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1. Introduction

The symbol Cm×n denotes the set of all m × n matrices over the complex field C. Let A ∈ Cm×n. The
symbol A∗ denotes the conjugate transpose of A. Let CCM

n = {A ∈ Cn×n | rank (A2) = rank A}. The
column subspace of A is R(A) = {y ∈ Cm : y = Ax, x ∈ Cn}, and the null subspace of A is N(A) =
{x ∈ Cn : Ax = 0}. If there exists a smallest positive integer k ∈ Z such that rank (Ak) = rank(Ak+1)
holds, this integer is called the index of A ∈ Cn×n with the symbol ind(A). A complex matrix A is called
normal if AA∗ = A∗A, where A ∈ Cn×n.

Let A, X ∈ Cm×n. If AXA = A and XAX = X, where AX and XA are Hermitian, we call the matrix X
is the Moore-Penrose inverse of A [12, 16] and using the symbol A† denotes the Moore-Penrose inverse
of A. Let A, X ∈ Cn×n with ind (A) = k. The algebraic definition of the Drazin inverse is as follows: If

AXA = A, XAk+1 = Ak, and AX = XA,

then X is called a Drazin inverse of A. It is unique and denoted by AD [6]. Note that for a square
complex matrix, the algebraic definition of the Drazin inverse is equivalent to the functional definition
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of the Drazin inverse. If ind (A) = 1, the Drazin inverse is called the group inverse of A and denoted by
A#. Let A ∈ Cn×n. The DMP (Drazin Moore-Penrose) inverse of A was introduced by using the Drazin
and the Moore-Penrose inverses of A in [15], and the formula of the DMP inverse of A is AD,† = ADAA†

[15, Theorem 2.2]. Manjunatha Prasad and Mohana [13] introduced the core-EP inverse of a matrix[13,
Definition 3.1]. Let A ∈ Cn×n. If there exists X ∈ Cn×n such that XAX = X,R(X) = R(X∗) = R(Ak),
then X is called the core-EP inverse of A. If such inverse exists, then it is unique and denoted by
A †O. Let A ∈ Cn×n with ind(A) = k. The m-weak group inverse was introduced by Zhou, Chen, and
Zhou in [22]. A matrix X ∈ Cn×n is called the m-weak group inverse of A if XAk+1 = Ak, AX2 = X,
(A∗)kAm+1X = (A∗)kAm for m ∈ Z. In [18, Theorem 2.1], Wang introduced a new matrix decomposition,
namely, the core-EP decomposition of A ∈ Cn×n with ind (A) = k. Given a matrix A ∈ Cn×n, A can be
written as the sum of matrices A1 ∈ C

n×n and A2 ∈ C
n×n, that is, A = A1 + A2, where A1 ∈ C

CM
n , Ak

2 = 0,
and A∗1A2 = A2A1 = 0. In [18, Theorem 2.3 and Theorem 2.4], Wang proved this matrix decomposition
is unique, and there exists a unitary matrix U ∈ Cn×n such that

A1 = U
[

T S
0 0

]
U∗ and A2 = U

[
0 0
0 N

]
U∗, (1.1)

where T ∈ Cr×r is nonsingular, and N ∈ C(n−r)×(n−r) is nilpotent with rank (Ak) = r. In [18, Theorem
2.3], Wang proved that A1 can be described by using the Moore-Penrose inverse of Ak. The explicit
expressions of A1 can be found in the following lemma.

LEMMA 1.1. Let A ∈ Cn×n with ind(A) = k. If A = A1 + A2 is the core-EP decomposition of A, then
A1 = Ak(Ak)†A.

DEFINITION 1.1. Let A, B,C ∈ Cn×n. A matrix Y ∈ Cn×n is the inverse along B and C of A if we have

YAB = B, CAY = C, N(C) ⊆ N(Y) and R(Y) ⊆ R(B).

If such Y exists, then it is unique (see [1, Definition 4.1] and [17, Definition 1.2]). In [8,
Definition 1.2] and [11, Definition 2.1], the authors introduced the one-sided (b, c)-inverse in rings.
In [1, Definition 2.7], the authors introduced the one-sided (B,C)-inverse for complex matrices. Let
A, B,C ∈ Cn×n. We say that X ∈ Cn×n is a left (B,C)-inverse of A if we have N(C) ⊆ N(X) and
XAB = B. We say that Y ∈ Cn×n is a right (B,C)-inverse of A if we have R(Y) ⊆ R(B) and CAY = C.

The m-weak core inverse was introduced by Ferreyra and Malik in [10], and this inverse can be
introduced by using the m-weak group inverse.

2. When the m-weak core inverse is an inverse along two matrices

The relationships of the core inverse, DMP (Drazin Moore-Penrose) inverse, core-EP inverse, WG
(weak group) inverse, WC (weak core )inverse, m-weak group inverse, and m-weak core inverse can
be explained as in the following picture, Figure 1.
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Figure 1. Relationships of several generalized inverses.

The m-weak core inverse coincides with the WC inverse if m = 1, and the m-weak core inverse
coincides with the core-EP inverse if m ⩾ k by [10, Remark 4.2]. Thus, we assume that 2 ⩽ m < k.

LEMMA 2.1. Let A ∈ Cn×n, k,m ∈ Z, and k is the index of A. If 2 ⩽ m < k, and Am is normal, then
N
(
(Ak)∗A2m(Am)†

)
= N
(
(Ak)∗Am

)
.

Proof. If 2 ⩽ m < k and Am is normal, then

N
(
(Ak)∗A2m(Am)†

)
= N
(
(AmAk−m)∗A2m(Am)†

)
= N
(
(Ak−m)∗(Am)∗A2m(Am)†

)
= N
(
(Ak−m)∗(Am)∗AmAm(Am)†

)
= N
(
(Ak−m)∗((Am)∗Am)∗(Am(Am)†)∗

)
= N
(
(Ak−m)∗(Am(Am)†(Am)∗Am)∗

)
= N
(
(Ak−m)∗(Am(Am)†Am(Am)∗)∗

)
= N
(
(Ak−m)∗(Am(Am)∗)∗

)
= N
(
(Ak−m)∗((Am)∗Am)∗

)
= N
(
((Am)∗AmAk−m)∗

)
= N
(
((Am)∗Ak)∗

)
= N
(
(Ak)∗Am

)
.

(2.1)

□

The following counterexample shows that if Am is not a normal matrix, then N
(
(Ak)∗A2m(Am)†

)
=

N
(
(Ak)∗Am

)
does not hold in general. Note that the precondition is 2 ⩽ m < k, so we start the following

example by using a 4 × 4 matrix with ind(A) = 3 and m = 2.

EXAMPLE 2.1. Let A =


1 −1 −1 −1
2 1 −1 1
−1 1 1 1
1 −2 2 −2

 ∈ C4×4. It is easy to check that
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ind(A) = 3. Then, we have (A3)∗A4(A2)† =


−54

5 −27
5

54
5 −27

5
−54

5 −27
5

54
5 −27

5
−162

5 −81
5

162
5 −81

5
−54

5 −27
5

54
5 −27

5

 and (A3)∗A2 =


−43 27 11 27
−43 27 11 27
−129 81 33 81
−43 27 11 27

. So, (A3)∗A4(A2)†
(
(A3)∗A2

)†
(A3)∗A2 =


−54

5 −27
5

54
5 −27

5
−54

5 −27
5

54
5 −27

5
−162

5 −81
5

162
5 −81

5
−54

5 −27
5

54
5 −27

5

, which says

that (A3)∗A4(A2)†
(
(A3)∗A2

)†
(A3)∗A2 , (A3)∗A4(A2), that is, N

(
(A3)∗A4(A2)†

)
⊇ N

(
(A3)∗A2

)
does

not hold in general. Note that the condition N
(
(A3)∗A4(A2)†

)
⊇ N

(
(A3)∗A2

)
if and only if (A3)∗A4

(A2)†
(
(A3)∗A2

)†
(A3)∗A2 = (A3)∗A4(A2)†.

LEMMA 2.2. Let k,m ∈ Z. Then, the conditions 2 ⩽ m < k and 2m > k + 1 are equivalent to m < k <
2m − 1.

Proof. “⇐ ” If m < k < 2m − 1, then m < 2m − 1, that is, m > 1, which implies m ⩾ 2 by m ∈ Z. The
opposite is trivial. □

The following lemma will be used several times in the sequel.

LEMMA 2.3. Let A ∈ Cn×n, k,m ∈ Z, and k is the index of A. Then, N
(
(Ak)∗A2m(Am)†

)
=

N
(
A †OA2m(Am)†

)
.

Proof.
N
(
(Ak)∗A2m(Am)†

)
= N
(
Ak(Ak)†A2m(Am)†

)
(2.2)

The equality (2.2) is equivalent to the following equality by Ak(Ak)† = AA †O.

N
(
(Ak)∗A2m(Am)†

)
= N
(
AA †OA2m(Am)†

)
(2.3)

As A †O is an outer inverse of A, we have

N
(
AA †OA2m(Am)†

)
= N
(
A †OA2m(Am)†

)
(2.4)

The proof is completed by equality (2.3) and equality (2.4). □

From the proof of the above lemma we have the following lemma.

LEMMA 2.4. Let A ∈ Cn×n, k,m ∈ Z, and k is the index of A. Then, N
(
(Ak)∗A2m(Am)†

)
=

N
(
A1A2m−1(Am)†

)
, where A1 is the core part of the core-EP decomposition.

Proof. By the proof of Lemma 2.3, we have

N
(
(Ak)∗A2m(Am)†

)
= N
(
AA †OA2m(Am)†

)
Note that N

(
AA †OA2m(Am)†

)
= N

(
A1A2m−1(Am)†

)
by A1 = AA †OA. Thus, N

(
(Ak)∗A2m(Am)†

)
=

N
(
AA †OA2m(Am)†

)
= N
(
A1A2m−1(Am)†

)
by Lemma 1.1. □
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LEMMA 2.5. Let A ∈ Cn×n, k,m ∈ Z, and k is the index of A. If m < k < 2m−1, thenN
(
(Ak)∗A2m(Am)†

)
=

N
(
A2m−1(Am)†

)
.

Proof. By the proof of Lemma 2.3, we have

N
(
(Ak)∗A2m(Am)†

)
= N
(
A †OA2m(Am)†

)
(2.5)

Note that N
(
A †OA2m(Am)†

)
= N

(
A †OAk+1A2m−k−1(Am)†

)
by m < k < 2m − 1. So, by A †OAk+1 = Ak, we

have
N
(
A †OA2m(Am)†

)
= N
(
AkA2m−k−1(Am)†

)
= N
(
A2m−1(Am)†

)
(2.6)

Thus, the proof is completed by (2.5) and (2.6). □

LEMMA 2.6. Let A ∈ Cn×n, k,m ∈ Z, and k is the index of A. If m < k < 2m−1, thenN
(
(Ak)∗A2m(Am)†

)
=

N
(
Ak(Am)†

)
.

Proof. By Lemma 2.5, now, we just need to show the following equation:

N
(
Ak(Am)†

)
= N
(
A2m−1(Am)†

)
(2.7)

For any u ∈ N
(
Ak(Am)†

)
, we have

A2m−1(Am)†u = A2m−k−1Ak(Am)†u = 0,

which says that
N
(
Ak(Am)†

)
⊆ N
(
A2m−1(Am)†

)
. (2.8)

For any v ∈ N
(
A2m−1(Am)†

)
, we have

Ak(Am)†v = ADAk+1(Am)†v = ADAADAk+1(Am)†v
= (AD)2Ak+2(Am)†v = AD(ADAAD)Ak+2(Am)†v
= (AD)3Ak+3(Am)†v
= · · ·

= (AD)2m−1−kA2m−1(Am)†v
= 0

which says that
N
(
A2m−1(Am)†

)
⊆ N
(
Ak(Am)†

)
. (2.9)

Thus, N
(
Ak(Am)†

)
= N
(
A2m−1(Am)†

)
holds by (2.8) and (2.9). □

The following counterexample shows that if m < k < 2m − 1 does not hold, then
N
(
(Ak)∗A2m(Am)†

)
= N

(
Ak(Am)†

)
does not hold in general. Note that the precondition is 2 ⩽ m < k

and 2m > k + 1, so we start the following example by assuming that k > 2m − 1 and 2 ⩽ m < k. For
example, let m = 2, and then 2m − 1 = 3. Thus, we can choose k = 4 and let the related matrix be a
5 × 5 matrix.
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EXAMPLE 2.2. Let A =


2 2 −2 −1 1
−1 2 −2 0 0
−1 2 −2 −2 −1
−2 −2 2 −1 −2
0 0 0 −1 2


∈ C5×5. It is easy to check that ind(A) = 4 and m = 2.

Then, the following equality is obvious: (A4)∗A4(A2)† =



702
7

702
7 −702

7 −2106
7

2106
7

702
7

702
7 −702

7 −2106
7

2106
7

−702
7 −702

7
702
7

2106
7 −2106

7
−351

7 −351
7

351
7

1053
7 −1053

7
2016

7
2016

7 −2016
7 −6318

7
6318

7


. Also

we check that A4(A2)† =


216 216 −216 −108 648
−108 −108 108 54 −324
−54 −54 54 27 −162
−162 −162 162 81 −486
162 162 −162 −81 486


. So,

(A4)∗A4(A2)†
(
A4(A2)†

)†
A4(A2)† =



8731
79

8731
79 −8731

79 −10223
185

29177
88

8731
79

8731
79 −8731

79 −10223
185

29177
88

−8731
79 −8731

79
8731
79

10223
185 −29177

88
−10223

185 −10223
185

10223
185

9477
343 −29177

176
29177

88
29177

88 −29177
88 −29177

176
84547

85


,

which says that (A4)∗A4(A2)†
(
(A4)∗A2

)†
A4(A2)† , (A4)∗A4(A2)†, that is, the implication

N
(
(A4)∗A4(A2)†

)
⊇ N
(
A4(A2)†

)
does not hold in general.

LEMMA 2.7. [18, Corollary 3.3] Let A ∈ Cn×n with ind(A) = k. Then, AA †O = Ak(Ak)†.

In the following theorem, we will show that the m-weak core inverse can be expressed by using the
core-EP inverse. This theorem is one of the main results in this paper.

THEOREM 2.8. Let A ∈ Cn×n with ind(A) = k and m ∈ Z. Then, X is the m-weak core inverse of A if and
only if both AX = (A †O)mA2m(Am)† and X = AA †OX hold.

Proof. “ ⇒ ” Let X be the m-weak core inverse of A. Then, we have AX = (A †O)mA2m(Am)† and
R(X) ⊆ R(Ak). So, X = AkU for some U ∈ Cn×n by R(X) ⊆ R(Ak). Hence,

X = AkU = AA †OX,

by Lemma 2.7.
“⇐ ” X = AA †OX = Ak(Ak)†X implies R(X) ⊆ R(Ak), so, X is the m-weak core inverse of A by [10,

Theorem 4.1]. □

LEMMA 2.9. [18, Theorem 3.2] Let A ∈ Cn×n with ind(A) = k. If A = A1 + A2 is the core-EP

decomposition of A with A1, A2 as in (1.1), then, A †O = U
[

T−1 0
0 0

]
U∗, where U and T same as

(1.1).

AIMS Mathematics Volume 9, Issue 8, 21672–21685.
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LEMMA 2.10. [10, Theorem 4.9] Let A ∈ Cn×n with ind(A) = k and m ∈ Z. Then, AA #Om =

(A †O)mA2m(Am)†.

The following theorem is also one of the main results in this paper.

THEOREM 2.11. Let A ∈ Cn×n with ind(A) = k and m ∈ Z. Then, the m-weak core inverse of A is the
inverse along Ak and (Ak)∗A2m(Am)†.

Proof. Let X be the m-weak core inverse of A. Then, XAAk = XAk+1 = Ak by [10, Theorem 4.7 (d)].
Let A = A1 + A2 be the core-EP decomposition of A, where A1 ∈ C

CM
n , Ak

2 = 0, and A∗1A2 = A2A1 = 0.
By [18, Theorem 2.3 and Theorem 2.4], there exists a unitary matrix U ∈ Cn×n such that

A1 = U
[

T S
0 0

]
U∗ and A2 = U

[
0 0
0 N

]
U∗, (2.10)

where T ∈ Cr×r is nonsingular, and N ∈ C(n−r)×(n−r) is nilpotent. Then,

Am = U
[

T m Φm

0 Nm

]
U∗, (2.11)

where Φm =
m∑

j=1
T j−1S Nm− j. By (3.5) in [19], we have

Ak = U
[

T k Φk

0 0

]
U∗, (2.12)

where Φk =
k∑

j=1
T j−1S Nk− j. By (2.12), we have

(Ak)∗ = U
[

(T k)∗ 0
(Φk)∗ 0

]
U∗. (2.13)

By [10, Remark 3.2 (3.5)], we have

Am(Am)† = U
[

Er 0
0 Nm(Nm)†

]
U∗. (2.14)

By (2.11), (2.13), and (2.14), we have

(Ak)∗A2m(Am)† = (Ak)∗AmAm(Am)†

= U
[

(T k)∗ 0
(Φk)∗ 0

] [
T m Φm

0 Nm

] [
Er 0
0 Nm(Nm)†

]
U∗

= U
[

(T k)∗T m (T k)∗ΦmNm(Nm)†

(Φk)∗T m (Φk)∗ΦmNm(Nm)†

]
U∗.

(2.15)

AIMS Mathematics Volume 9, Issue 8, 21672–21685.
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By Lemma 2.9, Lemma 2.10, and (2.15), we have

(Ak)∗A2m(Am)†AX = (Ak)∗A2m(Am)†(A †O)mA2m(Am)†

= U
[

(T k)∗T m (T k)∗ΦmNm(Nm)†

(Φk)∗T m (Φk)∗ΦmNm(Nm)†

] [
T−m 0

0 0

]
[

T m Φm

0 Nm

] [
Er 0
0 Nm(Nm)†

]
U∗

= U
[

(T k)∗T m (T k)∗ΦmNm(Nm)†

(Φk)∗T m (Φk)∗ΦmNm(Nm)†

]
U∗.

(2.16)

By (2.15) and (2.16), we have

(Ak)∗A2m(Am)†AX = (Ak)∗A2m(Am)†. (2.17)

By [10, Theorem 4.7], we have N((Ak)∗A2m(Am)†) ⊆ N(X) and R(X) ⊆ R(Ak). Thus, the m-weak core
inverse of A is the inverse along Ak and (Ak)∗A2m(Am)† by XAk+1 = Ak, (2.17), and Definition 1.1. □

DEFINITION 2.1. [20, Definition 3.1] Let A ∈ Cn×n, AD is the Drazin inverse of A, and i,m ∈ N. A matrix
X ∈ Cn×n is called an ⟨i,m⟩-core inverse of A if it satisfies

X = ADAX and AmX = Ai(Ai)†. (2.18)

If such an X exists, then it is unique and denoted by A⊕i,m.

In the following lemma, the expression of the ⟨i,m⟩-core inverse of A can be found by using the
core-EP decomposition of A.

LEMMA 2.12. [21, Theorem 2.7] Let A ∈ Cn×n with ind (A) = k. If A = A1 + A2 is the core-EP
decomposition of A with A1, A2 as in (1.1), then, the expression of the ⟨i,m⟩-core inverse of A is A⊕i,m =

U
[

T−m 0
0 0

]
U∗ for all i ⩾ k.

In the following theorem, we will show that the m-weak core inverse can be described by using the
⟨i,m⟩-core inverse of A.

THEOREM 2.13. Let A, X ∈ Cn×n with ind (A) = k and m ∈ Z. Then, the following are equivalent:

(1) X is the m-weak core inverse of A;
(2) AX = A⊕i,mA2m(Am)† and X = AA †OX;
(3) AX = A⊕i,mA2m(Am)† and R(X) ⊆ R(Ak);
(4) XAX = X, AX = A⊕i,mA2m(Am)† and XA = A⊕i,m+1A2m(Am)†.

Proof. (1)⇔ (2). By Theorem 2.8 and Lemma 2.12.
(1)⇔ (3). By [10, Theorem 4.11] and Lemma 2.12.
(1)⇔ (4). By [10, Theorem 4.9] and Lemma 2.12. □

THEOREM 2.14. Let A ∈ Cn×n with ind(A) = k and m ∈ Z. If 2 ⩽ m < k and Am is normal, then the
m-weak core inverse of A is the inverse along Ak and (Ak)∗Am.

AIMS Mathematics Volume 9, Issue 8, 21672–21685.
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Proof. Let X be the m-weak core inverse of A. By Lemma 2.1, we have

N
(
(Ak)∗A2m(Am)†

)
= N
(
(Ak)∗Am

)
. (2.19)

By Theorem 2.11, we have
N
(
(Ak)∗A2m(Am)†

)
⊆ N(X). (2.20)

The equalities (2.19) and (2.20) give

N
(
(Ak)∗Am

)
⊆ N(X). (2.21)

By the proof of Theorem 2.11, we have

(Ak)∗A2m(Am)†AX = (Ak)∗A2m(Am)†. (2.22)

The equality (2.22) implies that

AX − En ∈ N
(
(Ak)∗A2m(Am)†

)
. (2.23)

The equalities (2.19) and (2.23) give

AX − En ∈ N
(
(Ak)∗A2m(Am)†

)
= N
(
(Ak)∗Am

)
, (2.24)

which says that
(Ak)∗AmAX = (Ak)∗Am. (2.25)

Thus, the m-weak core inverse of A is the inverse along Ak and (Ak)∗Am by (2.20), (2.25), the proof of
Theorem 2.11, and Definition 1.1. □

REMARK 2.1. By the proof of Theorem 2.11, we have

(Ak)∗Am = U
[

(T k)∗T m (T k)∗Φm

(Φk)∗T m (Φk)∗Φm

]
U∗ (2.26)

and

AX = U
[

Er T−mΦmNm(Nm)†

0 0

]
U∗. (2.27)

By (2.26) and (2.27), we have

(Ak)∗AmAX = U
[

(T k)∗T m (T k)∗Φm

(Φk)∗T m (Φk)∗Φm

] [
Er T−mΦmNm(Nm)†

0 0

]
U∗

= U
[

(T k)∗T m (T k)∗ΦmNm(Nm)†

(Φk)∗T m (Φk)∗ΦmNm(Nm)†

]
U∗

(2.28)

The equalities (2.19) and (2.28) give(T k)∗Φm = (T k)∗ΦmNm(Nm)†

(Φk)∗Φm = (Φk)∗ΦmNm(Nm)†
(2.29)

Thus, by (2.29) and T being invertible, we have

Φm = ΦmNm(Nm)†.
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THEOREM 2.15. Let A, X ∈ Cn×n with ind (A) = k and m ∈ Z. Then, the following are equivalent:

(1) X is the m-weak core inverse of A;
(2) X is the inverse along Ak and A †OA2m(Am)†;
(3) X is the inverse along Ak and A1A2m−1(Am)†, where A1 is the core part of the core-EP

decomposition.

Proof. (1)⇒ (2) and (1)⇒ (3). It is obvious by Lemma 2.3, Lemma 2.4, and Theorem 2.11.
(2)⇒ (1). By Theorem 2.11 and Definition 1.1, it is enough to show that

A †OA2m(Am)†AX = A †OA2m(Am)† and N
(
A †OA2m(Am)†

)
⊆ N(X). (2.30)

By Lemma 2.3, we have N
(
(Ak)∗A2m(Am)†

)
= N

(
A †OA2m(Am)†

)
. Hence, the condition

N
(
A †OA2m(Am)†

)
⊆ N(X) holds by Theorem 2.11. By the proof of Theorem 2.11, we have

(Ak)∗A2m(Am)†AX = (Ak)∗A2m(Am)†. (2.31)

The equality (2.31) implies that

AX − En ∈ N
(
(Ak)∗A2m(Am)†

)
. (2.32)

The property (2.32) and Lemma 2.3 give

AX − En ∈ N
(
(Ak)∗A2m(Am)†

)
= N
(
A †OA2m(Am)†

)
,

which says that
A †OA2m(Am)†AX = A †OA2m(Am)†.

(3)⇒ (1). By Theorem 2.11 and Definition 1.1, it is enough to show that

A1A2m−1(Am)†AX = A1A2m−1(Am)† and N
(
A1A2m−1(Am)†

)
⊆ N(X).

One can see that the proof of (3)⇒ (1) is similar to the proof of (2)⇒ (1). □

The DMP inverse is the inverse along Ak and AkA†, and in the following theorem, we will show that
the m-weak core inverse of A is the inverse along Ak and Ak(Am)† under the condition m < k < 2m − 1.

THEOREM 2.16. Let A ∈ Cn×n with ind(A) = k and m ∈ Z. If m < k < 2m − 1, then the m-weak core
inverse of A is the inverse along Ak and Ak(Am)†.

Proof. Let X be the m-weak core inverse of A. By Lemma 2.6, we have

N
(
(Ak)∗A2m(Am)†

)
= N
(
Ak(Am)†

)
. (2.33)

By the proof of Theorem 2.14, we have

AX − En ∈ N
(
(Ak)∗A2m(Am)†

)
. (2.34)

The equalities (2.33) and (2.34) give

AX − En ∈ N
(
(Ak)∗A2m(Am)†

)
= N
(
Ak(Am)†

)
, (2.35)

which says that
Ak(Am)†AX = Ak(Am)†. (2.36)

Thus, the m-weak core inverse of A is the inverse along Ak and Ak(Am)† by (2.36), the proof of
Theorem 2.11, and Definition 1.1. □
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3. One sided m-weak core inverse

Motivated by the ideal of the one-sided (B,C)-inverse of A, the one-sided m-weak core inverse was
introduced by using the core-EP inverse of A.

DEFINITION 3.1. Let A ∈ Cn×n with ind (A) = k and m ∈ Z. We say that X ∈ Cn×n is a left m-weak core
inverse of A if we have

XAk+1 = Ak and N
(
A †OA2m(Am)†

)
⊆ N(X). (3.1)

We say that Y ∈ Cn×n is a right m-weak core inverse of A if we have

Y = AA †OY and AY − E ∈ N
(
A †OA2m(Am)†

)
. (3.2)

LEMMA 3.1. Let A ∈ Cn×n with ind (A) = k and m ∈ Z. Then, Y ∈ Cn×n is a right m-weak core inverse of
A if and only if Y = AA †OY and (Ak)∗A2m(Am)†AY = (Ak)∗A2m(Am)† hold.

Proof. By Lemma 3.1 and the definition of the right m-weak core inverse, the condition AY − E ∈
N
(
A †OA2m(Am)†

)
is equivalent to

(Ak)∗A2m(Am)†AY = (Ak)∗A2m(Am)†. (3.3)

Thus,

(Ak)∗A2m(Am)†AY = (Ak)∗A2m(Am)†

⇔ (Ak)∗
(
A2m(Am)†AY − A2m(Am)†

)
= 0

⇔ (Ak)†
(
A2m(Am)†AY − A2m(Am)†

)
= 0

⇔ Ak(Ak)†
(
A2m(Am)†AY − A2m(Am)†

)
= 0

⇔ AA †O
(
A2m(Am)†AY − A2m(Am)†

)
= 0

⇔ A †O
(
A2m(Am)†AY − A2m(Am)†

)
= 0.

□

The following theorem gives the main results for the one sided m-weak core inverse.

THEOREM 3.2. Let A ∈ Cn×n with ind (A) = k and m ∈ Z. If A is both left and right m-weak core
invertible, then the left m-weak core inverse of A and the right m-weak core inverse of A are unique.
Moreover, the left m-weak core inverse of A coincides with the right m-weak core inverse of A.

Proof. Let X be a left m-weak core inverse of A and Y be a right m-weak core inverse of A. Then, by
Definition 3.1, we have

XAk+1 = Ak and N
(
A †OA2m(Am)†

)
⊆ N(X), (3.4)

and
Y = AA †OY and AY − E ∈ N

(
A †OA2m(Am)†

)
(3.5)

hold. By Lemma 3.1, the equality (3.5) is equivalent to

Y = AA †OY and (Ak)∗A2m(Am)†AY = (Ak)∗A2m(Am)†. (3.6)
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By Lemma 2.3, the equality (3.5) is equivalent to

XAk+1 = Ak and N
(
Ak)∗A2m(Am)†

)
⊆ N(X). (3.7)

Thus X = U(Ak)∗A2m(Am)† and Y = AA †OY = Ak(Ak)†Y for some U,V ∈ Cn×n by (3.6) and and (3.7).
Therefore,

X = U(Ak)∗A2m(Am)† = U(Ak)∗A2m(Am)†AY = XAY;
Y = Ak(Ak)†Y = XAk+1(Ak)†Y = XAAk(Ak)†Y = XAY.

(3.8)

Hence, X = Y by (3.8).
If Z is a another right m-weak core inverse of A, one can prove X = Z in a similar way. Then Y = Z

by X = Y and X = Z, which says the right MPCEP-inverse of A is unique. One also can prove the
left m-weak core inverse of A is unique by a similar proof of the uniqueness of the right m-weak core
inverse of A. By the above proof, we can get that the left m-weak core inverse of A coincides with the
right m-weak core inverse of A. □

4. The relationship between different new-typed generalized inverses with same column
subspace

The following table (Table 1) shows several generalized inverses that have the same column
subspace.

Table 1. New-typed generalized inverses with same column subspace.

New-typed generalized inverses matrix B matrix C

Drazin inverse B = Ak C = Ak

core-EP inverse B = Ak C = (Ak)∗

DMP inverse B = Ak C = AkA†

WG inverse B = Ak C = (Ak)∗A
m-weak core inverse B = Ak C = Ak(Am)†

Note that if Ak is an EP matrix, then the Drazin inverse coincides with the core-EP inverse.

5. Conclusions

The m-weak core inverse of a complex matrix have been revisited this inverse by using the inverse
along two matrices. Moreover, the necessary and sufficient conditions of the m-weak core inverse of
a complex matrix have been obtained. The one-sided m-weak core inverse has been introduced by
using the core-EP inverse of A. We believe that investigation related to the generalized inverses along
the core parts of related matrix decompositions will attract attention, and we describe perspectives for
further research:
(1). Considering weak generalized inverses based on the core-EP decompositions.
(2). Extending the m-weak core inverse of a complex matrix to an element in rings.
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(3). The column space and the null space of a complex matrix are useful tools in the generalized
inverses theory of a complex.
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