Let $ G $ be a finite group, $ \operatorname{cd}(G) $ the set of all irreducible character degrees of $ G $, and $ \rho(G) $ the set of all prime divisors of integers in $ \operatorname{cd}(G) $. For a prime $ p $ and a positive integer $ n $, let $ n_p $ denote the $ p $-part of $ n $. The degree prime-power graph of $ G $ is a graph whose vertex set is $ V(G) = \left\{p^{e_p(G)} \mid p \in \rho(G)\right\} $, where $ p^{e_p(G)} = \max \left\{n_p \mid n \in \operatorname{cd}(G)\right\} $, and there is an edge between distinct numbers $ x, y \in V(G) $ if $ x y $ divides some integer in $ \operatorname{cd}(G) $. The authors have previously shown that some non-abelian simple groups can be uniquely determined by their orders and degree prime-power graphs. In this paper, the authors build on this work and demonstrate that the symplectic simple group $ PSp_4(p) $ can be uniquely identified by its order and degree prime-power graph.
Citation: Chao Qin, Yu Li, Zhongbi Wang, Guiyun Chen. Recognition of the symplectic simple group $ PSp_4(p) $ by the order and degree prime-power graph[J]. AIMS Mathematics, 2024, 9(2): 2808-2823. doi: 10.3934/math.2024139
Let $ G $ be a finite group, $ \operatorname{cd}(G) $ the set of all irreducible character degrees of $ G $, and $ \rho(G) $ the set of all prime divisors of integers in $ \operatorname{cd}(G) $. For a prime $ p $ and a positive integer $ n $, let $ n_p $ denote the $ p $-part of $ n $. The degree prime-power graph of $ G $ is a graph whose vertex set is $ V(G) = \left\{p^{e_p(G)} \mid p \in \rho(G)\right\} $, where $ p^{e_p(G)} = \max \left\{n_p \mid n \in \operatorname{cd}(G)\right\} $, and there is an edge between distinct numbers $ x, y \in V(G) $ if $ x y $ divides some integer in $ \operatorname{cd}(G) $. The authors have previously shown that some non-abelian simple groups can be uniquely determined by their orders and degree prime-power graphs. In this paper, the authors build on this work and demonstrate that the symplectic simple group $ PSp_4(p) $ can be uniquely identified by its order and degree prime-power graph.
[1] | B. Huppert, Some simple groups which are determined by the set of their character degrees I, Illinois J. Math., 44 (2000), 828–842. http://dx.doi.org/10.1215/ijm/1255984694 doi: 10.1215/ijm/1255984694 |
[2] | H. Behravesh, M. Ghaffarzadeh, M. Ghasemi, S. Hekmatara, Recognition of Janko groups and some simple $K_4$-groups by the order and one irreducible character degree or character degree graph, Int. J. Group Theory, 10 (2021), 1–10. http://dx.doi.org/10.22108/IJGT.2019.113029.1502 doi: 10.22108/IJGT.2019.113029.1502 |
[3] | S. Heydari, N. Ahanjideh, Characterization of some simple $K_4$-groups by some irreducible complex character degrees, Int. J. Group Theory, 5 (2016), 61–74. http://dx.doi.org/10.22108/IJGT.2016.8233 doi: 10.22108/IJGT.2016.8233 |
[4] | B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, A new characterization for the simple group $PSL(2, p^2)$ by order and some character degrees, Czech. Math. J., 65 (2015), 271–280. http://dx.doi.org/10.1007/s10587-015-0173-6 doi: 10.1007/s10587-015-0173-6 |
[5] | H. Xu, G. Chen, Y. Yan, A new characterization of simple $K_3$-groups by their orders and large degrees of their irreducible characters, Commun. Algebra, 42 (2014), 5374–5380. http://dx.doi.org/10.1080/00927872.2013.842242 doi: 10.1080/00927872.2013.842242 |
[6] | H. Xu, Y. Yan, G. Chen, A new characterization of Mathieu-groups by the order and one irreducible character degree, J. Inequal. Appl., 2013 (2013), 209. http://dx.doi.org/10.1186/1029-242X-2013-209 doi: 10.1186/1029-242X-2013-209 |
[7] | M. Lewis, An overview of graphs associated with character degrees and conjugacy class sizes in finite groups, Rocky Mountain J. Math., 38 (2008), 175–211. http://dx.doi.org/10.1216/RMJ-2008-38-1-175 doi: 10.1216/RMJ-2008-38-1-175 |
[8] | B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, Recognition of some simple groups by character degree graph and order, Math. Reports, 18 (2016), 51–61. |
[9] | S. Heydari, N. Ahanjideh, Some simple groups which are determined by their character degree graphs, Sib. Elektron. Math. Re., 13 (2016), 1290–1299. http://dx.doi.org/10.17377/semi.2016.13.101 doi: 10.17377/semi.2016.13.101 |
[10] | C. Qin, Y. Yan, K. Shum, G. Chen, Mathieu groups and its degree prime-power graphs, Commun. Algebra, 47 (2019), 4173–4180. http://dx.doi.org/10.1080/00927872.2019.1579342 doi: 10.1080/00927872.2019.1579342 |
[11] | C. Qin, Research on the sporadic simple groups and their degree prime-power graphs of irreducible character degrees, Ph.D thesis, Southwest University, 2019. |
[12] | Z. Wang, C. Qin, H. Lv, Y. Yan, G. Chen, A new characterization of $L_2(p^2)$, Open Math., 18 (2020), 907–915. http://dx.doi.org/10.1515/math-2020-0048 doi: 10.1515/math-2020-0048 |
[13] | Z. Wang, G. Chen, A new characterization of $L_2(p^3)$, Commun. Algebra, 50 (2022), 4000–4008. http://dx.doi.org/10.1080/00927872.2022.2057509 doi: 10.1080/00927872.2022.2057509 |
[14] | J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of finite groups, New York: Oxford University Press, 1985. |
[15] | M. Shahabi, H. Mohtadifar, The characters of finite projective symplectic group $PSp(4, q)$, In: Groups St Andrews 2001 in Oxford, Cambridge: Cambridge University Press, 2003,496–527. http://dx.doi.org/10.1017/CBO9780511542787.018 |
[16] | I. Isaacs, Character theory of finite groups, New York: Academic Press, 1976. |
[17] | H. Tong-Viet, The simple Ree groups ${}^2F_4(q^2)$ are determined by the set of their character degrees, J. Algebra, 339 (2011), 357–369, http://dx.doi.org/10.1016/j.jalgebra.2011.04.034 doi: 10.1016/j.jalgebra.2011.04.034 |
[18] | D. White, Character degrees of extensions of $PSL_2(q)$ and $SL_2(q)$, J. Group Theory, 16 (2013), 1–33. http://dx.doi.org/10.1515/jgt-2012-0026 doi: 10.1515/jgt-2012-0026 |