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1. Introduction

In the last two decades, the nonlinear variational methods have received a great deal of attention in
the field of image deblurring. Two main difficulties arise while applying nonlinear variational
techniques to large-scale noisy and blurrred images. One of them, of course, is the nonlinearty and
other is the solution of the large system which arise from the discretization of these such problems.
The main focus of this paper is to handle these two computational difficulties. The most well-known
nonlinear variational image deblurring model is total variation (TV) model [1, 10, 14]. It is one of the
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most commonly used regularization model and it has nice properties like edge preserving. But the
main drawback of the TV model is that the resulting images look blocky. Because this model converts
smooth functions into piecewise constant functions which create staircase effects in resulting images.
To reduce the staircase effects one remedy is to use the mean curvature (MC) [4, 12, 16, 18, 19] based
regularization models.

The MC-based regularization models are widely used in all image processing problems. In image
deblurring, the MC-based models are very effective. These models not only preserve edges but also
remove staircase effect in the recovery of digital images. However, the discretization of the associated
Euler-Lagrange equations produce a large nonlinear ill-conditioned system which affect the
convergence of the numerical algorithms like Krylov subspace methods (GMRES etc.). Furthermore
the Jacobian matrix of the MC-based nonlinear system is block banded matrix with large bandwidth.
The MC-based regularization methods are effective, but due to the high nonlinearity and
ill-conditioned system, robust and fast numerical solution is a crucial issue. To overcome these
difficulties, in this paper we introduce two new symmetric positive definite (SPD) preconditioners. So
instead of applying ordinary Generalized Minimal Residual (GMRES) method we use PGMRES
(preconditioned Generalized Minimal Residual) method to solve the system. Fast convergence has
shown in the numerical results by using proposed new preconditioners.

The contributions of the manuscript include the following:
(i) our work presents an efficient algorithm for mean curvature-based image deblurring problem which
combines a fixed point iteration with new SPD preconditioned matrices to handle the nonlinearity and
ill-conditioned nature of the large system;
(ii) presents a better treatment for the computationally expensive higher order and nonlinear mean
curvature regularization functional.

The paper is organized in different sections. The first section includes introduction while the second
section includes problem description of image deblurring model. In the third section, we present
nonlinear system of first order equations, cell discretization and CCFD method. In fourth section,
we introduce our proposed SPD preconditioners and our algorithmic technique. The properties and
eigenvalue analysis of the proposed preconditioned matrices are discussed in the fourth section. The
numerical experiments are also presented in the fourth section. The conclusions about the proposed
PGMRES method is discussed in the last section of the paper.

2. Problem description

The focus of the paper is on image debluring problem, so we start by presenting its concise
description. Mathematically, the relationship between u (original image) and z (recorded image) is as
follows;

z = ~Ku + ε, (2.1)

where ε is the noise function. The noise can be Gaussian noise, salt and pepper noise, Brownian
noise etc. In this paper, we have considered Gaussian noise. The ~K is the blurring operator which is a
Fredholm-integral operator of first kind;

(~Ku)(x) =

∫
Ω

k(x, y)u(y) dy, x ∈ Ω,
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having translation invariance property i.e., k(x, y) = k(x − y) . If ~K = I problem (2.1) is called image
denoising problem. The problem (2.1) becomes ill-posed [1, 13, 14] because ~K is a compact operator.
Let Ω be a square in R2 and u be an image intensity function defined on Ω. The x = (x, y) defines the
position in Ω. Let |x| =

√
x2 + y2 is an Euclidean norm and ‖.‖ is L2(Ω) norm. The problem (2.1) is an

inverse problem. The recovering of u from z makes (2.1) an unstable problem [1, 13, 14]. To make it
stable, one remedy is to use the MC regularization functional [4, 12, 16, 18, 19],

J(u) =

∫
Ω

κ(u)2dx =

∫
Ω

(5.
5u
|5u|

)2dx.

where κ is called the mean curvature surface. Then the problem (2.1) takes the form, find u that
minimizes the following problem

T (u) =
1
2
‖~Ku − z‖2 +

α

2
J(u), (2.2)

where α > 0 is a regularization parameter. The well-posedness of the problem (2.2) for a particular
case (synthetic image denoising problem) is explained in [18]. Then the Euler-Lagrange equations
associated with (2.2) are,

~K∗(~Ku − z) + α 5 .[
5κ√
|5u|2 + β2

−
5κ. 5 u

(
√
|5u|2 + β2)3

5 u] = 0 in Ω, (2.3)

∂u
∂n

=0 in ∂Ω, (2.4)

κ(u) =0 in ∂Ω, (2.5)

where ~K∗ denotes the adjoint operator of ~K and β > 0 is used to avoid non-differentiability at zero. The
equation (2.3) is a nonlinear fourth order partial differential equation.

As it is known that the MC-based model does not only preserve edges but also removes staircase
effect in the recovery of digital images. However, fourth order derivatives appear in the Euler-Lagrange
equations, which create problems in developing an efficient numerical algorithm. One key problem in
presenting the method is to give a proper approximation to the nonlinear mean curvature functional.
We have treated this difficulty by reducing the nonlinear fourth order Euler-Lagrange equation into a
system of first order equations.

3. The first order nonlinear system

The Eq (2.3) can be expressed as first order nonlinear system,

~K∗ ~Ku + α 5 .−→p − α 5 .−→t =~K∗z, (3.1)

−w + 5.−→v = 0, (3.2)√
|5u|2 + β2−→v − 5u = 0, (3.3)√
|5u|2 + β2−→p − 5w = 0, (3.4)
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|5u|2 + β2−→t − (5w.−→v )−→v = 0, (3.5)

where
−→v =

5u√
|5u|2 + β2

, w = 5.−→v , −→p =
5w√
|5u|2 + β2

and −→t =
(5w.−→v )−→v√
|5u|2 + β2

.

We will take advantage of this special structure to derive our proposed algorithm.

3.1. Cell discretization

For MC-based image deblurring problem, the domain Ω = (0, 1)×(0, 1) is partitioned by δx×δy, [11],
where

δx : 0 = x1/2 < x3/2 < x5/2 < ... < xnx−1/2 < xnx+1/2 = 1,
δy : 0 = y1/2 < y3/2 < y5/2 < ... < ynx−1/2 < ynx+1/2 = 1,

where nx represents the number of equispaced partitions in the x or y directions and (xi, y j) denotes
centers of the cells. The

xi = (i −
1
2

)h i = 1, 2, 3, ..., nx,

y j = ( j −
1
2

)h j = 1, 2, 3, ..., nx,

where h = 1
nx

. The (xi± 1
2
, y j) and (xi, y j± 1

2
) are representing midpoints of cell edges,

xi± 1
2

= xi ±
h
2

i = 1, 2, 3, ..., nx,

y j± 1
2

= y j ±
h
2

j = 1, 2, 3, ..., nx.

The set

ei j =

{
(x, y) : x ∈ [xi −

1
2
, xi +

1
2

], y ∈ [y j −
1
2
, y j +

1
2

]
}
,

represents a cell with (xi, y j) as a center. Let

χi(x) =

{
1 x ∈ (xi −

1
2 , xi + 1

2 )
0 otherwise,

χ j(y) =

{
1 y ∈ (yi −

1
2 , yi + 1

2 )
0 otherwise.

And

φi(xl +
1
2

) = δil,

φk(y j +
1
2

) = δ jk.
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Approximations of u and w are

u(x, y) � U(x, y) =

nx∑
i=1

nx∑
j=1

ui jχi(x)χ j(y),

and

w(x, y) � W(x, y) =

nx∑
i=1

nx∑
j=1

wi jχi(x)χ j(y),

respectively, where ui j = U(xi, y j) and wi j = W(xi, y j). The representation of the data z is

z(x, y) � Z(x, y) =

nx∑
i=1

nx∑
j=1

zi jχi(x)χ j(y),

where zi j can be calculated at cell averages. By applying midpoint quadrature approximation, we have

(Ku)(xi, y j) � [KhU](i j).

Denote −→v = (vx, vy),−→p = (px, py) and −→t = (tx, ty) . The approximation of x and y components of −→v are

V
x
(x, y) =

nx−1∑
i=1

nx∑
j=1

vx
i jφi(x)χ j(y), V

y
(x, y) =

nx−1∑
i=1

nx∑
j=1

vy
i jφi(y)χ j(x),

respectively. V = [V
x

V
y
]t denotes the discretization of −→v . Similarly, approximation of the components

of −→p and −→t are

P
x
(x, y) =

nx−1∑
i=1

nx∑
j=1

px
i jφi(x)χ j(y), P

y
(x, y) =

nx−1∑
i=1

nx∑
j=1

py
i jφi(y)χ j(x),

and

T
x
(x, y) =

nx−1∑
i=1

nx∑
j=1

tx
i jφi(x)χ j(y), T

y
(x, y) =

nx−1∑
i=1

nx∑
j=1

ty
i jφi(y)χ j(x),

respectively. The P = [P
x

P
y
]t and T = [T

x
T

y
]t denote the discretization of the vectors −→p and −→t

respectively.

3.2. The CCFD method

Here, we present the cell-centered finite difference (CCFD) method for MC-based image deblurring
problem. By considering lexicographical ordering of the unknowns,

U = [U11 ... Unxnx]
t, W = [W11 ... Wnxnx]

t,

V = [V
x
11 ... V

x
nx−1nx−1 V

y
11 ... V

y
nx−1nx−1]t,

P = [P
x
11 ... P

x
nx−1nx−1 P

y
11 ... P

y
nx−1nx−1]t,
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and T = [T
x
11 ... T

x
nx−1nx−1 T

y
11 ... T

y
nx−1nx−1]t.

Now by applying CCFD method to (3.1)–(3.5) we obtain the following system,

K∗KhU − αAhW + αB∗hP − αB∗hT =K∗hZ, (3.6)
−IhW + B∗hV = O, (3.7)
DhV + BhU = O, (3.8)
DhP + BhW = O, (3.9)
DhT −ChV = O, (3.10)

where midpoint quadrature rule is used for the integral term. The matrices Kh, Ah and Ih (the identity
matrix) each one is of size n2

x × n2
x. The matrix Bh is of size 2nx(nx − 1) × n2

x. The matrices Ch and Dh

are of size 2nx(nx − 1) × 2nx(nx − 1). So we have the following system
K∗hKh −αAh O αB∗h −αB∗h

O −Ih B∗h O O
Bh O Dh O O
O Bh O Dh O
O O −Ch O Dh




U
W
V
P
T


=


K∗hZ
O
O
O
O


.

The matrix Kh is block Toeplitz with Toeplitz blocks (BTTB) and K∗hKh is SPD. The matrix Ah is a
diagonal matrix having following structure,

Ah =
2
βh

(A1 + A2),

where both A1 and A2 are of size n2
x × n2

x .

A1 = Ĩ ⊗ E and A2 = E ⊗ Ĩ,

where ⊗ is a tensor product. The size of identity matrix Ĩ is nx × nx. The matrix

E =



1
0

. . .

0
1


,

is of size nx × nx. The matrix Bh has the following structure,

Bh =
1
h

[
B1

B2

]
,

where both B1 and B2 are of size nx(nx − 1) × n2
x , and

B1 = F ⊗ Ĩ and B2 = Ĩ ⊗ F, where
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F =



1 −1
1 −1

. . .
. . .
. . . −1

1 −1


,

is a matrix of size (nx − 1) × nx. The matrix

Ch =

[
Cx 0
0 Cy

]
,

is a diagonal matrix and its entries are obtained by the discretization of the expression (5w.−→v ). The
matrix Cx is of size (nx − 1) × nx, and the matrix Cy is of size nx × (nx − 1). The matrix Dh is also a
diagonal matrix with positive diagonal entries and its entries are obtained by the discretization of the

expression
√
|5u|2 + β2. The matrix Dh has the following structure,

Dh =

[
Dx 0
0 Dy

]
,

where Dx is of size (nx − 1) × nx, and Dy is of size nx × (nx − 1). Note that on horizontal and vertical
edges of each cell ei j, the values of the all unknowns are not available, so average operators are used to
calculate their values.

Now if we eliminate W,V, P and T from (3.6)–(3.10), then we have the following nonlinear primal
system,

(K∗hKh + αLh(U))U =K∗hZ, (3.11)

where
Lh = (B∗hD−1

h Bh)2 + Ah(B∗hD−1
h Bh) + B∗hD−1

h ChD−1
h Bh.

The Lh is block pentadiagonal matrix according to the lexicographical ordering of the unknowns.
The main diagonal blocks are pentadiagonal while the off-diagonal blocks are tridiagonal matrices.

In the literature, one can find a number of numerical methods that have been investigated to mean
curvature-based nonlinear image minimization problems [2, 4, 8, 12, 14–16, 18, 19]. Since MC-based
models produce a large and ill-conditioned nonlinear system, so almost all these standard methods
get quite slow convergence. Furthermore the presence of higher order and nonlinear mean curvature
regularization functional in the governing equation of the models makes these highly nonlinear systems
harder for calculation. MC is very much computationally expensive, that is why, most of the existing
methods performs quite poorly. To make a robust numerical method for MC-based nonlinear image
deblurring problem, now we present a new preconditioned numerical method.

4. Numerical implementation

Here we introduce the algorithms to solve the MC-based nonlinear system (3.11). First we apply
discrete version of the FPI (fixed point iteration) to (3.11) to handle the nonlinearity of MC. The
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approach taken here is called “lagged diffusivity” scheme [14]. Its rate is just linear but in practice it
has a quite rapid convergence. Furthermore, this scheme does not depends on initial guess to converge
globally. This is why globalization is not an issue for this scheme. So by FPI we have a following
linear system;

(K∗hKh + αLh(Um))Um+1 =K∗hZ. (4.1)

4.1. Properties

Before proceeding further, we discuss the some important properties of our system (4.1).

(1) The Hessian matrix K∗hKh + αLh is extremely large for practical application. When α is small,
the Hessian matrix becomes quite ill-conditioned. This happens because the eigenvalues of the
blurring operator ~K cluster to zero [14].

(2) The first term, K∗hKh, in the Hessian matrix is symmetric positive definite. Although, K∗hKh is full
but the blurring operator ~K has translation invariant property, which permit the use of FFT (Fast
Fourier transformation) to evaluate K∗hKhu in O(n log n) operations [14].

(3) The second term, Lh, in the Hessian matrix is sparse but not symmetric. The Lh in (3.11) consists
of three terms. The first and the last term in Lh are symmetric positive semidefinite [14] but the
middle term is not symmetric. Hence the system (4.1) is not symmetric positive definite.

4.2. The Preconditioner

According to the properties of our system (4.1), mentioned above, GMRES (Generalized Minimal
Residual) method, is appropriate for the solution of the system (4.1). Due to ill-conditioned system,
GMRES can be quite slow to convergence. So we use preconditioned Generalized Minimal Residual
(PGMRES) method. For effective solution, preconditioning matrix P, must be symmetric positive
definite (SPD). Here we introduce following two SPD preconditioned matrices namely P1 and P2. For
the first preconditioner P1, we consider the following matrix

LTV
h = B∗hD−1

h Bh. (4.2)

The LTV
h is the SPD matrix lies in the first term of Lh matrix (4.1). In fact, LTV

h arise by the
discretization of total variation (TV) based image deblurring problem [14]. So we introduce
preconditioned matrix P1 as

P1 = αIh + γdiag(LTV
h ), (4.3)

where Ih is an identity matrix and diag(LTV) is a diagonal matrix and its entries are the diagonal entries
of matrix LTV

h . The γ is the positive parameter. For the second preconditioner P2, we consider the
following SPD matrix

Ls
h = (B∗hD−1

h Bh)2 + B∗hD−1
h ChD−1

h Bh. (4.4)

The Ls
h is the SPD part (first and the third term) of Lh matrix (4.1). So the second preconditioned

matrix is

P2 = αIh + γdiag(Ls
h), (4.5)
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where diag(Ls
h) is also a diagonal matrix whose entries are the diagonal entries of matrix Ls

h. While
applying PGMRES to (4.1), the inversion of preconditioner matrix, will be required. Since the both
terms in our preconditioning matrices ( P1 and P2 ) are diagonal matrices, so inversion can be done
easily. We have summarize the PGMRES method in the following algorithm.

——————————– Algorithm 1: The PGMRES Method ——————————–
On mesh Ωh ,
Step-I: Initial iteration U0,

Step-II: for m = 1; max
Am = K∗hKh + αLh(Um), bm = K∗hZ,

Step-III: Use PGMRES to solve

AmUm+1 = bm with preconditioned matrix P,

where P = P1, P2.
end

———————————————————————————————————————

4.3. Eigenvalues

Now, let the eigenvalues of K∗hKh and Lh be λK
i and λL

i respectively such that λK
i ↓ 0 and λL

i ↑ ∞. So
the eigenvalues of P−1

1 Ā and P−1
2 Ā are

θ1
i =

λK
i + αλL

i

αλK
i + γλLTV

i

and θ2
i =

λK
i + αλL

i

αλK
i + γλLns

i

, (4.6)

respectively. Here λLTV

i are eigenvalues of LTV
h and λLns

i are eigenvalues of Lns
h . The Ā = K∗hKh + αLh is

the Hessian matrix of the system (4.1). One can notice that λLTV

i ≤ λLns

i ≤ λ
L
i . So for γ > α,

θ1
i , θ

2
i → 1 as i→ ∞. (4.7)

Hence, for large values of γ, P−1Ā has more favourable spectrum as compared to the Hessian matrix
Ā, so PGMRES converge more rapidly than ordinary GMRES. This can also be shown in the numerical
examples that PGMRES is getting rapid convergence with large γ > α.

4.4. Numerical experiments

Now we present four numerical examples for MC-based image deblurring problem. We have used
different values of nx so the resulting system has n2

x unknowns. For numerical computations, MATLAB
software is used to obtain the numerical results on Intel(R) Core(TM) i7-4510U with CPU @ 2.00 GHz
2.60 GHz. To measure the quality of the deblurred images, we have used PSNR (Peak Signal to Noise
Ratio) and SSIM (Structured Similarity Index Measure) .
Initial guess. Since the method is globally convergent,the fixed point iteration (FPI) can be started
with any initial guess [14]. In all experiments we have used u0 = z (the blurred data) as initial guess.
For instance,taking the zero initial guess u0 = 0 means that one extra FPI may be required to attain the
accuracy obtained with u0 = z.
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Selection of the parameters. Although the automated selection of the parameter α is beyond the
scope of the present paper, that information can be found in [3, 18, 19]. The purpose of α is to select
the amount of blur / noise to be removed, so there is no point in choosing either a very large or very
small α. The optimum range of α for MC-based model lies between 1e − 3 and 1e − 8. To understand
the performance of the parameter β on our algorithm (GMRES), we have run the algorithm with fixed
α = 1e − 8 on the benchmark Cameraman image of size 256 × 256. In this experiment we have varied
β from 1e − 3 to 1 and found that the smaller value of β does not improve the PSNR and SSIM. The
results of this experiments summarized in Table 1.

Table 1. Results of fixed α and varying β.

β 1e − 4 1e − 3 1e − 2 1e − 1 1
Blurred PSNR 22.4789 22.4789 22.4789 22.4789 22.4789
Deblurred PSNR 28.7719 28.7726 29.8719 30.4515 30.4953
Deblurred SSIM 0.7112 0.7119 0.7242 0.7306 0.7312

Example 1. In this example we have used Cameraman image. This is a complicated image, because it
has a small scale texture part (shirt) and large scale cartoon part (face). The different aspects of
Cameraman image are presented in Figure 1. The size of each subfigure is 256 × 256. These are (a)
blurry image (b) deblurred image by GMRES (c) deblurred image by P1GMRES with γ = 1000 and
(d) deblurred image by P2GMRES with γ = 1000. The calculation of relative residual at each
iterations against different values of the parameter γ is presented in Figure 2. The
f special(′gaussian′, [nx nx], 1.5) kernel is used for numerical calculations. It is a gaussian filter of
size nx × nx with standard deviation (σ = 1.5). The parameters α = 1e − 8 and β = 1. For the stopping
criteria of a numerical method we have used tolerance tol = 1e − 2.
Remarks

(1) The Figures 1(b)–(d) are almost similar, this means both GMRES method (without
preconditioning) and PGMRES (P1GMRES and P2GMRES) method are generating same
quality results.

(2) From the Figure 2, one can clearly observe the effectiveness of preconditioning. Here, result were
presented using fixed point iteration count m = 1. The number of PGMRES iteration is much
lesser than as compared to GMRES (without preconditioning) to reach the required accuracy
tol = 1e − 2. The results for subsequent fixed point iterations are also similar.

(3) From the Figure 2, this can also be observed that PGMRES is getting rapid convergence for large
values of γ for both preconditioners ( P1 and P2 ).

(4) From Table 2, one can observe that the PSNR and SSIM by PGMRES method is same as
compared with the ordinary GMRES method. But PGMRES method is producing same PSNR
and SSIM in quite less iterations. For example, to achieve the same PSNR and SSIM, the
P1GMRES method needs only 80 iterations with γ = 10 and the P2GMRES method needs only
42 iterations with γ = 10. But the ordinary GMRES method needs more than 150 iterations to
get the same PSNR and SSIM. The number of iterations further decreases with higher values of
γ. Which means that PGMRES method is faster than the ordinary GMRES method.

(5) From Table 2, it is also observed that for both preconditioners ( P1 and P2 ) the PSNR and SSIM
do not get improvement with the increase in the value of γ. The higher value of γ only decreases
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the number of iterations for both preconditioners ( P1 and P2 ). But the decrease in the number
of iterations is not much significant for the value of γ between 500 and 1000. So we may suggest
that suitable value of γ lies between 500 and 1000.

Figure 1. Cameraman image: (a) blurry image; (b) deblurred image by GMRES; (c)
deblurred image by P1GMRES with γ = 1000; (d) deblurred image by P2GMRES with
γ = 1000.
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Figure 2. GMRES and PGMRES convergence for the solution to the linear system in
Example 1 at fixed point iteration m = 1. The horizontal axis represents the number of
iterations. The norm of the residual at each iteration is presenting on vertical axis. Blue
line represents GMRES iterations. (a) PGMRES iteration using preconditioner P1 against
different values of γ and (b) PGMRES iteration using preconditioner P2 against different
values of γ.

Table 2. Comparison of GMRES and PGMRES for Example 1.

Method Blurred γ Deblurred Deblurred Iterations
PSNR PSNR SSIM

GMRES 22.4789 30.4953 0.7312 150+

P1GMRES 22.4789 10 30.5177 0.7362 80
22.4789 50 30.5177 0.7362 40
22.4789 100 30.5177 0.7362 24
22.4789 500 30.5177 0.7362 16
22.4789 1000 30.5177 0.7362 10

P2GMRES 22.4789 10 30.4564 0.7216 42
22.4789 50 30.4564 0.7216 22
22.4789 100 30.4564 0.7216 18
22.4789 500 30.4564 0.7216 10
22.4789 1000 30.4564 0.7216 8

Example 2. In this example we have used Goldhills image. This is real and synthetic image. Here we
have compared our MC based algorithm with TV (total variation) based algorithm. Since TV-based
model generates a SPD matrix system, so for the solution we have used CG (Conjugate Gradient)
method. The different aspects of Goldhills image are presented in Figure 3. The size of each subfigure
is 512×512. These are (a) exact image (b) blurry image (c) deblurred image by CG (d) deblurred image
by GMRES (e) deblurred image by P1GMRES and (f) deblurred image P2GMRES. For numerical
calculations, we have used the ke−gen(nx, 300, 5) kernel [5–7, 9]. It is a circular gaussian filter of size
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nx × nx with radius (r = 300) standard deviation (σ = 5). The ke−gen(120, 40, 4) kernel is depicted in
Figure 4. For TV-based method we have used α = 5e − 5 and β = 1 according to [14]. For MC-based
method we have used α = 1e − 8 and β = 1 and γ = 1000. For the stopping criteria of a numerical
methods we have used tolerance tol = 1e − 4.

Figure 3. Goldhills image: (a) exact image; (b) blurry image; (c) deblurred image by CG;
(d) deblurred image by GMRES; (e) deblurred image by P1GMRES; (f) deblurred image
P2GMRES.

Figure 4. The blurring kernel ke−gen(120, 40, 4).
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Figure 5. The CG, GMRES and PGMRES convergence for the solution to the linear system
in Example 2 at fixed point iteration m = 1. The horizontal axis represents the number of
iterations. The norm of the residual at each iteration is presenting on vertical axis. Blue line
represents CG iterations, orange line represents GMRES iterations, yellow line represents
P1GMRES iteration and purple line represents P2GMRES iteration.

Table 3. Comparison of CG, GMRES and PGMRES for Example 2.

Method CG GMRES P1GMRES P2GMRES
Blurred PSNR 23.7660 23.7660 23.7660 23.7660
Deblurred PSNR 37.4867 39.2180 39.4430 39.2734
Deblurred SSIM 0.9188 0.9272 0.9328 0.9239
Iterations 200+ 200+ 90 40

Remarks

(1) From Table 3, it is observed that the PSNR and SSIM by MC-based (GMRES and PGMRES)
methods are little higher than TV-based CG method. Same comparison can be observed from
Figures 3(c)–(f). So MC-based (GMRES and PGMRES) methods are generating better quality
results.

(2) From the Figure 5, one can clearly observe the effectiveness of preconditioning. The number of
MC-based PGMRES iteration is much lesser than as compared to both MC-based GMRES and
TV-based CG methods to reach the required accuracy tol = 1e − 4. The results for subsequent
fixed point iterations are also similar.

(3) From Table 3, it is observed that the PSNR and SSIM by MC-based PGMRES method is almost
same as compared with the ordinary MC-based GMRES method. But PGMRES method is
generating same PSNR and SSIM in quite less iterations. To achieve the same PSNR and SSIM,
the P1GMRES method needs only 90 iterations and the P2GMRES method needs only 40
iterations. But the GMRES method needs more than 200 iterations to get the same PSNR and
SSIM. The TV-based CG method is also getting more than 200 iterations to get its PSNR and
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SSIM. Which means that MC-based PGMRES method is faster than the MC-based GMRES and
TV-based CG method for real and synthetic images. Here, the performance of the preconditioner
P2 is again more effective than the preconditioner P1.

Example 3. Here we have used nontexture Moon image. Here we have also compared our MC based
algorithm with TV (total variation) based algorithm. For TV we have used CG (Conjugate Gradient)
method. The different aspects of Moon image are presented in Figure 6. The size of each subfigure is
256 × 256. These are (a) exact image (b) blurry image (c) deblurred image by CG (d) deblurred image
by GMRES (e) deblurred image by P1GMRES and (f) deblurred image P2GMRES. For numerical
calculations, we have also used the ke−gen(nx, 300, 5) kernel. For TV-based method we have used
α = 1e − 4 and β = 1 according to [14]. For MC-based method we have used α = 1e − 6, β = 1 and
γ = 1000. For comparison we have used three different values of nx. These are 64, 128 and 256. For
the stopping criteria of a numerical methods we have used tolerance tol = 1e − 5.
Remarks

(1) The Figures 6(b)–(d) are almost similar, so all methods are generating same quality results.
(2) From the Figure 7, one can clearly notice the effectiveness of preconditioning. For all values of nx,

the number of PGMRES (P1GMRES and P2GMRES ) iteration is much lesser than as compared
to MC-based GMRES and TV-based CG to reach to the required accuracy tol = 1e − 5. The
results for subsequent fixed point iterations are also similar.

(3) From Table 4, it is observed that the PSNR and SSIM by MC-based PGMRES method is almost
same as compared with the ordinary MC-based GMRES method but much higher than TV-based
CG method for all values of nx. But PGMRES method is generating this better PSNR and SSIM in
quite less iterations. For example, to achieve the better PSNR and SSIM, the P1GMRES method
needs only 40 iterations and the P2GMRES method needs only 24 iterations for nx = 64. But the
GMRES method needs more than 150 iterations to get the same PSNR and SSIM. The TV-based
CG method is also getting more than 150 iterations to get its lower PSNR and SSIM. Same is
the case for other values of nx. Which means that MC-based PGMRES method is faster than the
MC-based GMRES and TV-based CG method for nontexture images. Here, the performance of
the preconditioner P2 is again more effective than the preconditioner P1
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Table 4. Comparison of CG, GMRES and PGMRES for Example 3.

Mesh size Blurred Method Deblurred Deblurred Iterations
h PSNR PSNR SSIM
1/64 24.4401 CG 53.4730 0.9486 150+

24.4401 GMRES 59.6722 0.9518 150+

24.4401 P1GMRES 60.3144 0.9597 40
24.4401 P2GMRES 59.9128 0.9614 24

1/128 27.0862 CG 50.5325 0.9596 150+

27.0862 GMRES 56.8443 0.9682 150+

27.0862 P1GMRES 56.8449 0.9690 70
27.0862 P2GMRES 56.7674 0.9689 38

1/256 28.9698 CG 46.2514 0.8439 150+

28.9698 GMRES 49.2330 0.8751 150+

28.9698 P1GMRES 49.2337 0.8752 92
2896.98 P2GMRES 49.2335 08752 50

Figure 6. Moon image: (a) exact image; (b) blurry image; (c) deblurred image by CG;
(d) deblurred image by GMRES; (e) deblurred image by P1GMRES; (f) deblurred image
P2GMRES.
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[nx = 64]

[nx = 128]

[nx = 256]
Figure 7. The CG, GMRES and PGMRES convergence for the solution to the linear system
in Example 3 at fixed point iteration m = 1. The horizontal axis represents the number of
iterations. The norm of the residual at each iteration is presenting on vertical axis.

Example 4. In this example, we have compared our MC-based algorithm with MC-based augmented
lagrangian methods of (Zhu, Tai and Chan) [19, 20] and (Zhang, Deng, Shi, Wang and Yonggui) [17].
We have done the comparison for image denoising case (when blurring operator ~K = I identity
operator) because in the given literature [17, 19, 20] augmented lagrangian method proposed only for
image denoising problem. For simplicity, we have named augmented lagrangian methods in [19, 20]
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and [17] by FFTALM, GSALM and LALM, respectively. For the comparison we have used Lena and
Cameraman images. The different aspects of both images are presented in Figure 8 and 9. The size of
each subfigure is 256 × 256. The MC-based augmented lagrangian methods (FFTALM, GSALM and
LALM) use certain sets of parameters which we have used according to [17, 19, 20]. For FFTALM,
the parameters are α = 8e − 1, r1 = 3e − 4, r2 = 50, r3 = 5e + 1, r4 = 5e + 4 and β = 1. For GSALM,
the parameters are α = 8e − 1, r1 = 4e − 3, r2 = 50, r3 = 1e + 3, r4 = 5e + 4 and β = 1. For LALM, the
parameters are α = 8e − 1, r1 = 4e − 3, r2 = 50, r3 = 1e + 3, r4 = 5e + 4, β = 1, δ1 = 0.0038 and
δ2 = 0.00012. For our MC-based algorithm (GMRES and PGMRES) we have used α = 1e − 6, β = 1
and γ = 1000. In both noisy images we have used random noise with mean (µ = 0) and standard
deviation (σ = 10). For the stopping criteria of a numerical methods we have used tolerance
tol = 9e − 4 for Lena image and tol = 8e − 4 for Cameraman image.
Remarks

(1) From the Figures 8 and 9 one can notice that all methods are generating same quality results.
(2) From the Table 5, it is observed that the PSNR value of all methods is almost same for both

images. But our methods (GMRES, P1GMRES and P2GMRES) are generating same PSNR in
quite less CPU-Time as compared to all augmented lagrangian methods (FFTALM, GSALM and
LALM). For example, the P1GMRES method is generating its PSNR for Lena image in just 6.528
seconds. But FFTALM, GSALM and LALM are generating their PSNR in 19.515, 11.406 and
9.078 seconds, respectively. Which means P1GMRES method is saving more than 60% of CPU-
Time as compared to FFTALM, more than 50% of CPU-Time as compared to GSALM and more
than 30% of CPU-Time as compared to LALM. Same is the case for P2GMRES method. So we
can say, our proposed MC-based methods (GMRES, P1GMRES and P2GMRES) are faster than
the MC-based augmented lagrangian methods (FFTALM, GSALM and LALM).

Figure 8. Lena image: (a) noisy image; (b) denoised image by FFTALM; (c) denoised image
by GSALM; (d) denoised image by LALM; (e) denoised image by GMRES; (f) denoised
image by P1GMRES; (g) denoised image by P2GMRES.
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Figure 9. Cameraman image: (a) noisy image; (b) denoised image by FFTALM; (c) denoised
image by GSALM; (d) denoised image by LALM; (e) denoised image by GMRES; (f)
denoised image by P1GMRES; (g) denoised image by P2GMRES.

Table 5. Comparison of different methods for Example 4.

Image Noisy Method Denoised CPU-
PSNR PSNR Time

Lena 28.154 FFTALM 32.970 19.515
28.154 GSALM 33.103 11.406
28.154 LALM 33.022 9.078
28.154 GMRES 33.051 8.931
28.154 P1GMRES 32.952 6.528
28.154 P2GMRES 33.033 6.796

Cameraman 28.105 FFTALM 32.593 22.578
28.105 GSALM 32.676 13.734
28.105 LALM 32.422 10.390
28.105 GMRES 32.547 10.439
28.105 P1GMRES 32.109 7.159
28.105 P2GMRES 32.454 7.985

5. Conclusions

A numerical algorithm (PGMRES) is presented to solve the primal form of mean curvature-based
nonlinear image deblurring problem. Two new SPD preconditioner matrices ( P1 and P2 ) are
introduced. Four examples are tested by PGMRES using our new preconditioner matrices. Different
kinds of images (Complicated, real, synthetic and nontexture)are tested by PGMRES using our new
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preconditioner matrices. The convergence rates for solution to the linear system and the norm of the
residual at each iteration are presented in each example. The comparison between our proposed
MC-based methods (GMRES, P1GMRES and P2GMRES) and MC-based augmented lagrangian
methods (FFTALM, GSALM and LALM) is also presented. Numerical experiments show the rapid
convergence of PGMRES method using new preconditioners. Which means that PGMRES method is
a robust and faster numerical method. It is also observed that the performance of the preconditioner
P2 is more effective than the preconditioner P1.
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