Special Issues

Constructions of three kinds of Bihom-superalgebras

  • Received: 01 May 2021 Revised: 01 July 2021 Published: 01 December 2021
  • Primary: 17A15, 17A60, 17D05, 17D10; Secondary: 17B61

  • The purpose of this paper is to study the constructions between Bihom-alternative superalgebras and Bihom-Malcev superalgebras and Bihom-Jordan superalgebras. First, we explain in detail that every regular Bihom-alternative superalgebra could be Bihom-Malcev-admissible superalgebra or Bihom-Jordan-admissible superalgebra. Next, the bimodules and $ T^*_\theta $-extensions of Bihom-alternative superalgebras are also discussed as properties of Bihom-alternative superalgebras.

    Citation: Ying Hou, Liangyun Chen. Constructions of three kinds of Bihom-superalgebras[J]. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059

    Related Papers:

  • The purpose of this paper is to study the constructions between Bihom-alternative superalgebras and Bihom-Malcev superalgebras and Bihom-Jordan superalgebras. First, we explain in detail that every regular Bihom-alternative superalgebra could be Bihom-Malcev-admissible superalgebra or Bihom-Jordan-admissible superalgebra. Next, the bimodules and $ T^*_\theta $-extensions of Bihom-alternative superalgebras are also discussed as properties of Bihom-alternative superalgebras.



    加载中


    [1] Abdaoui E. K., Ammar F., Makhlouf A. (2017) Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras. Bull. Malays. Math. Sci. Soc. 40: 439-472.
    [2] Cantarini N., Kac V. G. (2007) Classification of linearly compact simple Jordan and generalized Poisson superalgebras. J. Algebra 313: 100-124.
    [3] Chtioui T., Mabrouk S., Makhlouf A. (2020) BiHom-alternative, BiHom-Malcev and BiHom-Jordan algebras. Rocky Mountain J. Math. 50: 69-90.
    [4] Chtioui T., Mabrouk S., Makhlouf A. (2020) BiHom-pre-alternative algebras and BiHom-alternative quadri-algebras. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 63: 3-21.
    [5] Elduque A., Shestakov I. P. (1995) Irreducible non-Lie modules for Malcev superalgebras. J. Algebra 173: 622-637.
    [6] Filippov V. T. (1981) On a varieties of Mal'tsev algebras. Algebra i Log. 20: 300-314.
    [7] Filippov V. T. (1983) Imbedding of Mal'tsev algebras into alternative algebras. Algebra i Log. 22: 443-465.
    [8] Gohr A. (2010) On hom-algebras with surjective twisting. J. Algebra 324: 1483-1491.
    [9] G. Graziani, A. Makhlouf, C. Menini and F. Panaite, BiHom-associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), Paper 086, 34 pp.

    10.3842/SIGMA.2015.086

    MR3415909

    [10] Guo S., Zhang X., Wang S. (2018) The construction and deformation of BiHom-Novikov algebras. J. Geom. Phys. 132: 460-472.
    [11] Kac V. G. (1977) Classification of simple $\mathbb{Z}$-graded Lie superalgebras and simple Jordan superalgebras. Comm. Algebra 5: 1375-1400.
    [12] Liu Y., Chen L., Ma Y. (2013) Hom-Nijienhuis operators and $T^*$-extensions of hom-Lie superalgebras. Linear Algebra Appl. 439: 2131-2144.
    [13] Liu L., Makhlouf A., Menini C., Panaite F. (2020) Rota-Baxter operators on BiHom-associative algebras and related structures. Colloq. Math. 161: 263-294.
    [14] López-Díaz M. C., Shestakov I. P. (2002) Representations of exceptional simple alternative superalgebras of characteristic 3. Trans. Amer. Math. Soc. 354: 2745-2758.
    [15] Makhlouf A. (2010) Hom-alternative algebras and Hom-Jordan algebras. Int. Electron. J. Algebra 8: 177-190.
    [16] Martínez C., Zelmanov E. (2010) Representation theory of Jordan superalgebras. I. Trans. Amer. Math. Soc. 362: 815-846.
    [17] Nan J., Wang C., Zhang Q. (2014) Hom-Malcev superalgebras. Front. Math. China 9: 567-584.
    [18] Racine M. L., Zel'manov E. I. (2003) Simple Jordan superalgebras with semisimple even part. J. Algebra 270: 374-444.
    [19] Sheng Y. (2012) Representations of hom-Lie algebras. Algebr. Represent. Theory 15: 1081-1098.
    [20] Shestakov I. P. (1999) Alternative and Jordan superalgebras. Siberian Adv. Math. 9: 83-99.
    [21] Shestakov I. P., Elduque A. (1994) Prime non-Lie modules for Mal'tsev superalgebras. Algebra i Logika 33: 253-262.
    [22] I. P. Shestakov and S. Gonzalez, Non-associative algebra and its applications, Kluwer Academic Dordrecht, (1994), 372–378.
    [23] S. Wang and S. Guo, BiHom-Lie superalgebra structures and BiHom-Yang-Baxter equations, Adv. Appl. Clifford Algebr., 30 (2020), Paper No. 35, 18 pp.

    10.1007/s00006-020-01060-0

    MR4103390

    [24] Yau D. (2012) Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras. Int. Electron. J. Algebra 11: 177-217.
    [25] E. I. Zel'manov and I. P. Shestakov, Prime alternative superalgebras and nilpotence of the radical of a free alternative algebra, Math. USSR-Izv., 37 (1991), 19–36.

    MR1073082

    [26] R. Zhang, D. Hou and C. Bai, A Hom-version of the affinizations of Balinskii-Novikov and Novikov superalgebras, J. Math. Phys., 52 (2011), 023505, 19 pp.

    10.1063/1.3546025

    MR2798403

    [27] Zhao J., Chen L., Ma L. (2016) Representations and $T^*$-extensions of hom-Jordan-Lie algebras. Comm. Algebra 44: 2786-2812.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1646) PDF downloads(130) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog