The mean curvature-based image deblurring model is widely used to enhance the quality of the deblurred images. However, the discretization of the associated Euler-Lagrange equations produce a nonlinear ill-conditioned system which affect the convergence of the numerical algorithms like Krylov subspace methods. To overcome this difficulty, in this paper, we present two new symmetric positive definite (SPD) preconditioners. An efficient algorithm is presented for the mean curvature-based image deblurring problem which combines a fixed point iteration (FPI) with new preconditioned matrices to handle the nonlinearity and ill-conditioned nature of the large system. The eigenvalues analysis is also presented in the paper. Fast convergence has shown in the numerical results by using the proposed new preconditioners.
Citation: Shahbaz Ahmad, Adel M. Al-Mahdi, Rashad Ahmed. Two new preconditioners for mean curvature-based image deblurring problem[J]. AIMS Mathematics, 2021, 6(12): 13824-13844. doi: 10.3934/math.2021802
The mean curvature-based image deblurring model is widely used to enhance the quality of the deblurred images. However, the discretization of the associated Euler-Lagrange equations produce a nonlinear ill-conditioned system which affect the convergence of the numerical algorithms like Krylov subspace methods. To overcome this difficulty, in this paper, we present two new symmetric positive definite (SPD) preconditioners. An efficient algorithm is presented for the mean curvature-based image deblurring problem which combines a fixed point iteration (FPI) with new preconditioned matrices to handle the nonlinearity and ill-conditioned nature of the large system. The eigenvalues analysis is also presented in the paper. Fast convergence has shown in the numerical results by using the proposed new preconditioners.
[1] | R. Acar, C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Probl., 10 (1994), 1217–1229. doi: 10.1088/0266-5611/10/6/003 |
[2] | C. Brito-Loeza, K. Chen, Multigrid algorithm for high order denoising, SIAM J. Imaging Sci., 3 (2010), 363–389. doi: 10.1137/080737903 |
[3] | C. Brito-Loeza, K. Chen, V. Uc-Cetina, Image denoising using the gaussian curvature of the image surface, Numer. Meth. Part. D. E., 32 (2016), 1066–1089. doi: 10.1002/num.22042 |
[4] | K. Chen, Introduction to variational image-processing models and applications, Int. J. Comput. Math., 90 (2013), 1–8. doi: 10.1080/00207160.2012.757073 |
[5] | K. Chen, F. Fairag, A. Al-Mahdi, Preconditioning techniques for an image deblurring problem, Numer. Linear Algebr., 23 (2016), 570–584. doi: 10.1002/nla.2040 |
[6] | F. Fairag, S. Ahmad, A two-level method for image deblurring problem, In: 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019, 1–5. |
[7] | F. Fairag, K. Chen, S. Ahmad, Analysis of the ccfd method for mc-based image denoising problems, Electron. T. Numer. Ana., 54 (2021), 108–127. |
[8] | M. Myllykoski, R. Glowinski, T. Karkkainen, T. Rossi, A new augmented lagrangian approach for l^1-mean curvature image denoising, SIAM J. Imaging Sci., 8 (2015), 95–125. doi: 10.1137/140962164 |
[9] | K. L. Riley, Two-level preconditioners for regularized ill-posed problems, Montana State University, 1999. |
[10] | L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268. doi: 10.1016/0167-2789(92)90242-F |
[11] | H. Rui, H. Pan, A block-centered finite difference method for the {D}arcy-{F}orchheimer model, SIAM J. Numer. Anal., 5 (2012), 2612–2631. |
[12] | L. Sun, K. Chen, A new iterative algorithm for mean curvature-based variational image denoising, BIT, 54 (2014), 523–553. doi: 10.1007/s10543-013-0448-y |
[13] | A. N. Tikhonov, Regularization of incorrectly posed problems, Sov. Math. Dokl., 4 (1963), 1624–1627. |
[14] | C. R. Vogel, M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE T. Image Process., 7 (1998), 813–824. doi: 10.1109/83.679423 |
[15] | F. Yang, K. Chen, B. Yu, Homotopy method for a mean curvature-based denoising model, Appl. Numer. Math., 62 (2012), 185–200. doi: 10.1016/j.apnum.2011.12.001 |
[16] | F. Yang, K. Chen, B. Yu, D. Fang, A relaxed fixed point method for a mean curvature-based denoising model, Optim. Method. Softw., 29 (2014), 274–285. doi: 10.1080/10556788.2013.788650 |
[17] | J. Zhang, C. Deng, Y. Shi, S. Wang, Y. Zhu, A fast linearised augmented lagrangian method for a mean curvature based model, E. Asian J. Appl. Math., 8 (2018), 463–476. doi: 10.4208/eajam.010817.160218 |
[18] | W. Zhu, T. Chan, Image denoising using mean curvature of image surface, SIAM J. Imaging Sci., 5 (2012), 1–32. doi: 10.1137/110822268 |
[19] | W. Zhu, X. C. Tai, T. Chan, Augmented lagrangian method for a mean curvature based image denoising model, Inverse Probl. Imag., 7 (2013), 1409–1432. doi: 10.3934/ipi.2013.7.1409 |
[20] | W. Zhu, X. C. Tai, T. Chan, A fast algorithm for a mean curvature based image denoising model using augmented lagrangian method, In: Efficient algorithms for global optimization methods in computer vision, Springer, 2014,104–118. |