This paper deals with the blow-up phenomena of solution to a reaction-diffusion equation with gradient absorption terms under nonlinear boundary flux. Based on the technique of modified differential inequality and comparison principle, we establish some conditions on nonlinearities to guarantee the solution exists globally or blows up at finite time. Moreover, some bounds for blow-up time are derived under appropriate measure in higher dimensional spaces $ \left({N \ge 2} \right). $
Citation: Mengyang Liang, Zhong Bo Fang, Su-Cheol Yi. Blow-up analysis for a reaction-diffusion equation with gradient absorption terms[J]. AIMS Mathematics, 2021, 6(12): 13774-13796. doi: 10.3934/math.2021800
This paper deals with the blow-up phenomena of solution to a reaction-diffusion equation with gradient absorption terms under nonlinear boundary flux. Based on the technique of modified differential inequality and comparison principle, we establish some conditions on nonlinearities to guarantee the solution exists globally or blows up at finite time. Moreover, some bounds for blow-up time are derived under appropriate measure in higher dimensional spaces $ \left({N \ge 2} \right). $
[1] | M. Ben-Artzi, P. Souplet, F. B. Weissler, The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pure. Appl., 81 (2002), 343–378. doi: 10.1016/S0021-7824(01)01243-0 |
[2] | B. H. Gilding, M. Guedda, R. Kersner, The Cauchy problem for $ u_t = \Delta u + \left| {\nabla u} \right|^p$, J. Math. Anal. Appl., 284 (2003), 733–755. doi: 10.1016/S0022-247X(03)00395-0 |
[3] | H. A. Levine, L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differ. Equations, 16 (1974), 319–334. doi: 10.1016/0022-0396(74)90018-7 |
[4] | J. Filo, Diffusivity versus absorption through the boundary, J. Differ. Equations, 99 (1992), 281–305. doi: 10.1016/0022-0396(92)90024-H |
[5] | P. Quittner, P. Souplet, Blow-up, global existence and steady states, In: Superlinear parabolic problems, Basel: Birkhauser, 2007. |
[6] | B. Hu, Blow up theories for semilinear parabolic equations, Berlin: Springer, 2011. |
[7] | H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev., 32 (1990), 262–288. doi: 10.1137/1032046 |
[8] | J. L. Gomez, V. Marquez, N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Differ. Equations, 92 (1991), 384–401. doi: 10.1016/0022-0396(91)90056-F |
[9] | A. Rodriguez-Bernal, A. Tajdine, Nonlinear balance for reaction-diffusion equations under nonlinear boundary conditions: Dissipativity and blow-up, J. Differ. Equations, 169 (2001), 332–372. doi: 10.1006/jdeq.2000.3903 |
[10] | H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded fourier coefficients, Math. Ann., 214 (1975), 205–220. doi: 10.1007/BF01352106 |
[11] | L. E. Payne, P. W. Schaefer, Bounds for blow-up time for the heat equation under nonlinear boundary conditions, Proc. Roy. Soc. Edinb. A, 139 (2009), 1289–1296. doi: 10.1017/S0308210508000802 |
[12] | L. E. Payne, G. A. Philippin, S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys., 61 (2010), 999–1007. doi: 10.1007/s00033-010-0071-6 |
[13] | F. S. Li, J. L. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 385 (2012), 1005–1014. doi: 10.1016/j.jmaa.2011.07.018 |
[14] | K. Baghaei, M. Hesaaraki, Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations, C. R. Math., 351 (2013), 731–735. doi: 10.1016/j.crma.2013.09.024 |
[15] | Z. B. Fang, Y. X. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys., 66 (2015), 2525–2541. doi: 10.1007/s00033-015-0537-7 |
[16] | L. W. Ma, Z. B. Fang, Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal.-Real, 32 (2016), 338–354. doi: 10.1016/j.nonrwa.2016.05.005 |
[17] | L. W. Ma, Z. B. Fang, Blow-up phenomena for a semilinear parabolic equation with weighted inner absorption under nonlinear boundary flux, Math. Method. Appl. Sci., 40 (2017), 115–128. doi: 10.1002/mma.3971 |
[18] | J. Z. Zhang, F. S. Li, Global existence and blow-up phenomena for divergence form parabolic equation with time-dependent coefficient in multidimensional space, Z. Angew. Math. Phys., 70 (2019), 1–16. doi: 10.1007/s00033-018-1046-2 |
[19] | P. Quittner, On global existence and stationary solutions for two classes of semilinear parabolic equations, Comment. Math. Univ. Ca., 34 (1993), 105–124. |
[20] | P. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differ. Integral Equ., 15 (2002), 237–256. |
[21] | M. Hesaaraki, A. Moameni, Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in $R^{N}$, Mich. Math. J., 52 (2004), 375–389. |
[22] | L. E. Payne, J. C. Song, Lower bounds for blow-up time in a nonlinear parabolic problem, J. Math. Anal. Appl., 354 (2009), 394–396. doi: 10.1016/j.jmaa.2009.01.010 |
[23] | H. X. Li, W. J. Gao, Y. Z. Han, Lower bounds for the blowup time of solutions to a nonlinear parabolic problem, Electron. J. Differ. Equ., 2014 (2014), 1–6. doi: 10.1186/1687-1847-2014-1 |
[24] | Y. Liu, S. G. Luo, Y. H. Ye, Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions, Comput. Math. Appl., 65 (2013), 1194–1199. doi: 10.1016/j.camwa.2013.02.014 |
[25] | M. Marras, S. V. Piro, G. Viglialoro, Lower bounds for blow-up time in a parabolic problem with a gradient term under various boundary conditions, Kodai Math. J., 37 (2014), 532–543. |
[26] | Q. Y. Zhang, Z. X. Jiang, S. N. Zheng, Blow-up time estimate for a degenerate diffusion equation with gradient absorption, Appl. Math. Comput., 251 (2015), 331–335. |
[27] | G. S. Tang, Blow-up phenomena for a parabolic system with gradient nonlinearity under nonlinear boundary conditions, Comput. Math. Appl., 74 (2017), 360–368. doi: 10.1016/j.camwa.2017.04.019 |
[28] | L. W. Ma, Z. B. Fang, Bounds for blow-up time of a reaction-diffusion equation with weighted gradient nonlinearity, Comput. Math. Appl., 76 (2018), 508–519. doi: 10.1016/j.camwa.2018.04.033 |
[29] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. |