < κ∗$(ξ), then by Proposition 2.4, we

get the strongly convergence of ϕn to ϕ in LP(ξ)(Λ).
Next, we prove the strong convergence in H$,ε;ψ

M,0 (Λ). For this, we begin by remarking that from
hypothesis (C1), Propositions 2.4 and 2.7, and the Hölder inequality, we have∫

Λ

a(ξ)h(ϕn)(ϕn − ϕ) dξ ≤
∫

Λ

c1|a(ξ)||ϕn|
q(ξ)−1|ϕn − ϕ| dξ

≤ c1|ϕn − ϕ|LP(ξ) |a(ξ)|
L

P(ξ)
P(ξ)−q(ξ)

||ϕn|
q(ξ)−1|

L

P(ξ)
q(ξ)−1

≤ c1|ϕn − ϕ|LP(ξ) |a(ξ)|
L

P(ξ)
P(ξ)−q(ξ)

max
(
||ϕn|

q+−1|LP(ξ) , ||ϕn|
q−−1|LP(ξ)

)
≤ c1|ϕn − ϕ|LP(ξ) |a(ξ)|

L

P(ξ)
P(ξ)−q(ξ)

max
(
||ϕn||

q+−1|, ||ϕn||
q−−1|

)
.

Hence, we have

lim
n→∞

∫
Λ

a(ξ)h(ϕn)(ϕn − ϕ) dξ = 0. (3.5)

Now, using the fact that < J ′(ϕn), ϕn − ϕ >→ 0, we obtain that

< L′(ϕn), ϕn − u > = S

(∫
Λ

L$,ε;ψ(ξ, ϕn)dξ
)
< L

′

(ϕn), ϕn − u >→ 0.

On the other hand, from hypothesis (C2), we know S
(∫

Λ

L$,ε;ψ(ξ, ϕn)dξ
)
, 0, so we get

< L
′

(ϕn), ϕn − ϕ >=→ 0.

Hence, we deduce that
lim
n→∞

< L
′

(ϕn) − L
′

(ϕ), ϕn − ϕ >= 0.

Finally, Proposition 3.1, implies that ϕn → ϕ strongly inH$,ε;ψ
M,0 (Λ). �
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Now, we establish the following lemma that provides a key result regarding the boundedness of a
set under certain hypotheses.

Lemma 3.4. Under hypotheses (C1)–(C4), if F is a finite dimensional subspace of X, then the set

T = {ϕ ∈ F, such that J(ϕ) ≥ 0},

is bounded in X.

Proof. Let ϕ ∈ T. By (C4), there exists a constant A > 0 such that

a(ξ)H(ϕ) ≥ A | ϕ |θ . (3.6)

Then, By (C2), (3.6), and Proposition 2.5, we have:

J(ϕ) ≤ Ŝ

(∫
Λ

L$,ν;ψ(ξ, ϕ)dξ
)
−

∫
Λ

a(ξ)H(ϕ)dξ

≤ M0

( ∫
Λ

L$,ν;ψ(ξ, ϕ)dξ
)
− A

∫
Λ

|ϕ|θdξ

≤ C(||ϕ||κ
+
2 + ||ϕ||κ

−
1 ) − A|ϕ|θ

Lθ
.

Since F is a finite subspace, we know that the norms |.|Lθ and ||.|| are equivalent. So, we get the existence
of k > 0 that satisfies:

||ϕ||θ ≤ k|ϕ|θ
Lθ
.

Therefore, we have

J(ϕ) ≤ C(||ϕ||κ
+
2 + ||ϕ||κ

−
1 ) −

A
k
||ϕ||θ.

Hence, since κ−1 < κ
+
2 < θ, we deduce that T is bounded in X. �

Proof of Theorem 3.1. We observe that J(0) = 0, and due to (C5), the functional J is even.
Furthermore, Lemmas 3.1, 3.3, and 3.4 establish the fulfillment of all conditions stated in Theorem 2.1.
Consequently, we can conclude that the conclusion of Theorem 2.1 holds, which means that the
problem (1.1) possesses an unbounded sequence of nontrivial solutions. �

4. Conclusions

In this paper, we proved the multiplicity of solutions for a double-phase Kirchhoff-type problem
involving ψ-Hilfer derivatives and variable exponents. More precisely, we transformed the question
of the existence of solutions for such a problem to the existence of critical points for the associated
functional energy. After that, we proved that the functional energy satisfies all conditions of the
symmetric mountain pass theorem, so the conclusion of this theorem leads to the existence of infinitely
many nontrivial solutions. We note that in the case µ ≡ 0, we obtain the result of Sousa et al. [29].
We will generalize this study by studying the following cases:
(1) Perturbed this equation by a singular nonlinearity.
(2) Consider the same problem in Orlicz spaces.
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