Research article Special Issues

On general Kirchhoff type equations with steep potential well and critical growth in $ \mathbb{R}^2 $

  • Received: 27 March 2024 Revised: 13 June 2024 Accepted: 20 June 2024 Published: 04 July 2024
  • MSC : 35A01, 35A15, 35J20

  • In this paper, we study the following Kirchhoff-type equation:$ \begin{equation*} M\left(\displaystyle{\int}_{\mathbb{R}^2}(|\nabla u|^2 +u^2)\mathrm{d} x\right)(-\Delta u+u) + \mu V(x)u = K(x) f(u) \ \ \mathrm{in} \ \ \mathbb{R}^2, \end{equation*} $where $ M \in C(\mathbb{R}^+, \mathbb{R}^+) $ is a general function, $ V \geq 0 $ and its zero set may have several disjoint connected components, $ \mu > 0 $ is a parameter, $ K $ is permitted to be unbounded above, and $ f $ has exponential critical growth. By using the truncation technique and developing some approaches to deal with Kirchhoff-type equations with critical growth in the whole space, we get the existence and concentration behavior of solutions. The results are new even for the case $ M \equiv 1 $.

    Citation: Zhenluo Lou, Jian Zhang. On general Kirchhoff type equations with steep potential well and critical growth in $ \mathbb{R}^2 $[J]. AIMS Mathematics, 2024, 9(8): 21433-21454. doi: 10.3934/math.20241041

    Related Papers:

  • In this paper, we study the following Kirchhoff-type equation:$ \begin{equation*} M\left(\displaystyle{\int}_{\mathbb{R}^2}(|\nabla u|^2 +u^2)\mathrm{d} x\right)(-\Delta u+u) + \mu V(x)u = K(x) f(u) \ \ \mathrm{in} \ \ \mathbb{R}^2, \end{equation*} $where $ M \in C(\mathbb{R}^+, \mathbb{R}^+) $ is a general function, $ V \geq 0 $ and its zero set may have several disjoint connected components, $ \mu > 0 $ is a parameter, $ K $ is permitted to be unbounded above, and $ f $ has exponential critical growth. By using the truncation technique and developing some approaches to deal with Kirchhoff-type equations with critical growth in the whole space, we get the existence and concentration behavior of solutions. The results are new even for the case $ M \equiv 1 $.


    加载中


    [1] M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., 106 (2014), 18–34. http://dx.doi.org/10.1016/j.na.2014.04.011 doi: 10.1016/j.na.2014.04.011
    [2] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [3] C. O. Alves, M. A. S. Souto, M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations., 43 (2012), 537–554. http://dx.doi.org/10.1007/s00526-011-0422-y
    [4] T. Bartsch, A. Pankov, Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549–569. http://dx.doi.org/10.1142/S0219199701000494 doi: 10.1142/S0219199701000494
    [5] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Partial Differential Equations., 20 (1995), 1725–1741. http://dx.doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149
    [6] T. Bartsch, Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366–384. http://dx.doi.org/10.1007/PL00001511 doi: 10.1007/PL00001511
    [7] H. Berestycki, P. L. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. http://dx.doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [8] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. http://dx.doi.org/10.1007/978-0-387-70914-7
    [9] J. Chabrowski, Weak convergence methods for semilinear elliptic equations, Sigapore: World Scientific, 1999. http://dx.doi.org/10.1142/4225
    [10] S. T. Chen, X. H. Tang, J. Y. Wei, Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys., 72 (2021), 38. http://dx.doi.org/10.1007/s00033-020-01455-w doi: 10.1007/s00033-020-01455-w
    [11] M. Clapp, Y. H. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys., 55 (2004), 592–605. http://dx.doi.org/10.1007/s00033-004-1084-9 doi: 10.1007/s00033-004-1084-9
    [12] Y. H. Ding, A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations., 29 (2007), 397–419. http://dx.doi.org/10.1007/s00526-006-0071-8 doi: 10.1007/s00526-006-0071-8
    [13] Y. H. Ding, K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscripta Math., 112 (2003), 109–135. http://dx.doi.org/10.1007/s00229-003-0397-x doi: 10.1007/s00229-003-0397-x
    [14] D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in $ \mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations., 3 (1995), 139–153. http://dx.doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
    [15] J. M. B. do Ó, N-Laplacian equations in $ \mathbb R^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301–315.
    [16] G. M. Figueiredo, U. B. Severo, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math., 84 (2016), 23–39. http://dx.doi.org/10.1007/s00032-015-0248-8 doi: 10.1007/s00032-015-0248-8
    [17] Y. X. Guo, Z. W. Tang, Multi-bump solutions for Schrödinger equation involving critical growth and potential wells, Discrete Contin. Dyn. Syst., 35 (2015), 3393–3415. http://dx.doi.org/10.3934/dcds.2015.35.3393 doi: 10.3934/dcds.2015.35.3393
    [18] Y. X. Guo, Z. W. Tang, Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Differential Equations., 259 (2015), 6038–6071. http://dx.doi.org/10.1016/j.jde.2015.07.015 doi: 10.1016/j.jde.2015.07.015
    [19] H. F. Jia, Ground state solutions for the nonlinear Kirchhoff type equations with lower term, J. Math. Phys., 61 (2020), 111506. http://dx.doi.org/10.1063/5.0015454 doi: 10.1063/5.0015454
    [20] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
    [21] B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb R^2$, J. Funct. Anal., 219 (2005), 340–367. http://dx.doi.org/10.1016/j.jfa.2004.06.013 doi: 10.1016/j.jfa.2004.06.013
    [22] B. Ruf, F. Sani, Geometric properties for parabolic and elliptic PDE's, New York: Springer, 2013, 251–268. http://dx.doi.org/10.1007/978-88-470-2841-8
    [23] Y. Sato, K. Tanaka, Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, Trans. Am. Math. Soc., 361 (2009), 6205–6253. http://dx.doi.org/10.1090/S0002-9947-09-04565-6 doi: 10.1090/S0002-9947-09-04565-6
    [24] C. A. Stuart, H. S. Zhou, Global branch of solutions for non-linear Schrödinger equations with deepening potential well, Proc. London Math. Soc., 92 (2006), 655–681. http://dx.doi.org/10.1017/S0024611505015637 doi: 10.1017/S0024611505015637
    [25] F. A. van Heerden, Z. Q. Wang, Schrödinger type equations with asymptotically linear nonlinearities, Differ. Integral Equ., 16 (2003), 257–280. http://dx.doi.org/10.57262/die/1356060671 doi: 10.57262/die/1356060671
    [26] F. A. van Heerden, Multiple solutions for a Schrödinger type equation with an asymptotically linear term, Nonlinear Anal., 55 (2003), 739–758. http://dx.doi.org/10.1016/j.na.2003.08.008 doi: 10.1016/j.na.2003.08.008
    [27] F. B. Zhang, M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well, J. Differential Equations., 269 (2020), 10085–10106. http://dx.doi.org/10.1016/j.jde.2020.07.013 doi: 10.1016/j.jde.2020.07.013
    [28] J. J. Zhang, D. G. Costa, J. Marcos do Ó, Existence and concentration of positive solutions for nonlinear Kirchhoff-type problems with a general critical nonlinearity, Proc. Edinburgh Math. Soc., 61 (2018), 1023–1040. http://dx.doi.org/10.1017/s0013091518000056 doi: 10.1017/s0013091518000056
    [29] J. Zhang, Z. L. Lou, Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth, J. Math. Phys., 62 (2021), 011506. http://dx.doi.org/10.1063/5.0028510 doi: 10.1063/5.0028510
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(127) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog