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Abstract: In this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems
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where M,(t), M,(t) are the models of Kirchhoff coefficient, Q is a bounded smooth domain in R,
(—A);(('.)) is a fractional Laplace operator, A, u are two real parameters, F, G are continuous differentiable
functions, whose partial derivatives are F,, F¢, G,, G.. With the help of direct variational methods,
we study the existence of solutions for nonlocal fractional p(-)-Kirchhoff systems with variable-order,
and obtain at least two and three weak solutions based on Bonanno’s and Ricceri’s critical points
theorem. The outstanding feature is the case that the Palais-Smale condition is not requested. The
major difficulties and innovations are nonlocal Kirchhoff functions with the presence of the Laplace
operator involving two variable parameters.
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1. Introduction and the main results

The study of the existence and multiplicity solutions for nonlocal elliptic systems boundary value
problems and variational problems has attracted intense research interests for several decades. In this
paper, we investigate the existence of nontrivial solutions for a class of p(-)-Kirchhoff systems

P(x.y)

_ n00-n0)| ™ ) (A% )
M (fRNxRN ST Axdy + Jo 55 )(Apo” ")

= AF,(x,n,&) + ,uG,,((x,) n,&), x€Q,
- e g s() e
_MZ( RNXRN p(x’y)|x_y|13+p(x,y)s<)~y) dXdy + j;) D(x) )(Ap(.)é: - |§|p( )é:)
= /lFf(x’ n, f) + #Gf(x, n, f), X € Q’
=£=0, x e RM\Q,

(1.1)

where M (1), M>(t) : [0,+00) — [0, +00) are the models of Kirchhoff coefficient, Q is a bounded
smooth domain in R¥, A, u are two real parameters. F,G are differentiable and measurable functions
inR?forallxe Q, F »» Fe are the partial derivatives of F, G,, G are the partial derivatives of G, whose
assumptions will be introduced later.

The fractional p(-)-Laplace operator (— A)‘()

with variable s(-)-order is defined as

w(x) — v (W(x) = v(y))

| X — y|N +p(x,y)s(x,y)

(=AY u(x) := P

() dy, forall x € RY, (1.2)

RN

where v € C°°(RN ) and P.V. stands for the Cauchy principal value. (— A)S() is a nonlocal operator of

elliptic type, which is connected with the Sobolev space of variable exponent Concerning this kind of
operator problems, here we just list a few pieces of literatures, see [1-4]. Especially, Biswas et al. [5]
firstly proved a continuous embedding result and Hardy-Littlewood-Sobolev-type result, and then the
existence and multiplicity of solutions were obtained by variational approaches. When s(-) = constant
and p(-) = constant, (— A)v() in (1.2) reduce to the usual fractional Laplace operator (—A)¢, see [6-8]
for the essential knowledge

Throughout this paper, s(-),p(-) € C.(D) are two continuous functions that the following
assumptions are satisfied.

(S): s(-) : Qx Q — (0,1) is symmetric, namely, s(x,y) = s(y, x) for any (x, y) € Q x Q with 5(x) =
s(x, x);

P): p(): OxQ — (1, +00) is symmetric, namely, p(x,y) = p(y, x) for any (x,y) € Qx Q with p(x) =
p(x, x).

Kirchhoft in [9] introduced the following Kirchhoff equation

9*&(x) (Po L E " |9€(x) dx) PPE(x)

ot

=0, 13
P88 hn 2L ox2 (1.3

where p, po, h, E, L with physical meaning are constants. A characteristic of Eq (1.3) is the fact that it
9£(x)

contains a nonlocal item £ + Z | dx, and then this type of equation is called nonlocal problem.

(1%
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From then on, the existence, multiplicity, uniqueness, and regularity of solutions for various Kirchhoft-
type equations have been studied extensively, such as, see [10—14] for further details.

The continuous Kirchhoff terms M;(?) : R; — R*, (i = 1,2) are strictly increasing functions, which
the following conditions are satisfied.

(M): There exist m; = m;(¢) > 0 and M; = M;(¢v) > 0, (i = 1,2) for any ¢ > O such that

M; > M(t)>m;forallt>,(i=1,2)

and put

t
M;(t) = f M;(s)ds forall r € Ry, (i = 1,2).
0

In recent years, a multitude of scholars has devoted themselves to the study of Kirchhoff-type
systems. When M;(¢) = 1 and M,(¢) = 1, Chen et al. in [15] consider the nontrivial solutions for the
following elliptic systems.

(=D = A=y + 25 niéP, xeQ,

(—A)E = A2 + Ljef2emle, xeQ, (1.4)

a+f

n=£¢6=0, xe RN\Q,

by utilizing Nehari manifold method and Fibering maps, they studied the existence of weak solutions
for this kind of problem (1.4). Moreover, it has been applied in the local case s = 1 in [16].

In the famous literature [17], the three critical points theorem was established by Ricceri. Starting
from this paper, Marano and Motreanu in [18] extended the result of Ricceri to non-differentiable
functionals. Subsequently, Fan and Deng in [19] studied the version of Ricceri’s result including
variables exponents. Ricceri’s result in [20] has been successfully applied to Sobolev spaces Wé’p (Q),
and then at least three solutions are obtained. Furthermore, Bonanno in [21] established the existence
of two intervals of positive real parameters A for which the functional ® — AJ has three critical points,
and applied the result to obtain two critical points.

By using three critical points theorem, Azroul et al. [22] discussed the fractional p-Laplace systems
with bounded domain

M,

—

[710,) (—A)n = AF,(x,7,€) + uG,(x,0.), x€Q,

[€17,) (~A)SE = AFe(x,0,€) + pGe(x,n.€), x€Q, (1.5)
£=0, xe RN\Q,

M,
n

—

thus, the existence and multiplicity of solutions were obtained by Azroul et al. In addition, there are
many scholars who have used different methods to study the existence of elliptic systems on bounded
and unbounded regions, for instance, see [23—25] for details.

With respect to the fractional p(-)-Laplace operators, Azroul et al. [26] dealt with the class of
Kirchhoff type elliptic systems in nonlocal fractional Sobolev spaces with variable exponents and
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constant order ]
M (IS,P(X,y)(U)) ((—A);(x")n + |77|P(X)—277)

= AF,(x,n,&) + uG,(x, 1, fz, in Q,

M (I, @) (05, € + 1E7972¢) (1.6)
= AFf(xa n, é‘:) + /JGE(X’ n, é‘:)a in Qa

n=¢=0, inRM\Q,

_ ) ()
Iyren(@) = f lw(x) — w(y)| dxdy + f lw(x)| dx.
Q Q

xq F(,y)|x — y|N+r(x,y)s o)

Based on the three critical points theorem introduced by Ricceri and on the theory of fractional Sobolev
spaces with variable exponents, the existence of weak solutions for a nonlocal fractional elliptic system
of (p(x, -), g(x, -))-Kirchhoff type with homogeneous Dirichlet boundary conditions was obtained. By
using Ekeland’s variational principle and dual fountain theorem, Bu et al. in [27] obtained some new
existence and multiplicity of negative energy solutions for the fractional p(-)-Laplace operators with
constant order without the Ambrosetti-Rabinowitz condition.

Previous studies have shown that the fractional p(-)-Laplace operators with variable-order are much
more complex and difficult than p-Laplace operators. The investigation of these problems has captured
the attention of a host of scholars. For example, Wu et al. in [28] considered the fractional Kirchhoff
systems with a bounded set Q in R", as follows:

where

p(x.y)

A

= f(,6) + a(x), X € Q, 17
Py s X
MZ (f »ﬁl‘{ZN p(xg;‘x)_jgzl;(x,y)s(x.y) d‘Xdy) (_A)p(())é‘:(X)

=g(n,&) +b(x), x€Q,
n=£&=0, xe R"\Q,

by applying Ekeland variational principle, they obtained the existence of a solution for this class of
problem.
When p = 0, problem (1.1) reduces to the following fractional Kirchhoff-type elliptic systems

In()-no)" Il 5C) 5
_Ml (fRNXRN PO,y x—yN POy dXdy + j;) P(x) dx (Ap(.)ﬂ - |77|p(X)77)

= AF,(x,1,§), x € Q,

P(x.y)

X)— P(x) s(- Sx
_MZ (\ﬁl‘%NXRN p(,\ﬁ;|x)—f|/(Vy+)Ip(x,y)x<x,y) dXdy + fg lé;(x) dX) (Ap((.))f - |§|p( )6)
= AFe(x,n, ), x €L,
n=£&=0, xe R"\Q,

(1.8)

Motivated by the above cited works, we take into account the nonlocal fractional Kirchhoff-type
elliptic systems with variable-order. Our aims are to establish the existence of at least three solutions for
problem (1.1) by utilizing Ricceri’s result in [29] and obtain the existence of at least two solutions for
problem (1.8) with the help of the multiple critical points theorem in [37]. The primary consideration of
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the paper is an extension of the results found in the literatures and our results are new to the Kirchhoft-
type systems in some ways.

For simplicity, C; (j = 1,2,...,N) are used in various places to denote distinct constants, i = 1,2,
and we denote

C.(®):={H(OHeCOR): 1 <H ()<H()SH(-) < 400},
where H(-) is a real-valued function and
H () := mgnﬂ(-), H () = mgxﬂ(-).

F : QxR? > Ris a C'-function, whose partial derivatives are F,, F;, which satisfy the following
conditions.

(F1): For some positive constant C, there exist a(x),8(x) € C,(D) and 2 + a* + 87 < p~ such that

|Fy(x, 5,0)| < Cls|"™@ D |Fy(x, s,0)| < C|s|™ 7P forall (x,s,1) € QxR XR;
(F2):_F(x, s,t) > 0 forany (x,s,t) € Q x [1,+oo_) X [1,+00), and F(x,s,t) < O for any (x,s,t) €
Qx(0,1)x(0,1), F(x,0,0) =0 fora.e. x Q.

G : Q xR? — R is a C!-function, whose partial derivatives are G,, G¢, which satisfy assumptions,
as follows:

(G): SUP|<p <o (1Gy(xs 5, D + |Ge(x, 5, 1)) € LY(Q) for all o > 0.

Definition 1. We say that (1, ¢) € Xj is a (weak) solution of nonlocal Kirchhoff systems (1.1), if

(o) =)™ P )
M dxdy + ——dx
] (fRNxRN (e )l — y e T 50
In(x) = nI™"” @(x) = (@) = ¢(») -
- UM Jx — y[VEPCesCe) dudy | I+

— eI P
M, f I€(x) = () dxdy + f Ifl d
RVsy PX, Y)|x — y[NFPO)sEy) o P(x)

E() — EI™EX) = EONW(x) = YY) o
=41 fg Fp(x,n,&)¢dx + A L Fe(x,n,Edx
y fg Gy, 7. )pdx + fg Ge(x.m. )W, (1.9)

for any (¢, ¥) € Xy, and we will introduce X, in Section 2.
Define the corresponding functional / : Xy — R associated with Kirchhoff systems (1.1), by

1(n,8) := @, &) + ¥, &) + uJ (1, 6), (1.10)
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for all (,¢) € Xy, where

J1.€) = - fg G médx, Paé) = - fg F(x,n,8)dx, (L11)
O, £) = My (8,0(0) + M (6,0,(6)). (1.12)
5,00 V) = f o) —vo)™ f Gy (1.13)
PN v pray)lx — yVereemseean T | Say '

The functions @, ¥, J : Xy — R are well defined, and we define their Gateaux derivatives at (17, &) €
X(), by

(J' (0,8, (@, )y = - fg Gy(x, 7, E)pdx - fg Ge(x, n, E)pdx, (1.14)
W80 == [ Funogds= [ Fecxnowdx, (1.15)
(@' (7, €), (@, 1)) = My (8,0(0)) (1, 9 + M3 (8,01 (©)) (&, ), (1.16)

for all (¢, ¥) € X,, where

_ w(x) — v (W(x) = v))(B(x) — B())
<U9 ¢> - RV ARV

|x — y|N+P(X>)’)S(xsy)

dxdy + f PP vgdx, (1.17)
Q

for all (v, ¢) € X,.
Hence, (7,¢) € X is a (weak) solution of Kirchhoff systems (1.1) if and only if (7, &) is a critical
point of the functional /, that is

I'(n,é) =0 (n,&) + AV (n, &) +u'(n,¢) = 0. (1.18)
Definition 2. For s*p* < N, and denote by A: there exists a kind of functions ¥ : Q X R? — R such

that two Carathéodory functions ¥, = %—Z and ¥ = %—?, satisfying

Fi(x, 5,0 s
su [ee}
cnetiaasz 1+ [P0 4 7]
b 2 t

and sup Filx, 5,1 < +00, (1.19)

(rsneaxkxr 1+ [P 4 [f?0-1

for any 9(x) € [1, p;(x)).
Now, let us show our results in this article.

AIMS Mathematics Volume 6, Issue 12, 13797-13823.
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Theorem 1.1. For s(-), p(:) € C.(D) with s*p* < N and F € A, assume that (S), (P), (M), (FI) and
(F2) are satisfied. There exist three constants a,ci,c, > 0O with0 <y <1 < ¢ < ¢, such that

M*A(c;)) < m_H(cy,a), M'A(c;) < m_H(cy,a). (1.20)

Then, for any

Mty  m.y . { 1 1 })
A€ s min 5 s
CyH(cr,a) Cy A(cr) Alc)
there exists a positive real number p such that the system (1.8) has at least two weak solutions w; =
(mj, &) € Xo(j = 1,2) whose norms ||wj|| in X, are less than some positive constant p.

Theorem 1.2. For s(-), p(:) € C.(D) with s*p* < N and F € A, assume that (S), (P), (M), (FI) and
(F2) are satisfied. Then there exists an open interval A C (0, +00) and a positive real number p with
the following property: For each A € A and for two Carathéodory functions G,, G¢ :Q X R* —> R
satisfying (G), there exists 6 > 0 such that for each u € [0, 0], problem (1.1) has at least three weak
solutions w; = (;,&;) € Xo(j = 1,2, 3) whose norms ||wj|| in X, are less than some positive constant p.

Remark 1.1. Existence results for the Kirchhoff-type elliptic systems with both boundary value
problems and variational problems were obtained according to using critical points theorem by
Ricceri and Bonanno, respectively, where the condition of Palais-Smale is not satisfied.

Remark 1.2. The nonlocal Kirchhoff coefficient M,(t), M,(t) stir up some of the fundamental
difficulties. To deal with these difficulties, we suppose that M,(¢), M,(t) are strictly increasing
functions, and then prove that the function @’ is a homeomorphism.

The remaining of this article is organized as follows: Some fundamental results about the fractional
Lebesgue spaces and Sobolve spaces are given in Section 2. In Section 3, in order to use critical point
theory, we prove some technical lemmas. Theorem 1.1 and Theorem 1.2 are proved in Section 4.
Finally, we make a conclusion in Section 5.

2. Preliminary

2.1. Variable exponents Lebesgue spaces

To study Laplacian problems with variable exponents, we need to recall a slice of preliminary
theories on generalized Lebesgue spaces L") (Q) and give some necessary lemmas and propositions.
For any {#(x) € C,(D), the generalized Lebesgue spaces with variable exponents is defined by

L'™@Q) = {f | & : Q — R is a measurable function and f €17 dx < 00}
Q
with respect to the norm
£
dx < 1} ,

Elloc =inf{)(> 0: f £
olX

then, the spaces (L"(Q), || - |ls(v) is a separable and reflexive Banach space, see [30,31].
Let J(x) be the conjugate exponent of ¥(x), namely

1 1
— + —=1, forall x € Q.
Fx)  9(x)

AIMS Mathematics Volume 6, Issue 12, 13797-13823.
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Lemma 2.1. (see [31]) Assume that & € L’™(Q) and n € LE(")(Q), then

1 1
Endx| < (o= + = Illloc il < 2lElloc il
‘L | (ﬁ 19—) I W) P (x)

Proposition 2.1. (see [30,32]) If we define

Po(é) = f 1"V dx,
Q
then for all &,,& € LY (Q), the following properties are possessed.

(D) 1Ellacy > 1= 1€l < pocn(©) < 1€l

@) Iélloy < 1= 1éllfen < oo < €Iy,

3) Ellsy < 1 (resp. = 1,> 1) & pyy(&) < 1 (resp. = 1,> 1)),
@) llEllyy — O (resp. = +00) & py(&n) = 0 (resp. — +00),
®) ,}l_fg &0 = Eloy =0 & ,}Lflgopla(x)(fn -&)=0.

Remark 2.1. Note that for any function ﬁl(x),_ﬁz(x) € C+(§) and 9(x) < P,(x), there exists an
embedding L"™(Q) — L"™(Q) for any x € Q. Especially, when ©(x) = constant, the results of
Proposition 2.1 still hold.

2.2. Fractional Sobolev spaces with variable-order

From now on, we briefly review a slice of essential lemmas and propositions about the Sobolev
spaces, which will be used later. The readers are invited to consult [33-35] and the references therein.
The fractional Sobolev spaces W*O-*0)(Q) is defined as

[E(x) — EQIP

axq X = y|NTPEsCoy)

W = wOroQ) .= {g € L"(Q) : dxdy < oo}

and it can be endowed with the norm

IENlw = 1ll5e) + [€lsy,p) for all & € W,

- (x,y)
[€]stypy = inf {x >0: f 600 = SO )y < 1},
Q

w0 YPO|x — y|N+pley)s(xy)

where

then, the spaces (W, || - |lw) is a separable and reflexive Banach space, see [2, 5] for a more detailed.
We define the new fractional Sobolev spaces W’ concerning variable exponent and variable-order
for some y > 0.

[E(x) — EQIP

Xl’(x’)’)l_x — y|N+P(X,y)S(Xa)’

W’:{f:RN—)RZ.beLP(')(Q)I and f )dxdy<oo},
Q

where Q = R?M\(Q¢ x ©Q°) and it can also be endowed with the norm

1Ellwe = 1i€llpe) + [Elw for all € € W,

AIMS Mathematics Volume 6, Issue 12, 13797-13823.
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where

_ (x,)
[E]w :inf{)(>0: f 60 = STy < 1}.
Q

K PEN | x — y|N+PCoy)s(ey)

Remark 2.2. Note that the norm || - ||w is different from || - ||y~ for the reason that Q x Q c Q and
AxQ+Q.

Let
Wo={¢eW :£=0, ae inR"\ Q|

with the norm

— (x,y) _ (x,y)
€llw, = inf {X 50- f £Cx) — £ dxdy = f E(x) — E(y)|PE dxdy < 1}.
Q RVXRN

PO x — y|N+Py)sCey) K PN | x — y|N+PCeysey)

W denotes the dual spaces of Wj.
In what follows, X, will denote the Cartesian product of two fractional Sobolev spaces W, and W),
1.e. Xo = Wy X W,. Defined the norm

12, Ollxo = lnllwy + NlEllw,.

where [|77llw,, |I€llw, 1s the norm of W,

Theorem 2.1. (see [2]) Let s(-), p(-) € C.(D) satisfy (S) and (P), with N > p(x,y)s(x,y) for all
(x,y) € Qx Q. Let ¢(x) € C, (D) satisfy

1 <¢ =mind(x) < ¢(x) < pi(x) = Np(x) for any x € Q,

€0 N = p(x)s(x)’

where p(x) = p(x, x) and s(x) = s(x, x). Then, there exists a constant Cy = C4(N, s, p, ¢,€2) > 0 such
that

I€llpcy < CollEllw,
for any & € W. Moreover, the embedding Wy — L(Q) is compact.

Proposition 2.2. (see [36]) If we define

_ (x,)
p;(())(f) — f |§(.X) f(Y)V) Y dXdy + f |§|ﬁ(X)d_x’
RN Q

RN |x — y|N+p(x,y)S(x,y)

then for all &,,& € Wy, the following properties hold.

(1) lillw, < 1 (resp. = 1,> 1) & p2 ) (€) < 1 (resp. = 1,> 1),

@) léllw, < 1= Il < P50 < lilly,
3) lléllw, > 1= Il <50 < lilly,

(4) lim [|€,]lw, = O (resp. — +00) & lim p°

p()
(5) lim i€, = £llw, = 0 & lim p} (£, — ) = 0.

(&) = 0 (resp. = +00),

AIMS Mathematics Volume 6, Issue 12, 13797-13823.
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In order to prove our main results, we present two multiple critical theorems: The first ensures the
existence of two critical points, while the second establishes the existence of three critical points due
to Ricceri.

Theorem 2.2. (see [37]) Let X be a reflexive real Banach space, and let ®,¥Y : X — R be two
sequentially weakly lower semicontinuous functions. Assume that © is (strongly) continuous and
satisfies limy . @(17) = +o0. Assume also that there exist two constants ry and r, such that

(l) il;l(fq)<l"1 < 1y,

(i)  @i(r) < @a(r1, 1),
(iii)  @1(r2) < @a(r1, ),

where

V() —inf, 5= Y1)
ei(r) = inf e
ned®~1 (~co.r;) ri — ®(n)

_ () - ¥()
oo(r1,1m2) = inf sup  ———2°,
ne®(=e0,1) g1y ) PE) — D(17)

2

fori=1,2and ®(—oo, ;) is the closure of ®~' (o0, r;) in the weak topology. Then, for each

A€ (;,min {;, ;}) ,
@2(r1,12) e1(r1)” @a(r2)

the functional ® + AY has two local minima which lie in ®~'(—oco, r|) and ®~'[ry, r,), respectively.

Theorem 2.3. (see [29]) Let X be a reflexive real Banach space ® : X — R is a continuously Gdateaux
differentiable and sequentially weakly lower semicontinuous functional whose Gdteaux derivative
admits a continuous inverse on X* and @ is bounded on each bounded subset of X; ¥ : X — Risa
continuously Gdteaux differentiable functional whose Gdteaux derivative is compact, I C R an
interval. Assume that

Hlﬁm (@) + A¥() = +oo,

TR

for A € I, and that there exists r € R and ny,n, € X such that

D(no) <r < ®(m),
. (@(@71) — r)¥(mo) + (r — D(170))¥(171)
n€®‘}2£wﬂ)q’(n) g D(n1) — D(no) '

Then there exists an open interval A C I and a positive real number p with the following property: For
every A € A and every C'-functional J : X — R with compact derivative, there exists § > 0 such that
for each u € [0, 6] the equation

' () + A (7) +uJ' () =0

has at least three solutions in X whose norms are less than 9.
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3. Some technical lemmas
In this section, in order to use critical point theory for Kirchhoff systems (1.1), we need the following
crucial lemmas, which will play an important role in the proof of our results.

Lemma 3.1. Assume that the functions G,F € A, then ;¥ € C "Xy, R) and their derivatives are
defined as (1.14) and (1.15) for all (¢, ¥) € Xo. Moreover J', ¥’ : Xo — R is compact.

Proof. Here we follow the approach in [22], for completeness, we give the proof process. Suppose
that s*p* < N, we prove that J'(n, &) is continuous operator. Set {(17,,&,)} € Xo with (17,,,&,) = (17, €)
strongly in X,,. According to Theorem 2.1, we obtain

(s &n) = (7, €) in L"(Q) x L"(Q).
So, for a subsequence denoted by {(17,,, &,)}, there exist functions 'ﬁ,g e L’™(Q) such that
N, —n, & —& ae inQ,

el <77, 1l <€ ace.inQ,

foralln € ~N _
Fix (17,€) € X, with ||(77,8)llx, < 1. Since G € A, combining Lemma 2.1 with Theorem 2.1, we
obtain

[T (1 &) = T (1,6, @7, 6))|
< | [ [6a6 e = Gyt )

+ L I:Gg(x, nn,fn)dx - Géj(x’ n, é:)] de

< GGy (x, 10, &) — Gyl x, 7, §)||Lﬂ’<X>(Q)||m|Lﬂ(X>(Q)
+ C3lIGe(x, 1 £0) = Ge(x, 7, Ol o 1€l oo
< CllG (%, s €0) = Gy, 10, )l o | Tl
+ CillGe(x, s &) — Ge(x, 1, Ol oy E o
< Cy (G (x, 7y &0) = Gyl 1, Oy
HIG (X, s £2) = G 7. )l iy ) 137 O,

Consequently, for [|(77, O)llx, < 1, we get

K7 G ) = 7 1.6). @. ),

< C4||GT](-X’ Nns fn) - Gf(-x’ n, f)”L")/(«V)(Q)
+ CallGe(x, My 0) — Ge(x, 10, )l o)

According to Definition 2, we deduce

Gy (X, M, &) — Gy(x,m, &) > 0asn — o0 a.e. x € Q,
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Ge(xX,1p, &) — Ge(x,1,€) > 0asn — oo a.e. x € Q
and

|G77(x’ 77n, é:n)l < Cs(l + |7—7|19(x)—1 + IE'ﬂ(X)—l)’
Ge(x, 1 €)1 < Cs(1+ 1"+ 707,

using the dominate convergence theorem, we have

G (X, 1, €0) = Gp(x, 1, E)| vy — 0 asn — oo a.e. x € Q,
||G§(x, Mn>&n) — Gg(x, n, §))||Lﬂ'(x)(g) —0asn— o a.e. xe€Q.

So, this prove that J'(n, £) is continuous operator.

We show the operator J'(7, €) is compact. Let {(17,,&,)} be a bounded subsequence in X,. Arguing
in the same way as above, we obtain that the sequence {J'(n,,&,)} converges strongly, therefor the
operator J'(n, £) 1s compact.

Similarly, we also deduce that ¥’'(n, £) is continuous and compact. O

Lemma 3.2. Assume that (M) is satisfied. Then

(i) @ is sequentially weakly lower semicontinuous and bounded on each bounded subset,
(ii)) @' : Xo — X; is a strictly monotone and continuous operator,
(iii) @' : Xy — X; is a homeomorphism.

Proof. (1) Since A7Il’ ) > m; > 0, Z\7I,-(t) are increasing function on [0, +c0). Argue in a similar way
from [38, Lemma 2.4], the operators n +— N G)) and £ — 6, (&) are strictly monotone. From [39,
Proposition 25.10], 6,y(17) and 6,,(£) are strictly convex. Set {(17,,&,)} C X, be a subsequence such
that

n, —n,& — EinW,.
Based on the convexity of 6,,(17) and 6, (£), we obtain

Sy (1) = Gy (1) = {87, (1), 170 — 1) (3.1)
and
Sp)(€n) = Op() (&) 2 (67, (), & — ). (3.2)
Thus, we have
Gpi () < M Nf 8, (77) (3.3)
and
8p(€) < liminf 6, (&), (3.4)

namely, the operators 17 — 6, (17) and &€ = 6,,(,(£) are sequentially weakly lower semicontinuous.
On the other side, since ¢t — M;(¢) are continuous and monotonous functions, we obtain
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liminf ©(1,,, &,) = liminf M;(6,,(7,)) + liminf M5(8,,(€,))
>M, (lim inf 5,,(.)(77,,)) + i, (lim inf 5p(.)(g,,))
> M, (6,0() + M2 (5,0,(©) = D1, ). (3.5)

Consequently, the operator @ is sequentially weakly lower semicontinuous.
Right now, we claim that @ is bounded on each bounded subset of X,. Set {(7,,&,)} C X, be a
bounded subsequence. By Proposition 2.2, there exist constants Cg, C7 > 0 so that

517(.)(7]) < C6 and 5p(-)(§) < C7.
Since M 1 and A712 1s monotone, we have

D17, £4) =M1 (805 (11)) + Ma(S,0)(£n))
<M,(Cg) + My(C-). (3.6)

Hence, the operator @ is bounded.
(i) Let (M) is satisfied, then ® € C'(X,,R), and its derivatives are defined by (1.16), we have

(@' (1.£). (0. 1)) = (D). @) + (D). ), (3.7)
where
(@), @) =M (8,5(D) {17, )
and (D(&), Y) =M (5,/(€)) (&, ¥, (3.8)

for all (,£), (¢, ¥) € Xo. Therefore, '(n, £) € X;, where X denotes the dual spaces of X.

In the first place, we show that @’ : X, — X[ is a strictly monotone operator. Since @, (1) and ®x(&)
are strictly monotone operators (see [40],Theorem 2.1), @’ is a strictly monotone operator.

Next, we claim that @ : X, — X is a continuous operator. Set {(1,, £,)} C Xj be a sequence, which
converges strongly to (1, £) in Xy. So, for a subsequence denoted by {(7,, £,)}, we suppose

M, = n,& — & ae. in Q.

Then, the sequence

I1,(2) = 0™ (%) = 7,(7))
{ I — Y| (VPGP () } (3.9)
and .
1€,(x) = £ (E(X) = E,())
{ I — (VPGS P ) } (3.10)

are bounded in L” (RY x R"), and we have
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12(%) = 7. (1,(%) = 7,())

lx — y|& +p(xy)s(x.))/p’(x.y)

pxy)-2
LI — a0 —n() (3.11)

|x — y|(N +p(xy)s(xy)/ p’(x.y)

and

16,(0) = E™ En(x) = E,)

|x — y|N+PEY)sCey)/p' ()

p(x.y)-2
LIk -0 ) - f(y))‘ (3.12)

|x — y|(N+p(x,y)S(x,y))/p’(x,y)

According to the Brezis-Lieb lemma [41], combining (3.11) with (3.12) implies
f [7:(0) = O™ (0 (x) = 1)
RNVNxRN

|x — y|(N +p(x.y)s(xy))/ p’(x.y)

) =" ) = 1)
|x — y|(N+p(x,y)s(x,y))/p’(x,y)

i [ (mn(x)—nn(yn " i) — o) ) iy 513
RN xRN

R0 |x — yNPEDs@y) |y — y| NSy

p'(xy)

dxdy

and

16,(0) = EI E(x) = E,)

|x — y|&¥ +pEY)SE)/ P’ (x.y)

) = £ Em) - £0)

|x — y|NH+PEY)sCoy)/p' (xy)

px.y) p(x.y)
_ lim f (Ifn(X) — &)l l£Cx) — £ ) dxdy. (3.14)
RN XRN

n—oo |x — y|N+PCeysiey) B |x — y|N+PCeysey)

LN xRN

p'(xy)

dxdy

Based on the fact that 7, — 7, &, — & strongly in X yields
plxy)=2
I f (Inn(x) O™ (12(0) = 1))
RNXRN

|x — y|NV+PEY)sCo)/ P (xy)

n—oo

n(x) = ™" (n(x) = n(y)) _
T e = |G () dxdy =0 (3.15)
and
- 1€0(x) = EN™7 (En(x) = E,00))
n—00 JpN RN |x — y|(N+P(X,y)S(x,y))/p’(x,y)

) = 0T EW) - £0)

|x — y|NF+PEY)sCoy) /P’ (xy)

)dxdy =0. (3.16)
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Furthermore, M,(t) and M,(t) are continuous functions, which imply

M (8,00()) = My (8,0(m)) (3.17)

and
My (85 (&) = Mo (6,00(8)). (3.18)
With the help of Lemma 2.1, we get

meWW%Am—nMxSJ“mW”ﬂm—nwx
Q Q

p(x)—-1
< [P | ol = 11l
pO)-

- 0,
as n — oo, and then
lim [ [,” 0, (2, = m)dx = 0. (3.19)
n—oo Q
Arguing in the similar way as above, we have
lim f P28, (& = E)dx = 0. (3.20)
n—oo Q

Thus, from (3.15)—(3.20), we obtain

1D’ (7, £) — ' (. E)lIx;
= sup KD G (0 ) — (D 0.6, (0. )]

()Xo lelix, <1
—0. (3.21)

(iii) Since the operator @’ is a strictly monotone , it follows that @’ is injective. Set (n,&) € X, be
such that [|(17, &)llx, > 1, from (M) and Proposition 2.2, we have

(@' (1, €), (0, €))
167, ©)lIx,
My (Sp0) ) + Mo (8,0(&)) €.€)
B 167, ©)llx,
N mi\ () + map’y) (€)
167, ©)llx,
min (Jlglf, . Il ) + min (1, . 1, )
7llw, + 1Ellw,

> min (m1 , mz) (322)

Thus, (3.22) implies that
im (D'(n,6), (m,6)) oo
m&)l—e0 |17, E)lx,

(3.23)
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Consequently, @’ is coercive operator, thanks to the Minty-Browder Theorem (see [39],Theorem 26A),
@’ is a surjection. Due to its monotonicity, @’ is an injection. So, (®’)~! exists.
Let us first prove that @’ satisfies property:

(Q) 1 if (1, &,) = (1, &) and @' (1, €,) — D' (17, ), then (1, &) — (0, &).
Indeed, set (17,,&,) — (17,€) in X, ©' (17, &,) — P'(, &) in X and Theorem 2.1, which implies
N, —n, & > & ae. x €.

Based on Fatou’s Lemma yields

p(x,y)
- ( f ) —m O f e dx)
R Q

n—00 N RN |_x — y|N+p(x,y)s(x,y)

p(x.y)

S In(x) —n()l
T Jrisrn X — y|NFPE)S(oy)

dxdy + f InlP“dx (3.24)
Q

and

px.y)
lim inf( f 6n(0) = &I iy + f |§n|”<">dx)
n—oo RNXRN |_x — y|N+P(x»)’)S(x,y) Q

p(x.y)
g f e — €™ f|§|p(x>dx. (325)
R Q

NN X = YN FPENISY)

Applying Young’s inequality, there exist Cg, C9 > 0 such that
Oy :<q)n,,’ Mn — 77) + <q)§,,a é‘:n - §>
| (X)) =1, |p(x,y) -
=My (6,0/(m) ( f W IOy + [ P
RV Q

RN |x — y|N+p(x,y)S(x,y)

) f 12(3) = O™ ) = OGN = 0O flnn|p(x)‘2nnndx)
RN xRN ¢

|_x —_ le"’I’(xay)S(xa)’)

p(xy)
+ M (5,08) ( [ EEO [,

RN |x — y|N+p(x,y)S(x,y)

) f 6,09 = SO 60 — EONED —E0D f 6P ¢ dx]
RNXRN Q

|x — le"'P(X,y)S(X’}’)

pxy)
>m, (f |77n(x) B 77n(y)| dxdy " f mnlﬁ(x)dx
RV Q

RN | X — y|N+p(x,y)S(x,y)

_ f 2, = O™ () =) iy -
RNVxRN

|x — yN+POoystey)

p(x.y)
+my (f |§n(-x) - fn(y)l d)Cdy + f |§n|17(x)dx
RN Q

SR lx — y|N+p(x,y)S(x,y)

. f 6,00 ~ &I (€0 Z €00y flgnl,,(x)_l fdx)
RVXRN Q

|x — y|N+P(X,y)S(x»)’)

|nn|P<”‘1ndx)

s
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px.y)
>m, (C8f 7.(x) — 7, (V) dxdy + Cg f |77n|ﬁ(x)dx
R Q

No(RN |X _ y|N+p(x,y)s(x,y)

p(x.y)
‘@f In(x) = nG) MW{JMWM
R Q

Ny X = yINFPENISCY)

p(x.y)
+ s (Cg f 6,00 =& )i+ f 1€,1P9dx
RN Q

SRV X = y|NFTPEY)sey)

—ngﬁ ﬁ@»—f@ﬂ“(hdy_cgj}ﬂmmdﬂ, (3.26)
R Q

gt Ix = YD)

The passage to the liminf implies in the above inequality, we get

p(xy)
0 >m, llim inf ( f 2,00 =0y f Innlp(")dx)
R Q

n—oo Ny RN |x — y|N+p(x,y)S(x,y)

p(x.y)
B f ) I sy f InPOdx
RNKRN X — y|NFPE)S(oy) o

p(x.y)
+Whmﬁu" 1.(x) — £, Mﬂﬂfmmm)
R Q

n—oo NN | X — yINFPOoYISCy)

P(x.y)
_j‘ €00 — £0) w@—fmmw
RNyRN X — y|NFPEY)S(y) o
This and combining (3.24) with (3.25), we obtain
p(x.y)
T A S
n—oo RN XRN |x —yl +p(x,)s(x,y) Q

P(xy)
_ f In(x) — n(y)| dxdy + f P dx (3.28)
RV Q

RN lx — y|N+P(x,y)S(x,y)

. (3.27)

and

p(x.y)
hmﬁu" 1€0(x) = £, m@ﬁfwMM)
R Q

n—oo NXRN |x —_ leJrP(X,y)S(X’y)

:f E00) — €)™
R

NypN X — y|N+P(x,y)S(x,y)

dxdy + f PP Ddx. (3.29)
Q
Then, for a subsequence, we have
. 7 (0) = 7™ -
,}E{lo (f |x — y|N+POeY)sCey) dxdy + | |n,|" dx
RN xRN y 1)

p(x.y)
_ f ) =" f P dx (3.30)
RN Q

RN | X — y|N+p(x,y)S(x,y)

and
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p(xy)
lim f €0() — £, dxdy + f 1E,POdx
n—oo | Jpwsgn [ — yINHPEse) o

_ f €0 - €)™
R

Ny X — y|NFPE)S(y)

dxdy + f I[P P dx, (3.31)
Q

that is

1im py ) = ) ), Tim p) (€)= o) ). (3.32)

Since n, — 1, &, — £ in Xy , Proposition 2.2 imply that

lim p3 (7, =) = 0, lim p, (€, ~ &) = 0, (3.33)
that is
lim |7, = nllw, = 0, lim [I£, - €llw, = 0. (334)
Consequently
205 &0) = (1, EDN = llntn = Mllwy + 1l€n = &llwy = 0. (3.35)

Next, we prove that (®’)~! is continuous operator. Let {(f,,g,)} C X such that f, — f,in X and
8n — 8o In X;. Set (17,, &y, (17, ) € Xp such that

O;'(f) = 1o B, (fo) = 1 BF'(80) = &nv D7 (0) = & (3.36)

According to coercivity of @, we conclude that (77,, ) is bounded. Then, up to subsequence (17, &) —
(10, &0), which implies

Tim (@' (7, £,) = ©'(1,€), (0 €1) = (0, €0))

= lim((fs 8) = (fo: 80)s (1 €2) = (70, &0))
=0. (3.37)

Combining the property of (Q) and the continuity of ®’, we obtain
(s &) = ([0, &0) in Xo, @' (1, &) = @' (7o, &) = V' (,6) in X;. (3.38)
Since @’ is an injection, we deduce that (1, &) = (7, g;)). |

4. Proof of the main results

In this subsection, we firstly prove Theorem 1.1 by applying Theorem 2.2.

Proof of Theorem 1.1. Let X = X,, ¥ and © are given as (1.11) and (1.12), respectively. Note that P’
is a compact derivative from Lemma 3.1, Lemma 3.2 ensures that ® is a weakly lower semicontinuous
and bounded operator in X, and ®” admits a continuous inverse operator @ : X — Xj.

AIMS Mathematics Volume 6, Issue 12, 13797-13823.



13815

Let (., &.) = (0,0), then ®(0,0) = ¥(0,0) = 0. There exist a point x, € Q and pick two positive
constants Ry, Ri(R, > N;) such that B(xy,R,) C Q. Set a,c be positive constants and define the
function w(x) by

0, x € Q\ B(xo, %),
— . . 11/2
0= oo - [5N,0 - )] ] e Bl R \ B, %), (4.1)
a, x € B(xg,Ry),

where B(x,, R) stands for the open ball in RY of radius R centered at xo, then (w(x), w(x)) € X,. Denote

A(c) = f sup F(x,s,1),
Q

(8,H)ERXR:|s|PO+[1|PO<c

K(a) = f F(x, w(x), w(x)) + f F(x,a,a),
B(xo,R2) \ B(xo,R1) B(xo,R1)

M, M
H(c,a) = K(a) — A(c), m_ = min {m—j m—f} M* = max {—_1, —_2}. 4.2)
P p P p

Under condition (M) and by a simple computation, we obtain

m_ (min{ln(0)lly, + €I, . IOl + 1€, })
<d(n,é)
<M (max{ln(o)lly, + 1€, . NGOl + €@, (4.3)

When [[illw, = oo, l|€llw, bounded (|éllw, — o, lI7llw, bounded) and [I7llw, = oo, i¢llw, — oo, we have

1G7, Ollx, = o0,

this implies that
lim  ®(n,&) = +oo. 4.4)

162.6)l1x, >0

Fix y such that 0 <y <1 < ¢; < ¢, and set

_ M
ry = m Cly, ry = CZ'}/' (45)
Cy Co

By virtue of (4.1), set ny = &, = w for (9, &) € Xp and

Inollw, = llwllwy, — NI€ollw, = llllw,- (4.6)

Consequently, we have

r1 < ®©(no, &) < ra. 4.7)

Thus, (4.7) implies that
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Y(n, &) —¥Y(n,,
oa(riury) = f sup (n,&) =¥, &)
@O (=00,11) (11 1)1 [ry.r) P15 E1) — O (17, E)
S i Y, &) — Yo, &)
T et (—oor) D1, £o) — (1, &)

According to (F2), (1.20) and (4.1), we obtain

fF(x, 10, $0)dx = K(a) > H(cy,a)
Q

> KA(cl) > A(cy)
m_

= f sup F(x, s, Hdx.
Q (5,£)ERXR:|s|PO+]t|PO) <cq

For each (1, &) € X with ®(n, &) < ry, we conclude

(O + €Cx)P

<Cy (min{llpCo)lly, + IEGOI, . IOl + IEGOI, )

Cyr
<21

<cy, forallx € Q.

4.8)

4.9)

(4.10)

Fix yo such that 0 < max{llnoll’v":o + ||§0||€V+O, ||170||€V_O + ||.§0||€V_O} < 79 < 7y. Thus, combining with (4.9)

and (4.10), we have

Y(n, &) — Yo, §o)

D(170, £0) — D(17,€)
Jo FGomo,Eo)dx = [ F(x,n,é)dx

(D(UO, é:()) - (D(U, é‘:)
> j;) F(-xa 7705 é:o)dx - j;l Sup(ﬂ,xf)ERXRi|T]|P(‘)+|§|1’(‘)Scl F(Xa T” 'f)dx
B D(170, §0) — ©(1,6)
> J;z F(X, Mo, é:o)dx - jf‘) SuP(T],f)ERXRZ|T]|”(‘)+|§|l’(‘)§C1 F(-x’ 1, f)d-x
(10, £0)

5 Jo FCe. 10, €0)dx = [ SUD G, eycpiigp i e, PO 17, E)dlx

M (llnollly,” + ol )

Cy
Mty

> H(cy,a).

From (4.8) and (4.11), we deduce

AIMS Mathematics

(rors) >~ H(er,a)
O, 1) > ——H(cy,a).
My

(4.11)

(4.12)
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Similarly, for each (1, &) € X, such that (5, &) < r, we get

P + £
<Cy (min{llpCo)lly, + IECOI, . IO, + IEGOI, })

C¢r
<—, forallx € Q. 4.13)

me_

According to @ being sequentially weakly lower semicontinuous, then ®=!(—co,7)® = ®~!(—oo,r].
Consequently, we have

- Y, 8) —inf | o Y01,6)
(1.6)e®™! (~o0.r) r—@,¢)
FO.0) ~inf, i T8
- r—®(0,0)
0l et Tmwony T &)

r

<

fQ Sup(n,g)eRxR:Inlp('>+|€|”<')5C%r F(x, m, 'f)dx

< - , 4.14)

r

this implies

A(c) _ Cy

0i(r;) < A@<£¢Mmm (4.15)

y +)’

i -4

Thus, by virtue of (4.12) and (4.15), we obtain

C
wm<ﬁ%m%m<mm@> (4.16)
Y

Therefore, the conditions of Theorem 2.2 are satisfied. Thus, the functional ® + A¥ has two local
minima (;, &;) € X, which lie in ®~!(-o0, r;), respectively. Since I = ® + A¥ € C'(Xy,R), (17:, &) € Xo
are the two solutions of the following equation

O (mi, &) + A (3, &) = 0. (4.17)

That is, (7;,&) € Xo are two weak solutions of the nonlocal fractional Kirchhoff-type elliptic
systems (1.8). Since ®(1;, &;) < r;, combining Theorem 2.1, we obtain

7O + ()P
<Cy (min{llm0lly, + IO, IOl + &I, })

C¢’”2
<—— < ¢y, forallx € Q, (4.18)
m_
which implies that there is a real number p > 0 so that w; = (17;,&;) € Xo and |[w/|| < p. O

In what follows, we prove Theorem 1.2 Theorem by using Theorem 2.3.

AIMS Mathematics Volume 6, Issue 12, 13797-13823.



13818

Proof of Theorem 1.2. Let X = X, ¥ and @ are given by (1.11) and (1.12), respectively. Note that V'
is a compact derivative from Lemma 3.1, Lemma 3.2 ensures that ® is a weakly lower semicontinuous
and bounded operator in X, and @’ admits a continuous inverse operator ®’ : X; — X,. Moreover,

lim  ®(,&) + A¥(1,8) = +o0 (4.19)
7€)y -0

for any A € (0, +00). Indeed,

_ _ pxy) P(x)
O(1.8) = i, ( f In(x) = nO) dxdy + f Iml” dx)
R Q

Ny P(X, Y| — yVFPaste) P(x)
_ _ p(x.y) D(x)
+ M, ( f €00 f(Ny)l _dxdy+ [ & dx)
mVsey (X, Y)|x — yN sy o p(x)
=M, (5p(~>(77)) + M, (5p(~)(§))
mi s My se)

2 Fpp(.)(n) + Fpp(‘)('f)
> m . I p* mp . I rr 4.20
>~ min (1l Nl ) + s min (€15 €18y, (4.20)
By virtue of (F1), we obtain
IF(x,1,6)] < Coln™*eP2*! for all (x,7,£) € Q x RXR, (4.21)

consequently,

Y, 6 =- f F(x,n,&)dx > —Cyy f Il PO g
Q Q
> = Cyol€ max (Il Il ) max (L, 1Ls#”) (@22)

Since W, are continuously embedded in C(ﬁ), there exists a constant Cy; such that

W7, €) 2 = C1oCrilQ max (|Inlly il ) max (1l Nl ) - (4.23)

When |Illw, — o0, [|¢llw, bounded (||&llw, — o, [Inllw, bounded) and ||llw, — oo, [|{llw, — oo, we have
17, O)llx, = o0. (4.24)

According to 2 + a* + 87 < p~, there exist p; < p~ such that 1;—(1” + 1;—? = 1. Therefore, from (4.23)
and Young’s inequality, we deduce

1+a" 1+8F

¥Y(n,8) = - CioCulQ > lImllyy, +
1

max (il 1)) : (4.25)

Hence, for 4 > 0 and p; < p~, the combination of (4.20), (4.24) and (4.25) implies that

lim @@, &) + AP0, &) = +oo. (4.26)

1G7.9)lxy —o0
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In view of (F2), we choose 6 > 1 such that
F(x,s,t)>0
for all s, > 0, x € Q, and then

F(x,s5,t)>0=F(x,0,0) > F(x,71,7)

(4.27)

(4.28)

for all 74,7, € [0, 1). Set ay, b; be two positive real numbers such that ay < min(1, Cy) with C4 defined

by Theorem 2.1 and b, > ¢ with bf_lﬂl > 1. From (4.28), we have

fF(x,bl,b1)>():F(x,(),0)>f sup F(x,s,1).
Q Q

0<s,1<ag

. |m [ do v mp [ o v
re=min|—|—| ,—|= .
p+ C¢ p+ C¢

Choosing (170(x), &(x)) = (0,0), (17:(x), & (x)) = (b1, by) forall x € Q, such that we obtain

Let

(170, &0) = ¥ (10, £0) = (0,0)

~ Dp(x) . p(x)

O(ny,&1) = M, (f |]9_1|P dx) + M, (f |b_1|” dx)
o P o P
|, [P |, [P

2’"1( o PO d")””( o PO dx)

mb’  mb’
z|g|( it 21]

and

p* p*
my my
“pt o pt
r.

Thus, the combination of (4.31) and (4.32) implies that

O(170, &) < 1 < Oy, &)

On the other hand

_ (@O, 81) — Y0, &) + (r = D0, £0)) Y1, £1)
@1, €1) — Y170, £0)
o Fx, by, by)dx

r — — .
Vi by [P ) Vi ( b1 [P )
M1 ( o dx) + M2 0 0 dx

Let (n,¢) € X, such that ®(n, &) < r, we get

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
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D, v) = M, (6,0,(m)) + My (6p<.><§))

Zmin{ml,mz}(p—p;%m) ;&1@) (4.35)
which implies that
o Om <@ <1, 008 <P <. (4.36)

P Ppe)
According to Proposition 2.2, we derive
Ity < 1, Il < 1. (4.37)
Combining with (4.36), we deduce
1
L e A 438)
m m

1 2

%~

Therefore 1
L

pT rpt\rt
) < ay, [E()] < C¢( nfz ) < a (4.39)

r
()l < C¢( L
nmy
for all x € Q . It follows from (4.34) that
- inf Y,
(1.6€)eD=1 ((=00,r])
= sup (-¥(n,9))

O(.6)<r

< sup f F(x,n,&)dx
1Ja

{)eXo:In(0)LIE(x)I<ao,¥xeQ

Sf sup F(x,s,t)dx
Q

0<s,t<a
<0
_ (@071, €1) = )Y (70, §0) + (r = D170, £0) Y (171, 1)
- Q@1 &1) = Y10, £0) .

Consequently, the conditions of Theorem 2.3 are satisfied. For every compact interval A C (0, +o0)
and G € A, we fix 4 € A and put

(4.40)

J.6) = - fg G(x, m, E)dx,

for all (n,&) € Xo. Then, J is a compact derivative. Therefore, there exists a positive number ¢ such
that for every u € [0, ], (17;, &) € X are three solutions of the following equation

Q' (1;, &) + AV (7, &) + ' (i, &) = 0

That is, (n;,&) € X are three weak solutions of the nonlocal fractional Kirchhoff-type elliptic
systems (1.1). O
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5. Conclusions

In this article, we consider a kind of p(-)-fractional Kirchhoff systems. Under some reasonable
assumptions, we obtain two and three solutions based on Bonanno’s multiple critical points theorems
and Ricceri’s three critical points theorem, where the condition of Palais-Smale is not requested.
Several recent results of literatures are extended and improved.
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