Citation: Jin-Long Zhang, Da-Bin Wang. Existence of least energy nodal solution for Kirchhoff-type system with Hartree-type nonlinearity[J]. AIMS Mathematics, 2020, 5(5): 4494-4511. doi: 10.3934/math.2020289
[1] | C. O. Alves, M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166. doi: 10.1007/s00033-013-0376-3 |
[2] | C. O. Alves, M. A. S. Souto, S. H. M. Soares, A sign-changing solution for the Schrödinger-Poisson equation in $\mathbb{R}^3$, Rocky Mountain J. Math., 47 (2017), 1-25. |
[3] | A. M. Batista, M. F. Furtado, Positive and nodal solutions for a nonlinear Schrödinger-Poisson system with sign-changing potentials, Nonlinear Anal.: Real., 39 (2018), 142-156. doi: 10.1016/j.nonrwa.2017.06.005 |
[4] | S. Chen, X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^3$, Z. Angew. Math. Phys., 67 (2016), 102. |
[5] | H. Guo, D. Wu, Nodal solutions for the Schrödinger-Poisson equations with convolution terms, Nonlinear Anal., 196 (2020), 111781. |
[6] | S. Kim, J. Seok, On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041. |
[7] | Z. Liang, J. Xu, X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$, J. Math. Anal. Appl., 435 (2016), 783-799. |
[8] | Z. Liu, Z. Wang, J. Zhang, Infinitely many sign-changing solutions for the nonlinear SchrödingerPoisson system, Ann. Mat. Pura. Appl., 195 (2016), 775-794. doi: 10.1007/s10231-015-0489-8 |
[9] | W. Shuai, Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$, Z. Angew. Math. Phys., 66 (2015), 3267-3282. |
[10] | D. B. Wang, Y. Ma, W. Guan, Least energy sign-changing solutions for the fractional SchrödingerPoisson systems in $\mathbb{R}^3$, Bound. Value Probl., 25 (2019). Avaliable from: https://doi.org/10.1186/s13661-019-1128-x. |
[11] | D. B. Wang, H. Zhang, W. Guan, Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284-2301. doi: 10.1016/j.jmaa.2019.07.052 |
[12] | D. B. Wang, H. Zhang, Y. Ma, et al. Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system with potential vanishing at infinity, J. Appl. Math. Comput., 61 (2019), 611-634. doi: 10.1007/s12190-019-01265-y |
[13] | Z. Wang, H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$, Calc. Var. Partial Differ. Equations, 52 (2015), 927-943. |
[14] | X. Zhong, C. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^3$, Nonlinear Anal.: Real World Appl., 39 (2018), 166-184. |
[15] | D. Cassani, Z. Liu, C. Tarsi, et al. Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145-161. doi: 10.1016/j.na.2019.01.025 |
[16] | Y. B. Deng, S. J. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527. |
[17] | Y. B. Deng, W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$, Discrete Contin. Dyn. Syst. Ser. A., 38 (2018), 3139-3168. |
[18] | G. M. Figueiredo, J. R. Santos Júnior, Existence of a least energy nodal solution for a SchrödingerKirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506. |
[19] | X. Han, X. Ma, X. M. He, Existence of sign-changing solutions for a class of p-Laplacian Kirchhoff-type equations, Complex Var. Elliptic., 64 (2019), 181-203. doi: 10.1080/17476933.2018.1427078 |
[20] | Q. Li, X. Du, Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödingertype equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 477 (2019), 174-186. |
[21] | Y. Li, D. B. Wang, J. Zhang, Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity, AIMS Math., 5 (2020), 2100-2112. doi: 10.3934/math.2020139 |
[22] | S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432 (2015), 965-982. doi: 10.1016/j.jmaa.2015.07.033 |
[23] | A. Mao, S. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243. doi: 10.1016/j.jmaa.2011.05.021 |
[24] | W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equations., 259 (2015), 1256-1274. doi: 10.1016/j.jde.2015.02.040 |
[25] | J. Sun, L. Li, M. Cencelj, et al. Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^3$, Nonlinear Anal., 186 (2019), 33-54. |
[26] | X. H. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equations., 261 (2016), 2384-2402. doi: 10.1016/j.jde.2016.04.032 |
[27] | D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501. Avaliable from: https://doi.org/10.1063/1.5074163. |
[28] | D. B. Wang, J. Zhang, Least energy sign-changing solutions of fractional Kirchhoff-SchrödingerPoisson system with critical growth, Appl. Math. Lett., 106 (2020), 106372. |
[29] | L. Wang, B. L. Zhang, K. Cheng, Ground state sign-changing solutions for the SchrödingerKirchhoff equation in $\mathbb{R}^3$, J. Math. Anal. Appl., 466 (2018), 1545-1569. |
[30] | H. Zhang, W. Guan, Least energy sign-changing solutions for fourth-order Kirchhoff-type equation with potential vanishing at infinity, J. Appl. Math. Comput., Avaliable from: https://doi.org/10.1007/s12190-020-01349-0. |
[31] | Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102 |
[32] | J. Zhao, X. Liu, Nodal solutions for Kirchhoff equation in $\mathbb{R}^3$ with critical growth, Appl. Math. Lett., 102 (2020), 106101. |
[33] | S. Chen, B. L. Zhang, X. H. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9 (2020), 148-167. |
[34] | J. Deng, J. F. Yang, Nodal solutions for Schrödinger-Poisson type equations in $\mathbb{R}^3$, Electron. J. Differ. Equations, 2016 (2016), 1-21. |
[35] | A. Fiscella, P. Pucci, B. L. Zhang, p-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2019), 1111-1131. |
[36] | F. Li, Z. Song, Q. Zhang, Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, Appl. Anal., 96 (2017), 2906-2916. doi: 10.1080/00036811.2016.1253065 |
[37] | D. Lü, Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity, Commun. Pure Appl. Anal., 17 (2018), 605-626. doi: 10.3934/cpaa.2018033 |
[38] | X. Mingqi, V. D. Rădulescu, B. L. Zhang, Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM: COCV., 24 (2018), 1249-1273. doi: 10.1051/cocv/2017036 |
[39] | D. B. Wang, T. Li, X. Hao, Least-energy sign-changing solutions for Kirchhoff-SchrödingerPoisson systems in $\mathbb{R}^3$, Bound. Value Probl., 75 (2019). Avaliable from: https://doi.org/10.1186/s13661-019-1183-3. |
[40] | M. Xiang, P. Pucci, M. Squassina, et al. Nonlocal Schrödinger-Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst., 37 (2017), 1631-1649. doi: 10.3934/dcds.2017067 |
[41] | M. Xiang, V. D. Rădulescu, B. L. Zhang, Nonlocal Kirchhof problems with singular exponential nonlinearity, Appl. Math. Optim., (2020), 1-40. |
[42] | M. Xiang, B. L. Zhang, V. D. Rădulescu, Superlinear Schrödinger-Kirchhof type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690-709. |
[43] | M. Xiang, B. L. Zhang, D. Yang, Multiplicity results for variable fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190-204. doi: 10.1016/j.na.2018.07.016 |
[44] | G. Zhao, X. Zhu, Y. Li, Existence of infinitely many solutions to a class of Kirchhoff-SchrödingerPoisson system, Appl. Math. Comput., 256 (2015), 572-581. |
[45] | F. Li, C. Gao, X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 448 (2017), 60-80. doi: 10.1016/j.jmaa.2016.10.069 |
[46] | T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Commun. Partial Differ. Equations, 20 (1995), 1725-1741. |
[47] | R. F. Gabert, R. S. Rodrigues, Existence of sign-changing solution for a problem involving the fractional Laplacian with critical growth nonlinearities, Complex Var. Elliptic Equations, 65 (2020), 272-292. doi: 10.1080/17476933.2019.1579208 |
[48] | C. Miranda, Un'osservazione su un teorema di Brouwer, Bol. Un. Mat. Ital., 3 (1940), 5-7. |
[49] | E. H. Lieb, M. Loss, Analysis, 2 Eds, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 14 (2001). |
[50] | M. Willem, Minimax Theorems, Birkhauser, Barel, 1996. |