The $ m $-weak core inverse of a complex matrix was introduced by D. E. Ferreyra and Saroj B. Malik in 2024. We have revisited this inverse by using the inverse along two matrices, that is, we have proved that the $ m $-weak core inverse of a complex matrix coincides with the inverse along two complex matrices. Moreover, the necessary and sufficient conditions of the $ m $-weak core inverse of a complex matrix have been obtained. The one-sided $ m $-weak core inverse has been introduced by using the core-EP (EP means Equal Prohection) inverse of $ A $.
Citation: Jinyong Wu, Wenjie Shi, Sanzhang Xu. Revisiting the m-weak core inverse[J]. AIMS Mathematics, 2024, 9(8): 21672-21685. doi: 10.3934/math.20241054
The $ m $-weak core inverse of a complex matrix was introduced by D. E. Ferreyra and Saroj B. Malik in 2024. We have revisited this inverse by using the inverse along two matrices, that is, we have proved that the $ m $-weak core inverse of a complex matrix coincides with the inverse along two complex matrices. Moreover, the necessary and sufficient conditions of the $ m $-weak core inverse of a complex matrix have been obtained. The one-sided $ m $-weak core inverse has been introduced by using the core-EP (EP means Equal Prohection) inverse of $ A $.
[1] | J. Benítez, E. Boasso, H. W. Jin, On one-sided $(B, C)$-inverses of arbitrary matrices, Electron. J. Linear Al., 32 (2017), 391–422. https://doi.org/10.48550/arXiv.1701.09054 doi: 10.48550/arXiv.1701.09054 |
[2] | E. Boasso, G. Kantún-Montiel, The $(b, c)$-inverses in rings and in the Banach context, Mediterr, Mediterr. J. Math., 14 (2017), 21 pages. http://dx.doi.org/10.1007/s00009-017-0910-1 |
[3] | O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear A., 58 (2010), 681–697. http://dx.doi.org/10.1080/03081080902778222 doi: 10.1080/03081080902778222 |
[4] | X. F. Cao, Y. Y. Huang, X. Hua, T. Y. Zhao, S. Z. Xu, Matrix inverses along the core parts of three matrix decompositions, AIMS Math., 8 (2023), 30194–30208. http://dx.doi.org/ 10.3934/math.20231543 doi: 10.3934/math.20231543 |
[5] | J. L. Chen, D. Mosić, S. Z. Xu, On a new generalized inverse for Hilbert space operators, Quaest. Math., 43 (2020), 1331–1348. http://dx.doi.org/10.2989/16073606.2019.1619104 doi: 10.2989/16073606.2019.1619104 |
[6] | M. P. Drazin, Pseudo-inverses in associative rings and semigroup, Am. Math. Mon., 65 (1958), 506–514. http://dx.doi.org/10.1080/00029890.1958.11991949 doi: 10.1080/00029890.1958.11991949 |
[7] | M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl., 43 (2012), 1909–1923. https://doi.org/10.1016/j.laa.2011.09.004 doi: 10.1016/j.laa.2011.09.004 |
[8] | M. P. Drazin, Left and right generalized inverses, Linear Algebra Appl., 510 (2016), 64–78. https://dx.doi.org/10.1016/j.laa.2016.08.010 doi: 10.1016/j.laa.2016.08.010 |
[9] | D. E. Ferreyra, F.. Levis, N. Thome, Characterizations of $k$-commutative equalities for some outer generalized inverses, Linear Multilinear A., 68 (2020), 177–192. https://dx.doi.org/10.1080/03081087.2018.1500994 doi: 10.1080/03081087.2018.1500994 |
[10] | D. E. Ferreyra, S. B. Malik, The $m$-weak core inverse, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 118 (2024), 17 pages. https://dx.doi.org/10.1007/s13398-023-01539-y |
[11] | Y. Y. Ke, J. Višnjić, J. L. Chen, One sided $(b, c)$-inverse in rings, Filomat, 34 (2020), 727–736. https://doi.org/10.2298/FIL2003727K doi: 10.2298/FIL2003727K |
[12] | E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc., 26 (1920), 394–395. |
[13] | K. Manjunatha Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear A., 62 (2014), 792–804. https://doi.org/10.1080/03081087.2013.791690 doi: 10.1080/03081087.2013.791690 |
[14] | M. Mehdipour, A. Salemi, On a new generalized inverse of matrices, Linear Multilinear A., 66 (2018), 1046–1053. https://doi.org/10.1080/03081087.2017.1336200 doi: 10.1080/03081087.2017.1336200 |
[15] | S. B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575–580. http://dx.doi.org/10.1016/j.amc.2013.10.060 doi: 10.1016/j.amc.2013.10.060 |
[16] | R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406–413. http://dx.doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401 |
[17] | D. S. Rakić, A note on Rao and Mitra's constrained inverse and Drazin's (b, c) inverse, Linear Algebra Appl., 523 (2017), 102–108. https://doi.org/10.1016/j.laa.2017.02.025 doi: 10.1016/j.laa.2017.02.025 |
[18] | H. X. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300. https://doi.org/10.1016/j.laa.2016.08.008 doi: 10.1016/j.laa.2016.08.008 |
[19] | H. X. Wang, J. L. Chen, Weak group inverse, Open Math., 16 (2018), 1218–1232. http://dx.doi.org/10.1515/math-2018-0100 doi: 10.1515/math-2018-0100 |
[20] | S. Z. Xu, J. L. Chen, J. Benítez, Dingguo Wang, Generalized core inverse of matrices, Miskolc Math. Notes, 20 (2019), 565–584. http://dx.doi.org/10.18514/MMN.2019.2594 doi: 10.18514/MMN.2019.2594 |
[21] | S. Z. Xu, H. X. Wang, J. L. Chen, X. F. Chen, T. W. Zhao, Generalized WG inverse, J. Algebra Appl., 20 (2021), 2150072(12 pages). https://doi.org/10.1142/S0219498821500729 |
[22] | Y. K. Zhou, J. L. Chen, M. M. Zhou, $m$-weak group inverses in a ring with involution, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 115 (2021), 13 pages. https://doi.org/10.1007/s13398-020-00932-1 |