Citation: Costică Moroşanu. Modeling of the continuous casting process of steel via phase-field transition system. Fractional steps method[J]. AIMS Mathematics, 2019, 4(3): 648-662. doi: 10.3934/math.2019.3.648
[1] | O. Axelson and V. Barker, Finite element solution of boundary value problems, Academic Press, 1984. |
[2] | T. Benincasa and C. Moroşanu, Fractional steps scheme to approximate the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions, Numer. Func. Anal. Opt., 30 (2009), 199-213. doi: 10.1080/01630560902841120 |
[3] | G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. An., 92 (1986), 205-245. doi: 10.1007/BF00254827 |
[4] | G. Caginalp and X. Chen,Convergence of the phase field model to its sharp interface limits, Eur. J. Appl. Math., 9 (1998), 417-445. doi: 10.1017/S0956792598003520 |
[5] | O. Cârjă, A. Miranville and C. Moroşanu, On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions, Nonlinear Anal-Theor, 113 (2015), 190-208. |
[6] | G. Iorga, C. Moroşanu and S. C. Cocindău, Numerical simulation of the solid region via phase field transition system, Metal. Int., 13 (2008), 91-95. |
[7] | G. Iorga, C. Moroşanu and I. Tofan, Numerical simulation of the thickness accretions in the secondary cooling zone of a continuous casting machine, Metal. Int., 14 (2009), 72-75. |
[8] | N. Kenmochi and M. Niezgόdka, Evolution systems of nonlinear variational inequalities arising from phase change problems, Nonlinear Anal-Theor, 22 (1994), 1163-1180. doi: 10.1016/0362-546X(94)90235-6 |
[9] | A. Miranville and C. Moroşanu, On the existence, uniqueness and regularity of solutions to the phase-field transition system with non-homogeneous Cauchy-Neumann and nonlinear dynamic boundary conditions, Appl. Math. Model., 40 (2016), 192-207. |
[10] | A. Miranville and C. Moroşanu, Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions, Discrete Cont. Dyn-S, 9 (2016), 537-556. doi: 10.3934/dcdss.2016011 |
[11] | C. Moroşanu, Approximation of the phase-field transition system via fractional steps method, Numer. Func. Anal. Opt., 18 (1997), 623-648. doi: 10.1080/01630569708816782 |
[12] | C. Moroşanu, et al., Report Stage II/2006, CEEX program no. 84/2005. |
[13] | C. Moroşanu, Fractional steps method for approximation the solid region via phase field transition system, 6-th International Conference APLIMAT2007, Bratislava, 6-9 Feb. 2007. |
[14] | C. Moroşanu, et al., Report Stage III/2007, CEEX program no. 84/2005. |
[15] | C. Moroşanu, Approximation of the solid region in the continuous casting process of steel via phase-field transition system, 6th European Conference on Continuous Casting, Riccione, Italy, 3-6 Jun., 1-6, 2008. |
[16] | C. Moroşanu, Analysis and optimal control of phase-field transition system: Fractional steps methods, Bentham Science Publishers, 2012. |
[17] | C. Moroşanu, Qualitative and quantitative analysis for a nonlinear reaction-diffusion equation, ROMAI J., 12 (2016), 85-113. |
[18] | C. Moroşanu and A. Croitoru, Analysis of an iterative scheme of fractional steps type associated to the phase-field equation endowed with a general nonlinearity and Cauchy-Neumann boundary conditions, J. Math. Anal. Appl., 425 (2015), 1225-1239. doi: 10.1016/j.jmaa.2015.01.033 |
[19] | C. Moroşanu, I. Crudu, G. Iorga, et al. Research Concerning the Evolution of Solidification Front via Phase-Field Transition System, CEx05-D11-Prog.no., 84 (2008), IFA Bucharest. |
[20] | C. Moroşanu and D. Motreanu, A generalized phase field system, J. Math. Anal. Appl., 237 (1999), 515-540. doi: 10.1006/jmaa.1999.6467 |
[21] | O. A. Oleinik, A method of solution of the general Stefan problem,.Dokl. Akad. Nauk SSSR, 135 (1960), 1354-1357. |
[22] | O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for kinetics of phase transitions, International Symposium on Physical Design, 43 (1990), 44-62. |
[23] | L. I. Rubinstein, The Stefan problem, Transl. Math. Monographs, 27, American Mathematical Society, Providence, Rhode Island, 1971. |
[24] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Vol. 68.of Applied Mathematical Sciences, Springer-Verlag, New York, second edition, 1997. |
[25] | B. G. Thomas, Continuous Casting: Modeling, The Encyclopedia of Advanced Materials, (J. Dantzig, A. Greenwell, J. Mickalczyk, eds.), Pergamon Elsevier Science Ltd., Oxford, UK, 2 (2001), 8p. |