Citation: Zhenluo Lou, Jian Zhang. On general Kirchhoff type equations with steep potential well and critical growth in $ \mathbb{R}^2 $[J]. AIMS Mathematics, 2024, 9(8): 21433-21454. doi: 10.3934/math.20241041
[1] | M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., 106 (2014), 18–34. http://dx.doi.org/10.1016/j.na.2014.04.011 doi: 10.1016/j.na.2014.04.011 |
[2] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[3] | C. O. Alves, M. A. S. Souto, M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations., 43 (2012), 537–554. http://dx.doi.org/10.1007/s00526-011-0422-y |
[4] | T. Bartsch, A. Pankov, Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549–569. http://dx.doi.org/10.1142/S0219199701000494 doi: 10.1142/S0219199701000494 |
[5] | T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Partial Differential Equations., 20 (1995), 1725–1741. http://dx.doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149 |
[6] | T. Bartsch, Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366–384. http://dx.doi.org/10.1007/PL00001511 doi: 10.1007/PL00001511 |
[7] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. http://dx.doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555 |
[8] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. http://dx.doi.org/10.1007/978-0-387-70914-7 |
[9] | J. Chabrowski, Weak convergence methods for semilinear elliptic equations, Sigapore: World Scientific, 1999. http://dx.doi.org/10.1142/4225 |
[10] | S. T. Chen, X. H. Tang, J. Y. Wei, Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys., 72 (2021), 38. http://dx.doi.org/10.1007/s00033-020-01455-w doi: 10.1007/s00033-020-01455-w |
[11] | M. Clapp, Y. H. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys., 55 (2004), 592–605. http://dx.doi.org/10.1007/s00033-004-1084-9 doi: 10.1007/s00033-004-1084-9 |
[12] | Y. H. Ding, A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations., 29 (2007), 397–419. http://dx.doi.org/10.1007/s00526-006-0071-8 doi: 10.1007/s00526-006-0071-8 |
[13] | Y. H. Ding, K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscripta Math., 112 (2003), 109–135. http://dx.doi.org/10.1007/s00229-003-0397-x doi: 10.1007/s00229-003-0397-x |
[14] | D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in $ \mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations., 3 (1995), 139–153. http://dx.doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003 |
[15] | J. M. B. do Ó, N-Laplacian equations in $ \mathbb R^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301–315. |
[16] | G. M. Figueiredo, U. B. Severo, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math., 84 (2016), 23–39. http://dx.doi.org/10.1007/s00032-015-0248-8 doi: 10.1007/s00032-015-0248-8 |
[17] | Y. X. Guo, Z. W. Tang, Multi-bump solutions for Schrödinger equation involving critical growth and potential wells, Discrete Contin. Dyn. Syst., 35 (2015), 3393–3415. http://dx.doi.org/10.3934/dcds.2015.35.3393 doi: 10.3934/dcds.2015.35.3393 |
[18] | Y. X. Guo, Z. W. Tang, Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Differential Equations., 259 (2015), 6038–6071. http://dx.doi.org/10.1016/j.jde.2015.07.015 doi: 10.1016/j.jde.2015.07.015 |
[19] | H. F. Jia, Ground state solutions for the nonlinear Kirchhoff type equations with lower term, J. Math. Phys., 61 (2020), 111506. http://dx.doi.org/10.1063/5.0015454 doi: 10.1063/5.0015454 |
[20] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[21] | B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb R^2$, J. Funct. Anal., 219 (2005), 340–367. http://dx.doi.org/10.1016/j.jfa.2004.06.013 doi: 10.1016/j.jfa.2004.06.013 |
[22] | B. Ruf, F. Sani, Geometric properties for parabolic and elliptic PDE's, New York: Springer, 2013, 251–268. http://dx.doi.org/10.1007/978-88-470-2841-8 |
[23] | Y. Sato, K. Tanaka, Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, Trans. Am. Math. Soc., 361 (2009), 6205–6253. http://dx.doi.org/10.1090/S0002-9947-09-04565-6 doi: 10.1090/S0002-9947-09-04565-6 |
[24] | C. A. Stuart, H. S. Zhou, Global branch of solutions for non-linear Schrödinger equations with deepening potential well, Proc. London Math. Soc., 92 (2006), 655–681. http://dx.doi.org/10.1017/S0024611505015637 doi: 10.1017/S0024611505015637 |
[25] | F. A. van Heerden, Z. Q. Wang, Schrödinger type equations with asymptotically linear nonlinearities, Differ. Integral Equ., 16 (2003), 257–280. http://dx.doi.org/10.57262/die/1356060671 doi: 10.57262/die/1356060671 |
[26] | F. A. van Heerden, Multiple solutions for a Schrödinger type equation with an asymptotically linear term, Nonlinear Anal., 55 (2003), 739–758. http://dx.doi.org/10.1016/j.na.2003.08.008 doi: 10.1016/j.na.2003.08.008 |
[27] | F. B. Zhang, M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well, J. Differential Equations., 269 (2020), 10085–10106. http://dx.doi.org/10.1016/j.jde.2020.07.013 doi: 10.1016/j.jde.2020.07.013 |
[28] | J. J. Zhang, D. G. Costa, J. Marcos do Ó, Existence and concentration of positive solutions for nonlinear Kirchhoff-type problems with a general critical nonlinearity, Proc. Edinburgh Math. Soc., 61 (2018), 1023–1040. http://dx.doi.org/10.1017/s0013091518000056 doi: 10.1017/s0013091518000056 |
[29] | J. Zhang, Z. L. Lou, Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth, J. Math. Phys., 62 (2021), 011506. http://dx.doi.org/10.1063/5.0028510 doi: 10.1063/5.0028510 |