Special Issues

Uniqueness and nondegeneracy of positive solutions to an elliptic system in ecology

  • Received: 01 March 2021 Revised: 01 June 2021 Published: 13 August 2021
  • Primary: 35J15, 35J47; Secondary: 35J57

  • In this paper, we study the follwing important elliptic system which arises from the Lotka-Volterra ecological model in $ \mathbb{R}^N $

    $ \begin{equation*} \begin{cases} -\Delta u+\lambda u = \mu_1u^2+\beta uv, & x\in\mathbb{R}^N,\\ -\Delta v+\lambda v = \mu_2v^2+\beta uv, & x\in \mathbb{R}^N,\\ u, v>0, u, v\in H^1(\mathbb{R}^N), \end{cases} \end{equation*} $

    where $ N\leq 5, $ $ \lambda, \mu_1, \mu_2 $ are positive constants, $ \beta\geq 0 $ is a coupling constant. Firstly, we prove the uniqueness of positive solutions under general conditions, then we show the nondegeneracy of the positive solution and the degeneracy of semi-trivial solutions. Finally, we give a complete classification of positive solutions when $ \mu_1 = \mu_2 = \beta. $

    Citation: Zaizheng Li, Zhitao Zhang. Uniqueness and nondegeneracy of positive solutions to an elliptic system in ecology[J]. Electronic Research Archive, 2021, 29(6): 3761-3774. doi: 10.3934/era.2021060

    Related Papers:

  • In this paper, we study the follwing important elliptic system which arises from the Lotka-Volterra ecological model in $ \mathbb{R}^N $

    $ \begin{equation*} \begin{cases} -\Delta u+\lambda u = \mu_1u^2+\beta uv, & x\in\mathbb{R}^N,\\ -\Delta v+\lambda v = \mu_2v^2+\beta uv, & x\in \mathbb{R}^N,\\ u, v>0, u, v\in H^1(\mathbb{R}^N), \end{cases} \end{equation*} $

    where $ N\leq 5, $ $ \lambda, \mu_1, \mu_2 $ are positive constants, $ \beta\geq 0 $ is a coupling constant. Firstly, we prove the uniqueness of positive solutions under general conditions, then we show the nondegeneracy of the positive solution and the degeneracy of semi-trivial solutions. Finally, we give a complete classification of positive solutions when $ \mu_1 = \mu_2 = \beta. $



    加载中


    [1] Bifurcation in a multicomponent system of nonlinear Schrödinger equations,. J. Fixed Point Theory Appl. (2013) 13: 37-50.
    [2] Bifurcations for a coupled Schrödinger system with multiple components,. Z. Angew. Math. Phys. (2015) 66: 2109-2123.
    [3] Symmetry results for semilinear elliptic systems in the whole space,. J. Differential Equations (2000) 163: 41-56.
    [4] Stable coexistence states in the Volterra-Lotka competition model with diffusion,. SIAM J. Appl. Math. (1984) 44: 1112-1132.
    [5] Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species,. J. Differential Equations (2011) 251: 2737-2769.
    [6] Dynamics of strongly competing systems with many species,. Trans. Amer. Math. Soc. (2012) 364: 961-1005.
    [7] Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,. Trans. Amer. Math. Soc. (2009) 361: 1189-1208.
    [8] Dynamics of Lotka-Volterra competition systems with large interaction,. Journal of Differential Equations (2002) 182: 470-489.
    [9] Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,. Comm. Pure Appl. Math. (1994) 47: 1571-1594.
    [10] On interacting bumps of semi-classical states of nonlinear Schrödinger equations,. Adv. Differential Equations (2000) 5: 899-928.
    [11] Blow-up in a three-species cooperating model,. Appl. Math. Lett. (2004) 17: 89-94.
    [12] A general monotone scheme for elliptic systems with applications to ecological models,. Proc. Roy. Soc. Edinburgh Sect. A (1986) 102: 315-325.
    [13] On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion,. Appl. Anal. (1987) 26: 145-160.
    [14] Uniqueness of positive solutions of {$\Delta u- u+ u^p = 0$} in {$R^n$},. Arch. Rational Mech. Anal. (1989) 105: 243-266.
    [15] Monotone schemes for semilinear elliptic systems related to ecology,. Math. Methods Appl. Sci. (1982) 4: 272-285.
    [16] Critical exponents and lower bounds of blow-up rate for a reaction-diffusion system,. Nonlinear Anal. (2005) 63: 1083-1093.
    [17] Z. Lin, Blowup estimates for a mutualistic model in ecology,, Electron. J. Qual. Theory Differ. Equ., (2002), no. 8, 14 pp. doi: 10.14232/ejqtde.2002.1.8
    [18] The periodic predator-prey Lotka-Volterra model,. Adv. Differential Equations (1996) 1: 403-423.
    [19] Coexistence regions in Lotka-Volterra models with diffusion,. Nonlinear Anal. (1992) 19: 11-28.
    [20] Necessary and sufficient condition for the existence of positive solutions of certain cooperative system,. Nonlinear Anal. (1996) 26: 1079-1095.
    [21] On diffusion-induced blowups in a mutualistic model,. Nonlinear Anal. (2001) 45: 329-342.
    [22] Liouville theorems, universal estimates and periodic solutions for cooperative parabolic Lotka-Volterra systems,. J. Differential Equations (2016) 260: 3524-3537.
    [23] P. Quittner and P. Souplet, Superlinear Parabolic Problems, , 2$^nd$ edition, Birkhäuser/Springer, Cham, 2019. doi: 10.1007/978-3-030-18222-9
    [24] Existence and bifurcation of solutions for a double coupled system of Schrödinger equations,. Sci. China Math. (2015) 58: 1607-1620.
    [25] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem,. J. Differential Equations (1996) 129: 315-333.
    [26] Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations,. Commun. Pure Appl. Anal. (2012) 11: 1003-1011.
    [27] Z. Zhang, Variational, Topological, and Partial Order Methods with Their Applications, , Springer, 2013. doi: 10.1007/978-3-642-30709-6
    [28] Structure of positive solutions to a Schrödinger system,. J. Fixed Point Theory Appl. (2017) 19: 877-887.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1979) PDF downloads(191) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog