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Abstract: This paper deals with following Kirchhoff-type system with critical growth−(a + b
∫
R3 |∇u|2dx)∆u + V(x)u + φ|u|p−2u = |u|4u + µ f (u), x ∈ R3,

(−∆)α/2φ = l|u|p, x ∈ R3,

where a, µ > 0, b, l ≥ 0, α ∈ (0, 3), p ∈ [2, 3) and φ|u|p−2u is a Hartree-type nonlinearity. By the
minimization argument on the nodal Nehari manifold and the quantitative deformation lemma, we
prove that the above system has a least energy nodal solution. Our result improve and generalize some
interesting results which were obtained in subcritical case.
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1. Introduction and main result

In this article, we are interested in the least energy nodal solution for the following Kirchhoff-type
system  −(a + b

∫
R3 |∇u|2dx)∆u + V(x)u + φ|u|p−2u = |u|4u + µ f (u), x ∈ R3,

(−∆)α/2φ = l|u|p, x ∈ R3,
(1.1)

where a, µ > 0, b, l ≥ 0, α ∈ (0, 3), p ∈ [2, 3) and φ|u|p−2u is a Hartree-type nonlinearity (in fact,
φ = I ∗ |u|p, where I is the Riesz potential defined by (1.10)), (−∆)α/2 is the fractional Laplacian. The
potential function V ∈ C(R3,R+) and function f ∈ C1(R,R) satisfy the following hypotheses:

(V) for every M > 0, the set VM := {x ∈ R3 : V(x) ≤ M} has a finite Lebesgue measure, i.e.m(VM) < ∞;
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( f1) lim|t|→0
f (t)
|t|2p−1 = 0;

( f2) there exist q ∈ (2p, 6) and C > 0 such that | f ′(t)| ≤ C(1 + |t|q−2) for all t ∈ R;

( f3) f (t)
t2p−1 is strictly increasing for t > 0 and is strictly decreasing for t < 0.

In the past decades, many mathematicians pay their much attention to nonlocal problems. The
appearance of nonlocal terms in the equations not only marks its importance in many physical
applications but also causes some difficulties and challenges from a mathematical point of view.
Certainly, this fact makes the study of nonlocal problems particularly interesting. The following
Schrödinger-Poisson system is a typical nonlocal problem −∆u + V(x)u + φu = f (u), in R3,

−∆φ = u2, in R3.
(1.2)

Recently, many authors have been devoted to the study for system (1.2) or similar problems.
Especially on nodal solutions to problems like (1.2), and indeed some interesting results were
obtained, see for examples, [1–14] and the references therein. In fact, there are very few results about
nodal solutions to Schrödinger-Poisson system with critical growth. In [14], Zhong and Tang [14]
considered the existence of ground state nodal solution for following system with critical growth −∆u + u + k(x)φu = |u|4u + λ f (x)u, x ∈ R3,

−∆φ = k(x)u2, x ∈ R3,
(1.3)

where k, f ≥ 0, 0 < λ < λ1( where λ1 is the first eigenvalue of the problem −∆u + u = λ f (x)u in
H1(R3)). However, if k(x) ≡ 1, their methods seems not valid because their results depends on the case
k ∈ Lp(R3) ∩ L∞(R3) for some p ∈ [2,∞).

In [11], Wang, Zhang ang Guan considered the existence of least energy nodal solution for following
system with critical growth −∆u + V(x)u + φu = |u|4u + λ f (u), x ∈ R3,

−∆φ = u2, x ∈ R3.
(1.4)

Via the constraint variational method and quantitative deformation lemma, they obtained the existence
and asymptotic behavior of least energy nodal solution for system (1.4).

As another typical nonlocal problem, the following Kirchhoff-type equation

− (a + b
∫
R3
|∇u|2dx)∆u + V(x)u = f (u), x ∈ R3, (1.5)

has also aroused many mathematicians’s wide concern. Especially, There are many papers about nodal
solutions to problems like (1.5) [15–32]. However, to the best of our knowledge, the most results seem
to be obtained in the subcritical case. It is noticed that the second author [27] considered the least
energy nodal solution for following Kirchhoff equation with critical growth −(a + b

∫
Ω
|∇u|2dx)∆u = |u|4u + λ f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.6)
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where Ω ⊂ R3 is a bounded domain with a smooth boundary ∂Ω, λ, a, b > 0. By using the constraint
variational method and quantitative deformation lemma, the author studied the existence and energy
characteristics of least energy nodal solution to Eq 1.6.

In [32], Zhao and Liu studied the following Kirchhoff equation with critical growth −(a + b
∫
R3 |∇u|2dx)∆u + V(x)u = u5 + µ|u|q−2u, x ∈ R3,

u(x)→ 0, as |x| → ∞,
(1.7)

where a, b, µ > 0, 5 < q < 6 are constants and V is a radial function and is bounded from below by a
positive constant. By using the truncation method, they proved that, for any given positive integer k,
the problem has a radial solution with k nodal domains exactly.

When α = 2, system (1.1) is related to following system −(a + b
∫
R3 |∇u|2dx)∆u + V(x)u + φu = f (u), in R3,

−∆φ = u2, in R3,
(1.8)

where a, b are positive constants. Since there are both nonlocal operator and nonlocal nonlinear term,
the study of system (1.7) become more complicated. In recent years, there are some scholars began to
show interest to problem like (1.7), see [33–44] and references therein. However, to our best
knowledge, few papers considered nodal solutions to problem like (1.7). Via gluing the function
methods, Deng and Yang [34] studied the nodal solutions for system (1.8) with
f (u) = |u|p−2u, p ∈ (4, 6). In [39], Wang, Li and Hao studied the existence and the asymptotic behavior
of least energy nodal solution for system (1.8) by using the constraint variation methods.

Recently, in order to research uniformly Kirchhoff-type equation and Schrödinger-Poisson system,
Li, Gao and Zhu [45] considered the following Kirchhoff-type system −(a + b

∫
R3 |∇u|2dx)∆u + λV(x)u + φ|u|p−2u = f (u), x ∈ R3,

(−∆)α/2φ = l|u|p, x ∈ R3,
(1.9)

where a > 0, b, l ≥ 0, α ∈ (0, 3) and p ∈ [2, 3 + α). More precisely, they studied the existence and
asymptotic behavior of least energy nodal solution for system (1.9).

Inspired by the works mentioned above, especially by [11, 27, 45], in this paper, we investigate the
existence of the least energy nodal solution to Kirchhoff-type system (1.1).

Before presenting our main results, we denote Lr(R3) the Lebesgue space with the norm |u|r :=
(
∫
R3 |u|rdx)

1
r , 1 ≤ r < ∞. Let D1,2(R3) = {u ∈ L6(R3) : ∇u ∈ L2(R3)} be a Hilbert space with the inner

product and corresponding norm

(u, v)1 =

∫
R3
∇u · ∇vdx, ‖u‖1 = (

∫
R3
|∇u|2dx)

1
2 .

Denote E := H1
V(R3) is given Hilbert space

H1
V(R3) = {u ∈ D1,2(R3) :

∫
R3

Vu2dx < ∞},
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by equipped with the inner product and norm

(u, v) =

∫
R3

(∇u · ∇v + Vuv)dx, ‖u‖ = (
∫
R3

(|∇u|2 + Vu2)dx)
1
2 .

Under the condition (V), according to Remark 3.5 of [46], the embedding E ↪→ Lr(R3) is continuous
for each r ∈ [2, 6], and is compact for each r ∈ [2, 6).

It follows from the second equation (−∆)α/2φ = l|u|p of system (1.1) that the unique solution is
φ = I ∗ |u|p, where I is the Riesz potential defined by

I(x) =
Γ((3 − α)/2)
Γ(α/2)π3/22α

1
|x|3−α

, x ∈ R3\{0} (1.10)

and ∗ is the convolution of two functions in R3. Hence, system (1.1) can also be rewritten as a Hartree-
type equation

− (a + b
∫
R3
|∇u|2dx)∆u + V(x)u + l(I ∗ |u|p)|u|p−2u = f (u), in R3. (1.11)

So, the energy functional associated with system (1.1) is defined by

Jµ(u) =
1
2
‖u‖2 +

b
4

(
∫
R3
|∇u|2dx)2 +

l
2p

∫
R3

(I ∗ |u|p)|u|pdx − µ
∫
R3

F(u)dx −
1
6

∫
R3
|u|6dx,

for any u ∈ E.
Moreover, under our conditions, Jµ(u) belongs to C1, and the Fréchet derivative of Jµ(u) is

〈J′µ(u), v〉 = a
∫
R3

(∇u · ∇v + Vuv)dx + b(
∫
R3
|∇u|2dx)(

∫
R3
∇u · ∇vdx)

+ l
∫
R3

(I ∗ |u|p)|u|p−2uvdx − µ
∫
R3

f (u)vdx −
∫
R3
|u|4uvdx

for any u, v ∈ E.
The weak solution of system (1.1) is the critical point of the functional Jµ(u). Furthermore, if

u ∈ E is a weak solution of system (1.1) with u± , 0, then we say that u is a nodal solution of
system (1.1), where u+ = max{u(x), 0}, u− = min{u(x), 0}. In this paper, we borrow some ideas from
[11, 24, 26, 27, 45, 47] and seek a minimizer of the energy functional Jµ over the constraintMµ = {u ∈
E, u± , 0 and 〈J′µ(u), u±〉 = 0}, and then prove that the minimizer is a nodal solution of system (1.1).

The main results can be stated as follows.

Theorem 1.1. Suppose that (V) and ( f1) − ( f3) are satisfied. Then, there exists µ? > 0 such that for all
µ ≥ µ?, the system (1.1) has a least energy nodal solution uµ.

Theorem 1.2. Suppose that (V) and ( f1) − ( f3) are satisfied. Then, there exists µ?? > 0 such that for
all µ ≥ µ??, then the c∗ > 0 is achieved and

Jµ(uµ) > 2c∗,

where c∗ = infu∈Nµ
Jµ(u), Nµ = {u ∈ E\ {0}|〈J′µ(u), u〉 = 0}, and uµ is the least energy nodal solution

obtained in Theorem 1.1. In particular, c∗ > 0 is achieved either by a positive or a negative function.

AIMS Mathematics Volume 5, Issue 5, 4494–4511.



4498

2. Technical lemmas

Lemma 2.1. ( [45]) Under the condition (V), if un ⇀ u and vn ⇀ v in E, then

lim
n→∞

∫
R3

(I ∗ |un|
p)|vn|

pdx =

∫
R3

(I ∗ |u|p)|v|pdx.

In particular,

lim
n→∞

∫
R3

(I ∗ |un|
p)|un|

pdx =

∫
R3

(I ∗ |u|p)|u|pdx,

lim
n→∞

∫
R3

(I ∗ |un|
p)|u±n |

pdx =

∫
R3

(I ∗ |u|p)|u±|pdx.

Now, fixed u ∈ E with u± , 0, we define function Gu : [0,∞) × [0,∞) → R and mapping
Hu : [0,∞) × [0,∞)→ R2 by

Gu(s, t) = Jµ(su+ + tu−),

Hu(s, t) = (〈J′µ(su+ + tu−), su+〉, 〈J′µ(su+ + tu−), tu−〉).

Inspired by [1,11,24,27] and similar to that of in [1,11,24,27], we have following Lemmas 2.2–2.3.
For reader convenient, we give the details of proof.

Lemma 2.2. Assume that ( f1) − ( f3) hold, if u ∈ E with u± , 0, then Gu has the following properties:
(i) The pair (s, t) is a critical point of Gu with s, t > 0 if and only if su+ + tu− ∈ Mµ;
(ii) The function Gu has a unique critical point (su, tu) on (0,∞) × (0,∞), which is also the unique
maximum point of Gu on [0,∞) × [0,∞); Furthermore, if 〈J′µ(u), u±〉 ≤ 0, then 0 < su, tu ≤ 1.

Proof. (i) It follows from definition of Gu that

∇Gu(s, t) = (
1
s
〈J′µ(su+ + tu−), su+〉,

1
t
〈J′µ(su+ + tu−), tu−〉),

which implies that (i) holds.
In the following, we prove (ii). We shall proceed through several steps to complete the proof.
Step 1. We prove the existence of su and tu.
From ( f1) and ( f2), for any ε > 0, there is Cε > 0 such that

| f (t)| ≤ ε|t| + Cε|t|q−1, for all t ∈ R. (2.1)

So, together with Sobolev embedding theorem, one gets that

〈J′µ(su+ + tu−), su+〉 = s2‖u+‖2 + bs4(
∫
R3
|∇u+|2dx)2 + bs2t2

∫
R3
|∇u−|2dx

∫
R3
|∇u+|2dx

+ ls2p
∫
R3

(I ∗ |u+|p)|u+|pdx + lsptp
∫
R3

(I ∗ |u−|p)|u+|pdx

− µ

∫
R3

f (su+)su+dx − s6
∫
R3
|u+|6dx

≥ s2‖u+‖2 − s6
∫
R3
|u+|6dx − µεs2

∫
R3
|u+|2dx − µCεsq

∫
R3
|u+|qdx
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≥ s2‖u+‖2 −C1s6‖u+‖6 − µεC2s2‖u+‖2 − µCεC3sq‖u+‖q

≥ (1 − µεC4)s2‖u+‖2 −C4s6‖u+‖6 − µC4sq‖u+‖q.

Choosing ε > 0 such that (1 − µεC4) > 0, it follows from 2 < q < 6 that

〈J′µ(su+ + tu−), su+〉 > 0 for s small enough and all t ≥ 0. (2.2)

By similarly arguments, we have that

〈J′µ(su+ + tu−), tu−〉 > 0 for t small enough and all s ≥ 0. (2.3)

So, from (2.2) and (2.3), there exists γ1 > 0 such that

〈J′µ(γ1u+ + tu−), γ1u+〉 > 0, 〈J′µ(su+ + γ1u−), γ1u−〉 > 0 (2.4)

for all s, t ≥ 0.
Thanks to ( f1) and ( f3), we conclude that

f (t)t > 0, t , 0; F(t) ≥ 0, t ∈ R (2.5)

for a.e. x ∈ R3.
Let s = γ′2 > γ1 and γ′2 large enough, by (2.5), we have that

〈J′µ(γ
′
2u+ + tu−), γ′2u+〉 ≤ (γ′2)2‖u+‖2 + b(γ′2)4(

∫
R3
|∇u+|2dx)2 + b(γ′2)4

∫
R3
|∇u−|2dx

∫
R

|∇u+|2dx

+ l(γ′2)2p
∫
R3

(I ∗ |u+|p)|u+|pdx + l(γ′2)2p
∫
R3

(I ∗ |u−|p)|u+|pdx

− (γ′2)6
∫
R3
|u+|6dx

≤ 0, (2.6)

for any t ∈ [γ1, γ
′
2].

Similarly, let t = γ′2 > γ1 and γ′2 large enough, we conclude that

〈J′µ(su+ + γ′2u−), γ′2u−〉 ≤ 0, (2.7)

for any s ∈ [γ1, γ
′
2].

Combining (2.6) and (2.7), choose γ2 > γ
′
2 large enough, we have that

〈J′µ(γ2u+ + tu−), γ2u+〉 < 0, 〈J′µ(su+ + γ2u−), γ2u−〉 < 0 (2.8)

for all s, t ∈ [γ1, γ2].
Thanks to (2.4) and (2.8), it follows from Miranda’s Theorem [48] that there is (su, tu) ∈ (0,∞) ×

(0,∞) such that Hu(su, tu) = (0, 0), and then suu+ + tuu− ∈ Mµ.
Step 2. We prove the uniqueness of (su, tu).
By standard arguments, we only prove the uniqueness in case of u ∈ Mµ here.
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For any u ∈ Mµ, we have that

‖u±‖2 + b
∫
R3
|∇u|2dx

∫
R3
|∇u±|2dx + l

∫
R3

(I ∗ |u|p)|u±|pdx = µ

∫
R3

f (u±)u±dx +

∫
R3
|u±|6dx. (2.9)

Suppose (s0, t0) be an other pair of numbers such that s0u+ + t0u− ∈ Mµ with 0 < s0 ≤ t0. So, one
has that

‖u+‖2

s2p−2
0

+
b

s2p−4
0

∫
R3
|∇u|2dx

∫
R3
|∇u+|2dx + l

∫
R3

(I ∗ |u|p)|u+|pdx ≤
1

s2p−6
0

∫
R3
|u+|6dx

+ µ

∫
R3

[
f (s0u+)

(s0u+)2p−1 ](u+)2pdx. (2.10)

and

‖u−‖2

t2p−2
0

+
b

t2p−4
0

∫
R3
|∇u|2dx

∫
R3
|∇u−|2dx + l

∫
R3

(I ∗ |u|p)|u−|pdx ≥
1

t2p−6
0

∫
R3
|u−|6dx

+ µ

∫
R3

[
f (t0u−)

(t0u−)2p−1 ](u−)2pdx. (2.11)

It follows from (2.9) and (2.11) that

(
1

t2p−2
0

− 1)‖u−‖2 + b(
1

t2p−4
0

− 1)
∫
R3
|∇u|2dx

∫
R3
|∇u−|2dx ≥ (

1

t2p−6
0

− 1)
∫
R3
|u−|6dx

+ µ

∫
R3

[
f (t0u−)

(t0u−)2p−1 −
f (u−)

(u−)2p−1 ](u−)2pdx. (2.12)

Thanks to ( f3), we obtain that t0 ≤ 1.
Similarly, by (2.9), (2.10) and ( f3), we conclude that s0 ≥ 1.
Consequently, s0 = t0 = 1.
Step 3. If 〈J′µ(u), u±〉 ≤ 0, then 0 < su, tu ≤ 1.
Suppose su ≥ tu > 0. Combining suu+ + tuu− ∈ Mµ and 〈J′µ(u), u±〉 ≤ 0, one has

(
1

s2p−2
u

− 1)‖u+‖2 + b(
1

s2p−4
u

− 1)
∫
R3
|∇u|2dx

∫
R3
|∇u+|2dx ≥ (

1

s2p−6
u

− 1)
∫
R3
|u+|6dx

+ µ

∫
R3

[
f (suu+)

(suu+)2p−1 −
f (u+)

(u+)2p−1 ](u+)2pdx. (2.13)

So, according to condition ( f3), we get su ≤ 1. Thus, we have that 0 < su, tu ≤ 1.
Step 4. (su, tu) is the unique maximum point of Gu on [0,∞) × [0,∞).
Obviously, it follows from (2.5) that

lim
|(s,t)|→∞

Gu(s, t) = −∞.

Hence, (su, tu) is the unique critical point of Gu in [0,∞) × [0,∞).
At same time, let t0 ≥ 0 be fixed, we infer that

(Gu(s, t0))′s > 0, if s is small enough.
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That is, Gu(s, t) is an increasing function with respect to s if s is small enough.
Similarly, we conclude that Gu(s, t) is an increasing function with respect to t if t is small enough.
Therefore, we conclude that maximum point of Gu cannot be achieved on the boundary of [0,∞) ×

[0,∞). That is, (su, tu) is the unique maximum point of Gu on [0,∞) × [0,∞). �

Lemma 2.3. There exist ρ > 0 such that ‖u±‖ ≥ ρ for all u ∈ Mµ.

Proof. For any u ∈ Mµ, we have

‖u±‖2 + b
∫
R3
|∇u|2dx

∫
R3
|∇u±|2dx + l

∫
R3

(I ∗ |u|p)|u±|pdx = µ

∫
R3

f (u±)u±dx +

∫
R3
|u±|6dx.

Thanks to (2.1), one has

‖u±‖2 ≤ µ
∫
R3

f (u±)u±dx +

∫
R3
|u±|6dx.

≤ µεC1‖u±‖2 + µC2‖u±‖q + C3‖u±‖6.

So, (1 − µεC1)‖u±‖2 ≤ µC2‖u±‖q + C3‖u±‖6. Choosing ε small enough such that (1 − λεC1) > 0, we
get the conclusion. �

Lemma 2.4. Let cµ = infu∈Mµ
Jµ(u), then we have that limµ→∞ cµ = 0.

Proof. For any u ∈ Mµ, 〈J′µ(u), u〉 = 0. Thanks to ( f3), it is easy to obtain that

F(t) : f (t)t − 2pF(t) ≥ 0, (2.14)

and is increasing when t > 0 and decreasing when t < 0. Then, one gets

Jµ(u) = Jµ(u) −
1

2p
〈J′µ(u), u〉

= (
1
2
−

1
2p

)‖u‖2 + (
b
4
−

b
2p

)(
∫
R3
|∇u|2dx)2

+
µ

2p

∫
R3

[ f (u)t − 2pF(u)]dx + (
1

2p
−

1
6

)
∫
R3
|u|6dx

≥ (
1
2
−

1
2p

)‖u‖2.

So, by Lemma 2.3 we have that Jµ(u) > 0, for all u ∈ Mµ. Hence, cµ = infu∈Mµ
Jµ(u) is well-defined.

Let u ∈ E with u± , 0 be fixed. According to Lemma 2.2, for each µ > 0, there exist sµ, tµ > 0 such
that sµu+ + tµu− ∈ Mµ.

By using Lemma 2.2 again and Hardy-Littlewood-Sobolev inequality (Page 106 of [49]), we have
that

0 ≤ cµ = inf
u∈Mµ

Jµ(u) ≤ Jµ(sµu+ + tµu−)

≤
1
2
‖sµu+ + tµu−‖2 +

b
4

(
∫
R3
|∇(sµu+ + tµu−)|2dx)2
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+
l

2p

∫
R3

(I ∗ |sµu+ + tµu−|p)|sµu+ + tµu−|pdx

=
s2
µ

2
‖u+‖2 +

t2
µ

2
‖u+‖2 +

bs4
µ

4
(
∫
R3
|∇u+|2dx)2 +

bs2
µt

2
µ

2

∫
R3
|∇u+|2dx

∫
R3
|∇u−|2dx

+
bt4
µ

4
(
∫
R3
|∇u−|2dx)2 +

ls2p
µ

2p

∫
R3

(I ∗ |u+|p)|u+|pdx

+
lsp
µtp
µ

p

∫
R3

(I ∗ |u+|p)|u−|pdx +
lt2p
µ

2p

∫
R3

(I ∗ |u−|p)|u−|pdx

≤
s2
µ

2
‖u+‖2 +

t2
µ

2
‖u+‖2 +

bs4
µ

4
(
∫
R3
|∇u+|2dx)2 +

bt4
µ

4
(
∫
R3
|∇u−|2dx)2

+
l

2p
C1s2p

µ ‖u
+‖2p +

l
2p

C2t2p
µ ‖u

−‖2p

To our end, we just prove that sµ → 0 and tµ → 0, as µ→ ∞.
Let

Bu = {(sµ, tµ) ∈ [0,∞) × [0,∞) : Hu(sµ, tµ) = (0, 0), µ > 0}.

By (2.5), we get

s6
µ

∫
R3
|u+|2dx + t6

µ

∫
R3
|u−|2dx ≤ s6

µ

∫
R3
|u+|2dx + t6

µ

∫
R3
|u−|2dx

+ µ

∫
R3

f (sµu+)sµu+dx + µ

∫
R3

f (tµu−)tµu−dx

= ‖sµu+ + tµu−‖2 + b(
∫
R3
|∇(sµu+ + tµu−)|2dx)2

+ l
∫
R3

(I ∗ |sµu+ + tµu−|p)|sµu+ + tµu−|pdx

≤ 2s2
µ‖u

+‖2 + 2t2
µ‖u

+‖2 + 4bs4
µ(
∫
R3
|∇u+|2dx)2

+ 4bt4
µ(
∫
R3
|∇u−|2dx)2 + lC1s2p

µ ‖u
+‖2p + lC2t2p

µ ‖u
−‖2p,

which implies that Bu is bounded.
Let {µn} ⊂ (0,∞) be such that µn → ∞ as n→ ∞. Then, there exist s0 and t0 such that

(sµn , tµn)→ (s0, t0),

as n→ ∞ (in subsequence sense).
We claim s0 = t0 = 0.
Suppose, by contradiction, that s0 > 0 or t0 > 0. Thanks to sµnu

+ + tµnu
− ∈ Mµn , for any n ∈ N, we

have
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‖sµnu
+ + tµnu

−‖2 + b(
∫
R3
|∇(sµnu

+ + tµnu
−)|2dx)2 + l

∫
R3

(I ∗ |sµnu
+ + tµnu

−|p)|sµnu
+ + tµnu

−|pdx

= µn

∫
R3

f (sµnu
+ + tµnu

−)(sµnu
+ + tµnu

−)dx +

∫
R3
|sµnu

+ + tµnu
−|6dx (2.15)

According to sµnu
+ → s0u+ and tµnu

− → t0u− in E, (2.3) and (2.5), we conclude that∫
R3

f (sµnu
+ + tµnu

−)(sµnu
+ + tµnu

−)dx

→

∫
R3

f (s0u+ + t0u−)(s0u+ + t0u−)dx > 0,

as n→ ∞.
It follows from µn → ∞ as n→ ∞ and {sµnu

+ + tµnu
−} is bounded in E that we have a contradiction

with the equality (2.15). Hence, s0 = t0 = 0.
That is, limµ→∞ cµ = 0. �

Lemma 2.5. There exist µ? > 0 such that for all µ ≥ µ?, the infimum cµ is achieved.

Proof. According to definition of cµ, there is a sequence {un} ⊂ Mµ such that

lim
n→∞

Jµ(un) = cµ.

Obviously, {un} is a bounded in E. Then, up to a subsequence, still denoted by {un}, there exist u ∈ E
such that un ⇀ u.

Since the embedding E ↪→ Lr(R3) is compact, for all r ∈ [2, 6), we have

un → u in Lr(R3),
un(x)→ u(x) a.e. x ∈ R3.

So,

u±n ⇀ u± in E,

u±n → u± in Lr(R3),
u±n (x)→ u±(x) a.e. x ∈ R3.

Denote β := 1
3S

3
2 , where

S := inf
u∈E\{0}

‖u‖2

(
∫
R3 |u|6dx)

1
3

.

According to Lemma 2.4, there is µ? > 0 such that cµ < β for all µ ≥ µ?.
Fix µ ≥ µ?, it follows from Lemma 2.2 that

Jµ(su+
n + tu−n ) ≤ Jµ(un)

for all s, t ≥ 0.
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By the weak lower semi-continuity of norm, Brezis-Lieb Lemma and Lemma 2.1, we have that

lim inf
n→∞

Jµ(su+
n + tu−n ) ≥

s2

2
lim
n→∞

(‖u+
n − u+‖2 + ‖u+‖2) +

t2

2
lim
n→∞

(‖u−n − u−‖2 + ‖u−‖2)

+
bs4

4
( lim
n→∞

(‖u+
n − u+‖21 + ‖u+‖21))2 +

bt4

4
( lim
n→∞

(‖u−n − u−‖21 + ‖u−‖21))2

+
bs2t2

2
lim inf

n→∞
(‖u+

n ‖
2
1‖u
−
n ‖

2
1) + lim

n→∞

∫
R3

(I ∗ |su+
n + tu−n |

p)|su+
n + tu−n |

pdx

− µ

∫
R3

F(su+)dx − µ
∫
R3

F(tu−)dx −
s6

6
lim
n→∞

(|u+
n − u+|66 − |u

+|66)

−
t6

6
lim
n→∞

(|u−n − u−|66 − |u
−|66)

≥ Jµ(su+ + tu−) +
s2

2
A1 +

bs4

2
A2

3‖u
+‖21 +

bs4

4
A4

3 −
s6

6
B1

+
t2

2
A2 +

bt4

2
A2

4‖u
−‖21 +

bt4

4
A4

4 −
t6

6
B2,

where
A1 = lim

n→∞
‖u+

n − u+‖2, A2 = lim
n→∞
‖u−n − u−‖2, A3 = lim

n→∞
‖u+

n − u+‖21,

A4 = lim
n→∞
‖u−n − u−‖21, B1 = lim

n→∞
|u+

n − u+|66, B2 = lim
n→∞
|u−n − u−|66.

From above fact, one has that

cµ ≥ Jµ(su+ + tu−) +
s2

2
A1 +

bs4

2
A2

3‖u
+‖21 +

bs4

4
A4

3 −
s6

6
B1 +

t2

2
A2

+
bt4

2
A2

4‖u
−‖21 +

bt4

4
A4

4 −
t6

6
B2, (2.16)

for all s ≥ 0 and all t ≥ 0.
Firstly, we prove that u± , 0.
Since the situation u− , 0 is analogous, we just prove u+ , 0. By contradiction, we suppose u+ = 0.
Case 1 : B1 = 0.
If A1 = 0, that is, u+

n → u+ in E. In view of Lemma 2.3, we obtain ‖u+‖ > 0, which contradicts our
supposition. If A1 > 0, let t = 0 in (2.16), one hase

s2

2
A1 ≤

s2

2
A1 +

bs4

2
A2

3‖u
+‖21 +

bs4

4
A4

3 ≤ cµ

for all s ≥ 0. Thanks to cµ < β, we have a contradiction.
Case 2 : B1 > 0.
According to definition of S , we have that

β =
1
3

S
3
2 ≤

1
3

(
A1

(B1)
1
3

)
3
2 = max

s≥0
{
s2

2
A1 −

s6

6
B1} ≤ max

s≥0
{
as2

2
A1 +

bs4

2
A2

3‖u
+‖21 +

bs4

4
A4

3 −
s6

6
B1}.

According to (2.16), we have a contradiction.
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From above discussions, we have that u± , 0.
Secondly, we prove that B1 = B2 = 0.
Since the situation B2 = 0 is analogous, we only prove B1 = 0. By contradiction, we suppose that

B1 > 0.
Case 1 : B2 > 0.
Let s̃ and t̃ satisfy

α̃2

2
A1 +

bs̃4

2
A2

3‖u
+‖21 +

bs̃4

4
A4

3 −
s̃6

6
B1 = max

s≥0
{
s2

2
A1 +

bs4

2
A2

3‖u
+‖21 +

bs4

4
A4

3 −
s6

6
B1},

t̃2

2
A2 +

b̃t4

2
A2

4‖u
−‖21 +

b̃t4

4
A4

4 −
t̃6

6
B2 = max

t≥0
{
t2

2
A2 +

bt4

2
A2

4‖u
−‖21 +

bt4

4
A4

4 −
t6

6
B2}.

Since Gu is continuous, there exists (su, tu) ∈ [0, s̃] × [0, t̃] such that

Gu(su, tu) = max
(s,t)∈[0,̃s]×[0,̃t]

Gu(s, t).

In the following, we prove that (su, tu) ∈ (0, s̃) × (0, t̃).
Note that, if t is small enough, we have that

Gu(s, 0) = Jµ(su+) < Jµ(su+) + Jµ(tu−) ≤ Jµ(su+ + tu−) = Gu(s, t),

for all s ∈ [0, s̃]. That is, there exists t0 ∈ [0, t̃] such that Gu(s, 0) ≤ Gu(s, t0) for all s ∈ [0, s̃].
Hence, we conclude that any point of (s, 0) with 0 ≤ s ≤ s̃ is not the maximizer of Gu, and then

(su, tu) < [0, s̃] × {0}. Similarly, we have that (su, tu) < {0} × [0, s̃].
On the other hand, it is easy to see that

s2

2
A1 +

bs4

2
A2

3‖u
+‖21 +

bs4

4
A4

3 −
s6

6
B1 > 0, s ∈ (0, s̃], (2.17)

t2

2
A2 +

bt4

2
A2

4‖u
−‖21 +

bt4

4
A4

4 −
t6

6
B2 > 0, t ∈ (0, t̃]. (2.18)

Then,

β ≤
s̃2

2
A1 +

bs̃4

2
A2

3‖u
+‖21 +

bs̃4

4
A4

3 −
s̃6

6
B1 +

t2

2
A2 +

bt4

2
A2

4‖u
−‖21 +

bt4

4
A4

4 −
t6

6
B2,

β ≤
t̃2

2
A2 +

b̃t4

2
A2

4‖u
−‖21 +

b̃t4

4
A4

4 −
t̃6

6
B2 +

s2

2
A1 +

bs4

2
A2

3‖u
+‖21 +

bs4

4
A4

3 −
s6

6
B1,

for all s ∈ [0, s̃] and all t ∈ [0, t̃].
Therefore, according to (2.16), we have that

Gu(s, t̃) < 0,Gu(s̃, t) < 0

for all s ∈ [0, s̃] and all t ∈ [0, t̃]. So, (su, tu) < {s̃} × [0, t̃] and (su, tu) < ×[0, s̃] × {̃t}.

AIMS Mathematics Volume 5, Issue 5, 4494–4511.



4506

At last, we get that (su, tu) ∈ (0, s̃) × (0, t̃). Hence, it follows that (su, tu) is a critical point of Gu. By
Lemma 2.1, we get suu+ + tuu− ∈ Mµ.

Combining (2.16), (2.17) with (2.18), we infer that

cµ ≥ Jµ(suu+ + tuu−) +
s2

u

2
A1 +

bs4
u

2
A2

3‖u
+‖21 +

bs4
u

4
A4

3 −
s6

u

6
B1 +

t2
u

2
A2

+
bt4

u

2
A2

4‖u
−‖21 +

bt4
u

4
A4

4 −
t6
u

6
B2 > Jµ(suu+ + tuu−) ≥ cµ,

which is a contradiction.
Case 2 : B2 = 0.
In this case, we can maximize in [0, s̃] × [0,∞). Indeed, it is possible to show that there exist

t0 ∈ [0,∞) such that Jµ(suu+ + tuu−) ≤ 0, for all (s, t) ∈ [0, s̃] × [t0,∞). Hence, there are (su, tu) ∈
[0, s̃] × [0,∞) satisfy

Gu(su, tu) = max
s∈[0,̃s]×[0,∞)

Gu(s, t).

Following, we prove that (su, tu) ∈ (0, s̃) × (0,∞).
It is noticed that Gu(s, 0) < Gu(s, t) for s ∈ [0, s̃] and t small enough, so we have (su, tu) < [0, s̃]×{0}.
Meantime, Gu(0, t) < Gu(s, t) for t ∈ [0,∞) and s small enough, then we have (su, tu) < {0} × [0,∞).
On the other hand, it is obvious that

β ≤
s̃2

2
A1 +

bs̃4

2
A2

3‖u
+‖21 +

bs̃4

4
A4

3 −
s6

6
B1 +

t2

2
A2 +

bt4

2
A2

4‖u
−‖21 +

bt4

4
A4

4,

for all t ∈ [0,∞).
Hence, we have that Gu(s̃, t) ≤ 0 for all t ∈ [0,∞). Thus, (su, tu) < {s̃} × [0,∞). And so (su, tu) ∈

(0, s̃) × (0,∞). That is, (su, tu) is an inner maximizer of Gu in [0, s̃) × [0,∞). So, suu+ + tuu− ∈ Mµ.
Therefore, according to (2.17), we get

cµ ≥ Jµ(suu+ + tuu−) +
s2

u

2
A1 +

bs4
u

2
A2

3‖u
+‖21 +

bs4
u

4
A4

3 −
s6

u

6
B1

+
t2
u

2
A2 +

bt4
u

2
A2

4‖u
−‖21 +

bt4
u

4
A4

4 > Jµ(suu+ + tuu−) ≥ cµ.

That is, we have a contradiction.
Therefore, from above discussion, we have that B1 = B2 = 0.
Lastly, we prove that cµ is achieved.
For u± , 0, according to Lemma 2.2, there exist su, tu > 0 such that u : suu+ + tuu− ∈ Mµ.

Furthermore, it is easy to see that
〈J′µ(u), u±〉 ≤ 0.

So,we have that 0 < su, tu ≤ 1.
Since un ∈ Mµ, using Lemma 2.2 again, we get

Jµ(suu+
n + tuu−n ) ≤ Jµ(u+

n + u−n ) = Jµ(un).
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Thanks to (2.14), B1 = B2 = 0 and the norm in E is weak lower semicontinuous, we conclude that

cµ ≤ Jµ(u)) −
1

2p
〈J′µ(u), u〉

= (
1
2
−

1
2p

)‖u‖2 + (
b
4
−

b
2p

)(
∫
R3
|∇u|2dx)2

+
µ

2p

∫
R3

[ f (u)t − 2pF(u)]dx + (
1

2p
−

1
6

)
∫
R3
|u|6dx

= (
1
2
−

1
2p

)(‖suu+‖2 + ‖tuu−‖2) + (
1

2p
−

1
6

)(|suu+|66 + |tuu−|66)

+
µ

2p

∫
R3

[ f (suu+)suu+ − 2pF(suu+)]dx +
µ

2p

∫
R3

[ f (tuu−)suu+ − 2pF(tuu−)]dx

+ (
b
4
−

b
2p

)s4
u(
∫
R3
|∇u+|2dx)2 + (

b
4
−

b
2p

)2s2
ut2

u

∫
R3
|∇u+|2dx

∫
R3
|∇u−|2dx

+ (
b
4
−

b
2p

)t4
u(
∫
R3
|∇u−|2dx)2

≤ (
1
2
−

1
2p

)‖u‖2 + (
b
4
−

b
2p

)(
∫
R3
|∇u|2dx)2

+
µ

2p

∫
R3

[ f (u)u − 2pF(u)]dx + (
1

2p
−

1
6

)
∫
R3
|u|6dx

≤ lim inf
n→∞

[Jµ(un) −
1

2p
〈J′µ(un), un〉] = cµ.

Therefore, su = tu = 1, and cµ is achieved by uµ := u+ + u− ∈ Mµ. �

3. The proof of main results

Proof. (Proof of Theorem 1.1) From Lemma 2.5, we just prove that the minimizer uµ for cµ is indeed a
sign-changing solution of problem (1.1). That is, we need prove J′µ(uµ) = 0. Suppose, by contradiction,
that J′µ(uµ) , 0. Then there exist δ > 0 and θ > 0 such that

‖J′µ(v)‖ ≥ θ, for all ‖v − uµ‖ ≤ 3δ.

Choose σ ∈ (0,min{1/2, δ
√

2‖uµ‖
}). Let D := (1 − σ, 1 + σ) × (1 − σ, 1 + σ) and g(s, t) = su+

µ + tu−µ ,
(s, t) ∈ D.

Thanks to Lemma 2.3, for (s, t) ∈ (R+ × R+)\(1, 1), we have

Jµ(su+
µ + tu−µ ) < Jµ(u+

µ + u−µ ) = cµ.

So, it follows that

cµλ := max
∂D

I ◦ g < cµ. (3.1)

Let ε := min{(cµ − cµλ)/2, θδ/8} and S δ := B(uµ, δ), according to Lemma 2.3 in [50], there exists a
deformation η ∈ C([0, 1] × E, E) satisfy
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(a) η(1, v) = v if v < J−1
µ ([cµ − 2ε, cµ + 2ε] ∩ S 2δ);

(b) η(1, Jcµ+ε
µ ∩ S δ) ⊂ Jcµ−ε

µ , where Jc
µ = {u ∈ E : Jµ(u) ≤ c};

(c) Jµ(η(1, v)) ≤ Jµ(v) for all v ∈ E.
From (b) and Lemma 2.2, it is easy to see that

max
(s,t)∈D̄

Jµ(η(1, g(s, t))) < cµ. (3.2)

Next, we prove that η(1, g(D)) ∩Mµ , ∅, which contradicts the definition of cµ.
Let h(s, t) := η(1, g(s, t)) and

Ψ0(s, t) := (〈(Jµ)′(g(s, t)), u+
µ 〉, 〈(Jµ)′(g(s, t)), u−µ 〉)

= (〈(Jµ)′(su+
µ + tu−µ ), su+

µ 〉, 〈(Jµ)′(su+
µ + tu−µ ), tu−µ 〉)

:= (ϕ1
u(s, t), ϕ2

u(s, t))

and

Ψ1(s, t) := (〈(Jµ)′(h(s, t)), (h(s, t))+〉, 〈(Jµ)′(h(s, t)), (h(s, t))−〉).

Let

M =

 ϕ1
u(s,t)
∂s |(1,1)

ϕ2
u(s,t)
∂s |(1,1)

ϕ1
u(s,t)
∂t |(1,1)

ϕ2
u(s,t)
∂t |(1,1)

 .
From condition ( f3), for t , 0, we have

f ′(t)t2 − (2p − 1) f (t)t > 0.

Therefore, by direct calculation, we can conclude that det M > 0.
Since Ψ0(s, t) is a C1 function and (1, 1) is the unique isolated zero point of Ψ0, by using the degree

theory, we deduce that deg(Ψ0,D, 0) = 1.
So, combining (3.1) with (a), we obtain g(s, t) = h(s, t) on ∂D. Consequently, we obtain

deg(Ψ1,D, 0) = 1. Therefore, Ψ1(s0, t0) = 0 for some (s0, t0) ∈ D. By similar discussion as in [45], we
can prove that h(s, t)± , 0. So, we obtain that η(1, g(s0, t0)) = h(s0, t0) ∈ Mµ, which is contradicted
to (3.2). �

Proof. (Proof of Theorem 1.2) Similar as the proof of Lemma 2.5, there exists µ?1 > 0 such that for all
µ ≥ µ?1 , there exists vµ ∈ Nµ such that Jµ(vµ) = c∗ > 0. By standard arguments, the critical points of the
functional Jµ on Nµ are critical points of Jµ in E and we obtain J′µ(vµ) = 0. That is, vµ is a least energy
solution of system (1.1). According to Theorem 1.1, we know that the system (1.1) has a least energy
nodal solution uµ. Let µ?? = max{µ?, µ?1 }. As the proof of Lemma 2.2, there exist su+ , tu− ∈ (0, 1) such
that su+u+ ∈ Nµ, tu−u− ∈ Nµ. Therefore, in view of Lemma 2.2 again, we infer that

2c∗ ≤ Jµ(su+u+) + Jµ(tu−u−) ≤ Jµ(su+u+ + tu−u−) < Jµ(u+ + u−) = cµ. �
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4. Conclusions

In this paper, by the minimization argument on the nodal Nehari manifold and the quantitative
deformation lemma, we discussed the existence of least energy nodal solution for a class of Kirchhoff-
type system with Hartree-type nonlinearity and critical growth. Our results improve and generalize
some interesting results which were obtained in subcritical case.
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