Research article

Nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order: Two and three solutions

  • Received: 19 July 2021 Accepted: 23 September 2021 Published: 26 September 2021
  • MSC : 35J91, 35A15, 35R11, 35J67

  • In this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems

    $ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\eta|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\eta-|\eta|^{\overline{p}(x)}\eta\right)\\ \; \; \; = \lambda F_{\eta}(x, \eta, \xi)+\mu G_{\eta}(x, \eta, \xi), \; \; x \in \Omega, \\ -M_{2}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\xi(x)-\xi(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\xi|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\xi-|\xi|^{\overline{p}(x)}\xi\right)\\ \; \; \; = \lambda F_{\xi}(x, \eta, \xi)+\mu G_{\xi}(x, \eta, \xi), \; \; x \in \Omega, \\ \; \eta = \xi = 0, \; \; x \in \mathbb{R}^{N}\backslash \Omega, \end{array} \right. \end{equation*} $

    where $ M_{1}(t), M_{2}(t) $ are the models of Kirchhoff coefficient, $ \Omega $ is a bounded smooth domain in $ \mathbb R^{N} $, $ (-\Delta)_{p(\cdot)}^{s(\cdot)} $ is a fractional Laplace operator, $ \lambda, \mu $ are two real parameters, $ F, G $ are continuous differentiable functions, whose partial derivatives are $ F_{\eta}, F_{\xi}, G_{\eta}, G_{\xi} $. With the help of direct variational methods, we study the existence of solutions for nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order, and obtain at least two and three weak solutions based on Bonanno's and Ricceri's critical points theorem. The outstanding feature is the case that the Palais-Smale condition is not requested. The major difficulties and innovations are nonlocal Kirchhoff functions with the presence of the Laplace operator involving two variable parameters.

    Citation: Weichun Bu, Tianqing An, Guoju Ye, Yating Guo. Nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order: Two and three solutions[J]. AIMS Mathematics, 2021, 6(12): 13797-13823. doi: 10.3934/math.2021801

    Related Papers:

  • In this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems

    $ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\eta|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\eta-|\eta|^{\overline{p}(x)}\eta\right)\\ \; \; \; = \lambda F_{\eta}(x, \eta, \xi)+\mu G_{\eta}(x, \eta, \xi), \; \; x \in \Omega, \\ -M_{2}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\xi(x)-\xi(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\xi|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\xi-|\xi|^{\overline{p}(x)}\xi\right)\\ \; \; \; = \lambda F_{\xi}(x, \eta, \xi)+\mu G_{\xi}(x, \eta, \xi), \; \; x \in \Omega, \\ \; \eta = \xi = 0, \; \; x \in \mathbb{R}^{N}\backslash \Omega, \end{array} \right. \end{equation*} $

    where $ M_{1}(t), M_{2}(t) $ are the models of Kirchhoff coefficient, $ \Omega $ is a bounded smooth domain in $ \mathbb R^{N} $, $ (-\Delta)_{p(\cdot)}^{s(\cdot)} $ is a fractional Laplace operator, $ \lambda, \mu $ are two real parameters, $ F, G $ are continuous differentiable functions, whose partial derivatives are $ F_{\eta}, F_{\xi}, G_{\eta}, G_{\xi} $. With the help of direct variational methods, we study the existence of solutions for nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order, and obtain at least two and three weak solutions based on Bonanno's and Ricceri's critical points theorem. The outstanding feature is the case that the Palais-Smale condition is not requested. The major difficulties and innovations are nonlocal Kirchhoff functions with the presence of the Laplace operator involving two variable parameters.



    加载中


    [1] J. B. Zuo, A. Fiscella, A. Bahrouni, Existence and multiplicity results for $p(\cdot) \& q(\cdot)$ fractional Choquard problems with variable order, Complex Var. Elliptic Equ., (2020), 1–17.
    [2] J. B. Zuo, T. Q. An, A. Fiscella, A critical Kirchhoff-type problem driven by a $p(\cdot)$-fractional Laplace operator with variable $s(\cdot)$-order, Math. Methods Appl. Sci., 44 (2020), 1071–1085.
    [3] J. B. Zuo, L. B. Yang, S. H. Liang, A variable-order fractional $p(\cdot)$-Kirchhoff type problemin $\mathbb{R}^{N}$, Math. Methods Appl. Sci., 44 (2020), 3872–3889
    [4] Y. Cheng, B. Ge, R. Agarwal, Variable-order fractional sobolev spaces and nonlinear elliptic equations with variable exponents, J. Math. Phy., 61 (2020), 071507. doi: 10.1063/5.0004341
    [5] R. Biswas, S. Tiwari, Variable order nonlocal Choquard problem with variable exponents, Complex Var. Elliptic Equ., (2020), 853–875.
    [6] P. Pucci, M. Q. Xiang, B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb R^{N}$, Calc. Var. Partial Dif. Equ., 54 (2015), 2785–2806. doi: 10.1007/s00526-015-0883-5
    [7] M. Q. Xiang, B. L. Zhang, Degenerate Kirchhoff problems involving the fractional $p$-Laplacian without the (AR) condition, Complex Var. Elliptic Equ., 60 (2015), 1277–1287. doi: 10.1080/17476933.2015.1005612
    [8] E. Di Nezz, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Math. Sci., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [9] G. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik, Leipzig: Druck Und Verlag Von B. G. Teubner, 1876.
    [10] G. M. Bisci, L. Vilasi, On a fractional degenerate Kirchhoff-type problem, Commun. Contemp. Math., 19 (2017), 1550088. doi: 10.1142/S0219199715500881
    [11] C. E. T. Ledesma, Multiplicity result for non-homogeneous fractional Schrödinger-Kirchhoff-type equations in $\mathbb R^{ N}$, Adv. Nonlinear Anal., 7 (2018), 247–257. doi: 10.1515/anona-2015-0096
    [12] X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonliear Anal., 52 (2003), 1843–1852. doi: 10.1016/S0362-546X(02)00150-5
    [13] N. Nyamoradi, Existence of three solutions for Kirchhoff nonlocal operators of elliptic type, Math. Commun., 18 (2013), 489–502.
    [14] N. Nyamoradi, N. T. Chung, Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory, Electron. J. Differ. Equ., 2014 (2014), 1–12. doi: 10.1186/1687-1847-2014-1
    [15] W. J. Chen, S. B. Deng, The Nehari manifold for a fractional $p$-Laplacian system involving concave-convex nonlinearities, Nonlinear Anal., 27 (2016), 80–92. doi: 10.1016/j.nonrwa.2015.07.009
    [16] T. S. Hsu, Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities, Nonlinear Anal., 71 (2009), 2688–2698. doi: 10.1016/j.na.2009.01.110
    [17] B. Ricceri, On a three critical points theorem, Arch. Math., 75 (2000), 220–226. doi: 10.1007/s000130050496
    [18] S. A. Marano, D. Motreanu, On a three critical points theorem for non differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48 (2002), 37–52. doi: 10.1016/S0362-546X(00)00171-1
    [19] X. L. Fan, S. G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations, Nonlinear Anal., 67 (2007), 3064–3075. doi: 10.1016/j.na.2006.09.060
    [20] G. Bonanno, R. Livrea, Multiplicity theorems for the Dirichlet problem involving the $p$-Laplacian, Nonlinear Anal., 54 (2003), 1–7. doi: 10.1016/S0362-546X(03)00027-0
    [21] G. Bonanno, A critical points theorem and nonlinear differential problems, J. Global Optim., 28 (2004), 249–258. doi: 10.1023/B:JOGO.0000026447.51988.f6
    [22] E. Azroul, A. Benkirane, A. Boumazourh, M. Srati, Three solutions for a nonlocal fractional $p$-Kirchhoff type elliptic system, Appl. Anal., (2019), 1–18.
    [23] F. J. S. A. Corrêa, R. G. Nascimento, On a nonlocal elliptic system of $p$-Kirchhoff-type under Neumann boundary condition, Math. Comput. Model., 49 (2009), 598–604. doi: 10.1016/j.mcm.2008.03.013
    [24] F. Alessio, P. Patrizia, B. L. Zhang, $p$-fractional hardy-schrdinger-kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2018), 1–21.
    [25] J. H. Chen, X. J. Huang, C. X. Zhu, Existence of multiple solutions for nonhomogeneous schrödinger-kirchhoff system involving the fractional $p$-laplacian with sign-changing potential-sciencedirect, Comput. Math. Appl., 77 (2019), 2725–2739. doi: 10.1016/j.camwa.2019.01.004
    [26] E. Azroul, A. Boumazourh, Three solutions for a fractional $(p(x, \cdot), q(x, \cdot))$-Kirchhoff type elliptic system, J. Nonlinear Funct. Anal., 40 (2020), 1–19.
    [27] W. C. Bu, T. Q. An, G. J. Ye, S. Taarabti, Negative energy solutions for a new fractional $p(x)$-Kirchhoff problem without the (AR) condition, J. Funct. Space, 2021 (2021), 8888078.
    [28] Y. Wu, Z. H. Qiao, M. K. Hamdani, B. Y. Kou, L. B. Yang, A class of variable-order fractional $p(\cdot)$-Kirchhoff-type systems, J. Funct. Space, 2021 (2021), 5558074.
    [29] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal., 70 (2009), 3084–3089. doi: 10.1016/j.na.2008.04.010
    [30] X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. doi: 10.1006/jmaa.2000.7617
    [31] O. Kováčik, J. Rákosník, On spaces $L^{ p(x)}(\Omega)$ and $W^{ 1, p(x)}(\Omega)$, Czech. Math. J., 41 (1991), 592–618. doi: 10.21136/CMJ.1991.102493
    [32] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Heidelberg: Springer, 2011.
    [33] S. Bahrouni, H. Ounaies, Strauss and lions type theorems for the fractional sobolev spaces with variable exponent and applications to nonlocal Kirchhoff-Choquard problem, Mediterr. J. Math., 18 (2021), 46. doi: 10.1007/s00009-020-01661-w
    [34] R. Biswas, S. Tiwari, On a class of Kirchhoff-Choquard equations involving variable-order fractional $p(\cdot)$-Laplacian and without Ambrosetti-Rabinowitz type condition, arXiv. Available from: https://arXiv preprint arXiv:2005.09221.
    [35] D. E. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267–293. doi: 10.4064/sm-143-3-267-293
    [36] R. Biswas, S. Tiwari, Multiplicity and uniform estimate for a class of variable order fractional $p(x)$-Laplacian problems with concave-convex nonlinearities, arXiv. Available from: https://arXiv.org/abs/1810.12960.
    [37] G. Bonanno, Multiple critical points theorems without the Palais-Smale condition, J. Math. Anal. Appl., 299 (2004), 600–614. doi: 10.1016/j.jmaa.2004.06.034
    [38] A. Bahrouni, V. Ţ. D. Rǎdulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discret. Contin. Dyn. Syst., 11 (2018), 379–389.
    [39] E. Zeidler, Nonlinear functional analysis and applications, In: Nonlinear monotone operators, Springer-Verlag, New York, 1990.
    [40] G. W. Dai, R. Y. Ma, Solutions for a $p(x)$-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal., 12 (2011), 2666–2680. doi: 10.1016/j.nonrwa.2011.03.013
    [41] B. Barrios, E. Colorado, A. de Pablo, U. Sánchez, On some critical problems for the fractional Laplacian operator, J Differ. Equ., 252 (2012), 6133–6162. doi: 10.1016/j.jde.2012.02.023
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1999) PDF downloads(138) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog