In this paper, the parabolic equation with oblique derivative boundary condition is considered. The long time behavior of the solution is derived by selecting the appropriate auxiliary functions and making priori estimates. Through blow up analysis, time-dependent gradient estimates are obtained, followed by second-order derivative estimates. Then, the convergence of smooth solution to parabolic equations with the oblique derivative boundary condition is obtained using standard theory.
Citation: Hongmei Li. Convergence of smooth solutions to parabolic equations with an oblique derivative boundary condition[J]. AIMS Mathematics, 2024, 9(2): 2824-2853. doi: 10.3934/math.2024140
In this paper, the parabolic equation with oblique derivative boundary condition is considered. The long time behavior of the solution is derived by selecting the appropriate auxiliary functions and making priori estimates. Through blow up analysis, time-dependent gradient estimates are obtained, followed by second-order derivative estimates. Then, the convergence of smooth solution to parabolic equations with the oblique derivative boundary condition is obtained using standard theory.
[1] | S. J. Altschuler, L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Dif., 2 (1994), 101–111. https://doi.org/10.1007/BF01234317 doi: 10.1007/BF01234317 |
[2] | M. Arisawa, Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions, Ann. Inst. H. Poincaŕ Anal., 20 (2003), 293–332. |
[3] | D. L. Francesca, Large time behavior of solutions to parabolic equations with Neumann boundary conditions, J. Math. Anal. Appl., 339 (2008), 384–398. https://doi.org/10.1016/j.jmaa.2007.06.052 doi: 10.1016/j.jmaa.2007.06.052 |
[4] | B. Guy, D. L. Francesca, On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions, Ann. Inst. H. Poincaŕ Anal., 22 (2005), 521–541. https://doi.org/10.1016/j.anihpc.2004.09.001 doi: 10.1016/j.anihpc.2004.09.001 |
[5] | J. Kitagawa, A parabolic flow toward solutions of the optimal transportation problem on domains with boundary, J. Reine Angew. Math., 2012 (2012), 127–160. https://doi.org/10.1515/crelle.2012.001 doi: 10.1515/crelle.2012.001 |
[6] | O. C. Schnurer, Translating solutions to the second boundary value problem for curvature flows, Manuscripta Math., 108 (2002), 319–347. https://doi.org/10.1007/s002290200265 doi: 10.1007/s002290200265 |
[7] | J. J. Xu, Gradient estimates for semi-linear elliptic equations with prescribed contact angle problem, J. Math. Anal. Appl., 455 (2017), 361–369. https://doi.org/10.1016/j.jmaa.2017.05.066 doi: 10.1016/j.jmaa.2017.05.066 |
[8] | G. M. Lieberman, Oblique derivative problems for elliptic equations, World Scientific, 2013. |
[9] | G. M. Lieberman, Second order parabolic differential equations, World Scientific, 1996. |
[10] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer-Verlag, 1983. |
[11] | P. L. Lions, N. S. Trudinger, Linear oblique derivative problems for the uniformly elliptic Hamilton-Jacobi-Bellman equation, Math. Z., 191 (1986), 1–15. https://doi.org/10.1007/BF01163605 doi: 10.1007/BF01163605 |
[12] | X. J. Wang, Oblique derivative problems for the equations of Monge-Ampere type, Chinese J. Contemp. Math., 13 (1992), 13–22. |
[13] | J. G. Bao, The Hölder gradient estimates for solutions of fully nonlinear elliptic oblique derivative problems, J. B. Norm. Univ., 29 (1993), 315–321. |
[14] | J. Urbas, Nonlinear oblique boundary value problems for Hessian equations in two dimensions, Ann. Inst. H. Poincaŕ Anal., 12 (1995), 507–575. |
[15] | J. Urbas, Oblique boundary value problems for equations of Monge-Ampere type, Calc. Var. Partial Dif., 7 (1998), 19–39. https://doi.org/10.1007/s005260050097 doi: 10.1007/s005260050097 |
[16] | F. D. Jiang, N. S. Trudinger, Oblique boundary value problems for augmented Hessian equations Ⅱ, Nonlinear Anal., 154 (2017), 148–173. https://doi.org/10.1016/j.na.2016.08.007 doi: 10.1016/j.na.2016.08.007 |
[17] | Z. H. Gao, P. H. Wang, Global $ C^2$-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition, Discrete Cont. Dyn., 42 (2022), 1201–1223. http://dx.doi.org/10.3934/dcds.2021152 doi: 10.3934/dcds.2021152 |
[18] | R. L. Huang, Y. H. Ye, A convergence result on the second boundary value problem for parabolic equations, Pac. J. Math., 310 (2021), 159–179. https://doi.org/10.2140/pjm.2021.310.159 doi: 10.2140/pjm.2021.310.159 |
[19] | P. H. Wang, Y. N. Zhang, Mean curvature flow with linear oblique derivative boundary conditions, Sci. China Math., 65 (2022), 1413–1430. https://doi.org/10.1007/s11425-020-1795-2 doi: 10.1007/s11425-020-1795-2 |