Research article

Convergence of smooth solutions to parabolic equations with an oblique derivative boundary condition

  • Received: 24 October 2023 Revised: 10 December 2023 Accepted: 12 December 2023 Published: 02 January 2024
  • MSC : 35B45, 35G30

  • In this paper, the parabolic equation with oblique derivative boundary condition is considered. The long time behavior of the solution is derived by selecting the appropriate auxiliary functions and making priori estimates. Through blow up analysis, time-dependent gradient estimates are obtained, followed by second-order derivative estimates. Then, the convergence of smooth solution to parabolic equations with the oblique derivative boundary condition is obtained using standard theory.

    Citation: Hongmei Li. Convergence of smooth solutions to parabolic equations with an oblique derivative boundary condition[J]. AIMS Mathematics, 2024, 9(2): 2824-2853. doi: 10.3934/math.2024140

    Related Papers:

  • In this paper, the parabolic equation with oblique derivative boundary condition is considered. The long time behavior of the solution is derived by selecting the appropriate auxiliary functions and making priori estimates. Through blow up analysis, time-dependent gradient estimates are obtained, followed by second-order derivative estimates. Then, the convergence of smooth solution to parabolic equations with the oblique derivative boundary condition is obtained using standard theory.



    加载中


    [1] S. J. Altschuler, L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Dif., 2 (1994), 101–111. https://doi.org/10.1007/BF01234317 doi: 10.1007/BF01234317
    [2] M. Arisawa, Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions, Ann. Inst. H. Poincaŕ Anal., 20 (2003), 293–332.
    [3] D. L. Francesca, Large time behavior of solutions to parabolic equations with Neumann boundary conditions, J. Math. Anal. Appl., 339 (2008), 384–398. https://doi.org/10.1016/j.jmaa.2007.06.052 doi: 10.1016/j.jmaa.2007.06.052
    [4] B. Guy, D. L. Francesca, On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions, Ann. Inst. H. Poincaŕ Anal., 22 (2005), 521–541. https://doi.org/10.1016/j.anihpc.2004.09.001 doi: 10.1016/j.anihpc.2004.09.001
    [5] J. Kitagawa, A parabolic flow toward solutions of the optimal transportation problem on domains with boundary, J. Reine Angew. Math., 2012 (2012), 127–160. https://doi.org/10.1515/crelle.2012.001 doi: 10.1515/crelle.2012.001
    [6] O. C. Schnurer, Translating solutions to the second boundary value problem for curvature flows, Manuscripta Math., 108 (2002), 319–347. https://doi.org/10.1007/s002290200265 doi: 10.1007/s002290200265
    [7] J. J. Xu, Gradient estimates for semi-linear elliptic equations with prescribed contact angle problem, J. Math. Anal. Appl., 455 (2017), 361–369. https://doi.org/10.1016/j.jmaa.2017.05.066 doi: 10.1016/j.jmaa.2017.05.066
    [8] G. M. Lieberman, Oblique derivative problems for elliptic equations, World Scientific, 2013.
    [9] G. M. Lieberman, Second order parabolic differential equations, World Scientific, 1996.
    [10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer-Verlag, 1983.
    [11] P. L. Lions, N. S. Trudinger, Linear oblique derivative problems for the uniformly elliptic Hamilton-Jacobi-Bellman equation, Math. Z., 191 (1986), 1–15. https://doi.org/10.1007/BF01163605 doi: 10.1007/BF01163605
    [12] X. J. Wang, Oblique derivative problems for the equations of Monge-Ampere type, Chinese J. Contemp. Math., 13 (1992), 13–22.
    [13] J. G. Bao, The Hölder gradient estimates for solutions of fully nonlinear elliptic oblique derivative problems, J. B. Norm. Univ., 29 (1993), 315–321.
    [14] J. Urbas, Nonlinear oblique boundary value problems for Hessian equations in two dimensions, Ann. Inst. H. Poincaŕ Anal., 12 (1995), 507–575.
    [15] J. Urbas, Oblique boundary value problems for equations of Monge-Ampere type, Calc. Var. Partial Dif., 7 (1998), 19–39. https://doi.org/10.1007/s005260050097 doi: 10.1007/s005260050097
    [16] F. D. Jiang, N. S. Trudinger, Oblique boundary value problems for augmented Hessian equations Ⅱ, Nonlinear Anal., 154 (2017), 148–173. https://doi.org/10.1016/j.na.2016.08.007 doi: 10.1016/j.na.2016.08.007
    [17] Z. H. Gao, P. H. Wang, Global $ C^2$-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition, Discrete Cont. Dyn., 42 (2022), 1201–1223. http://dx.doi.org/10.3934/dcds.2021152 doi: 10.3934/dcds.2021152
    [18] R. L. Huang, Y. H. Ye, A convergence result on the second boundary value problem for parabolic equations, Pac. J. Math., 310 (2021), 159–179. https://doi.org/10.2140/pjm.2021.310.159 doi: 10.2140/pjm.2021.310.159
    [19] P. H. Wang, Y. N. Zhang, Mean curvature flow with linear oblique derivative boundary conditions, Sci. China Math., 65 (2022), 1413–1430. https://doi.org/10.1007/s11425-020-1795-2 doi: 10.1007/s11425-020-1795-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(559) PDF downloads(55) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog