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1. Introduction

We consider a material in a region Ω ⊂ IRn, n ≤ 3, which may be in either of two phases, e.g., solid
and liquid (see Figure 1). Let us denote by

u(t, x) = θ(t, x) − θM, (t, x) ∈ Q = (0,T ) ×Ω, T > 0,

the reduced temperature distribution, where θ(t, x) represent the temperature of the material and θM

is the melting temperature (the temperature at which solid and liquid may coexist in equilibrium,
separated by an interface).

In the following we will describe the framework of our problem. So, let us consider the interface as
a continuous region, more vast (in which the liquid can coexist with the solid) and of finite thickness,
in which the change of phase occurring continuously.
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Figure 1. A material Ω exists in two phases.
The dotted lines indicate possible thickness of the continuous region.

The following nonlinear parabolic system
Cρ

∂
∂t u + `

2
∂
∂tϕ = k∆u

in Q,
αξ ∂

∂tϕ = ξ∆ϕ + 1
2ξ (ϕ − ϕ

3) + s
ξ
u

(1.1)

with the non-homogeneous Cauchy-Neumann boundary conditions
k ∂
∂ν

u + hu = w1(t, x)
on Σ= (0,T ]×∂Ω,

ξ ∂
∂ν
ϕ = w2(t, x)

(1.2)

and with the initial conditions

u(0, x) = u0(x), ϕ(0, x) = ϕ0(x) on Ω, (1.3)

represents the mathematical model called the phase field transition system, introduced by G.
Caginalp (see [3] and references therein) to model the transition between the solid and liquid phase in
melting/solidification process to a matter occupying a region Ω, while:

• u(t, x) - represents the reduced temperature distribution in Q;
• ϕ(t, x) - is the phase function (the order parameter) used to distinguish between the states (phases)

of material which occupies the region Ω at every time t ∈ [0,T ];
• Cρ = ρV; ρ - the density, V - the casting speed;
• `, k, α, ξ, h are physical parameters representing, respectively: the latent heat, the thermal

conductivity, the relaxation time, the measure of the interface thickness, the heat transfer
coefficient;
• s

ξ
= m[S ]E

2σ TE, a bounded and positive quantity, expressed by positive and bounded physical

parameters: m =
1∫
−1

(
2F(s)

) 1
2 ds, F(s) =

1
4

(s2 − 1)2, [S ]E - the entropy difference between phases

per volume, σ - the interfacial tension, TE - the equilibrium melting temperature (see Caginalp &
Chen [4]);
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• w1(t, x) ∈ W
1− 1

2p ,2−
1
p

p (Σ), p ≥ 2, - is a given function: the temperature of the surrounding at ∂Ω for
each time t ∈ [0,T ] (can also be interpreted as boundary control);

• w2(t, x) ∈ W
1− 1

2p ,2−
1
p

p (Σ) - is a given function;

• u0, ϕ0 ∈ W
2− 2

p
p (Ω), with k ∂

∂ν
u0 + hu0 = w1(0, x) and ξ ∂

∂ν
ϕ0 = w2(0, x);

The model (1.1)–(1.3) represents a refinement of the classical Stefan problem (see [21, 23, 24]) in
two phases by adding a new nonlinear parabolic equation, derived from the Euler-Lagrange equations
for the free energy in Landau-Ginzburg field theory. This new mathematical model reflects more
accurately the physical phenomenon of solidification, like: superheating, supercooling, etc.

Different other nonlinearities capable to come out the complexity of the physical phenomena (the
effect of surface tension, separating zone of solid and liquid states, etc) have been proposed by several
authors (see Cârjă, Miranville & Moroşanu [5], Kenmochi & Niezgódka [8], Miranville &
Moroşanu [9], Moroşanu [16], Moroşanu & Motreanu [20], Penrose & Fife [22] and Temam [24]).
The general nonlinear term in Moroşanu & Motreanu [20], is (possibly) non-convex and
non-monotone and cover a large class of nonlinearities, including the known cases as well as other
new relevant situations. Moreover, different types of boundary conditions on Σ can be associated to
(1.1) (see Moroşanu [16] for more details).

2. Well-posedness of solutions to the nonlinear system (1.1)–(1.3)

In the present section we will investigate the solvability of the first boundary value problems of the
form (1.1)–(1.3) in the class W1,2

p (Q), p ≥ 2.
The main result of this section establishes the dependence of the solution u(t, x), ϕ(t, x) in the

nonlinear parabolic system (1.1)–(1.3) on the terms w1(t, x), w2(t, x) in the right-hand side of (1.2).
Theorem 2.1 Problem (1.1)–(1.3) has a unique solution (u, ϕ) with u ∈ W1,2

p (Q) and ϕ ∈ W1,2
ν (Q),

where ν = min{q, µ}, q ≥ p ≥ 2. In addition (u, ϕ) satisfies

‖u‖W1,2
p (Q) + ‖ϕ‖W1,2

ν (Q)

≤ C
[
1 + ‖u0‖

W
2− 2

p
p (Ω)

+ ‖ϕ0‖
3− 2

p

W
2− 2

q
q (Ω)

+ ‖w1‖
W

1− 1
2p ,2−

1
p

p (Σ)
+ ‖w2‖

W
1− 1

2p ,2−
1
p

p (Σ)

]
,

(2.1)

where the constant C depends on |Ω| (the measure of Ω), T , n, p, q and physical parameters, but is
independent of u, ϕ, w1 and w2.

Moreover, given any number Md > 0, if (u1, ϕ1) and (u2, ϕ2) are solutions to (1.1)–(1.3) for the

same initial conditions, corresponding to the data w1
1,w

2
1, w1

2,w
2
2 ∈ W

1− 1
2p ,2−

1
p

p (Σ), respectively, such
that ‖ϕ1‖Lν(Q), ‖ϕ2‖Lν(Q) ≤ Md, then the estimate below holds

‖u1 − u2‖W1,2
p (Q) + ‖ϕ1 − ϕ2‖W1,2

ν (Q)

≤ C
[
‖w1

1 − w2
1‖

W
1− 1

2p ,2−
1
p

p (Σ)
+ ‖w1

2 − w2
2‖

W
1− 1

2p ,2−
1
p

p (Σ)

]
,

(2.2)

where the constant C depends on |Ω|, T , Md, n, p, q and physical parameters, but is independent of
u1, u2, ϕ1, ϕ2, w1

1, w2
1, w1

2 and w2
2.
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Proof. The basic tools in the analysis of the problem (1.1) (see [16] and references there in) are
the Leray-Schauder degree theory, the Lp-theory of linear and quasi-linear parabolic equations, as well
as the Lions and Peetre embedding Theorem, which ensures the existence of a continuous embedding
W1,2

p (Q) ⊂ Lµ(Q), where the number µ is defined as follows

µ =


∞ i f p >

3
2
,

any positive number ≥ 3p i f p =
3
2
.

The proof of Theorem 2.1 was given in Moroşanu [16] noting that there formulation differs from
this by certain physical parameters, which implies different values for the constant C in (2.1) and (2.2).
Moreover, corresponding to different boundary conditions (including nonlinear and nonhomogeneous
boundary conditions), similar results were proved in Cârjă, Miranville & Moroşanu [5] and Miranville
& Moroşanu [9].

Corollary 2.2 Under hypotheses H0 and H2 in [20] the problem (1.1) possesses a unique solution
(u, ϕ) ∈ W1,2

p (Q) ×W1,2
p (Q).

Proof. Let w1
1 = w2

1 = w1
2 = w2

2 = w in the Theorem 2.1. Then (2.2) shows that the conclusion of the
corollary is true.

3. Approximating scheme

The aim of this section is to use the fractional steps method in order to approximate the solution of
the system (1.1)–(1.3), whose uniqueness is guaranteed by Corollary 2.2. To do that, let us associate to
the time-interval [0,T ] the equidistant grid of length ε = T

M , for any integer M ≥ 1. Then, the following
approximating scheme can be written in order to approximate the solution of the nonlinear boundary
value problem (1.1)–(1.3): 

ρV
∂

∂t
uε +

`

2
∂

∂t
ϕε − k∆uε = 0 in Qε

i ,

k
∂

∂ν
uε + huε = w1(t, x) on Σεi ,

(3.1)


αξ

∂

∂t
ϕε − ξ∆ϕε =

1
2ξ
ϕε + s

ξ
uε in Qε

i ,

ξ ∂
∂ν
ϕε = w2(t, x) on Σεi ,

ϕε+(iε) = z(ε, ϕε−(iε)),

(3.2)

where Qε
i = [iε, (i + 1)ε] ×Ω, Σεi = [iε, (i + 1)ε] × ∂Ω, i = 0, · · · ,M − 1, and z(t, ϕε−(iε)) is the solution

of the Cauchy problem 
z′(s) +

1
2ξ

z(s)3 = 0 s ∈ [0,T ],

z(0) = ϕε−(iε), ϕε−(0, x) = ϕ0(x),
(3.3)

computed at s = ε, for i = 0, · · · ,M−1. Here ϕε+(iε) = lim
t↓iε

ϕε(t) and ϕε−(iε) = lim
t↑iε

ϕε(t).
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For later use, we set: W = L2(0,T ; H1(Ω)) ∩W1,2([0,T ]; (H1(Ω))′).
Definition 3.1. By weak solution to the problem (1.1)–(1.2) we mean a pair of functions (u, ϕ) ∈ W×W
which satisfy (1.1)–(1.2) in the following sense∫

Q

∂

∂t
(ρVu +

`

2
ϕ)ψ dxdt + k

∫
Q

∇u∇ψ dxdt + h
∫
Σ

uψ dγdt =

∫
Σ

w1ψ dγdt, (3.4)

∫
Q

(
αξ

∂

∂t
ϕ ζ + ξ∇ϕ∇ζ −

1
2ξ

(ϕ − ϕ3)ζ − s
ξ
uζ

)
dxdt =

∫
Σ

w2ζ dγdt, (3.5)

for all (ψ, ζ) ∈ L2(0,T ; H1(Ω))×L2(0,T ; H1(Ω)), together with the initial conditions (1.3). In (3.4) and
(3.5) we have denoted by the symbol

∫
Q

the duality between L2(0,T ; H1(Ω)) and L2(0,T ; (H1(Ω))′).

The main result of this section is the following

Theorem 3.2. Assume that u0, ϕ0 ∈ W
2− 2

p
p (Ω) with k ∂

∂ν
u0 + hu0 = w1(0, x) and ξ ∂

∂ν
ϕ0 = w2(0, x). Let

(uε, ϕε) be the solution of the approximating scheme (3.1)–(3.3). Then, for ε→ 0, we have

(uε(t), ϕε(t)) → (u∗(t), ϕ∗(t)) strongly in L2(Ω) (3.6)

for any t ∈ [0,T ], where u∗, ϕ∗ ∈ W1,2([0,T ]; L2(Ω)) ∩ L(0,T ; H2(Ω)) is the weak solution to the
problem (1.1)–(1.3).
Proof.(see [2]) The proof is based on compactness methods. As a matter of fact it turns out from
Theorem 3.2 that if u0, ϕ0 ∈ L2(Ω), then the weak solution (u∗(t), ϕ∗(t)) of the system (1.1)–(1.3) is a
strong solution, i.e., it is absolutely continuous in t on [0,T ] and satisfies a.e. the system (1.1)–(1.3).
So Theorem 3.2 can be also viewed as a constructive way to prove the existence in (1.1)–(1.3).

The result in Theorem 3.2 remains true by replacing the boundary condition (1.2) with k ∂
∂ν

u + hu =

w(t)g(x) and ξ ∂
∂ν
ϕ = 0 (see [6, 7, 10–19]).

The Cauchy problem (3.3) has the solution

z(ε, ϕε−(iε, x)) = |ϕε−(iε, x)|

√
ξ

ξ + ε(ϕε−(iε, x))2 , i = 0, · · · ,M−1, (3.7)

and then the general algorithm to compute the approximate solution by means of fractional steps
method consist in the following sequence (i denotes the time level)
Begin algfrac

i := 0 → uε,0 = u0, ϕ
ε,0 = ϕ0 from the initial conditions (1.3);

For i := 0 to M − 1 do
Compute z(ε, ϕε−(iε, x)) from (3.7);
ϕε+ := z(ε, ϕε−(iε, x));
Compute ϕε,i+1, uε,i+1 solving the linear system (3.1)-(3.2);
End-for;

End.
A comparison between the fractional steps method and the standard iterative Newton method can be
found in Moroşanu [16].

AIMS Mathematics Volume 4, Issue 3, 648–662.



653

4. Numerical model. The 2D case

The finite element method (fem in short) is a general method for approximating the solution of
boundary value problems for partial differential equations. This method derives from the Ritz (or
Gelerkin) method (see Axelson & Barker [1]), characteristic for the finite element method being the
chose of the finite dimensional space, namely, the span of a set of finite element basis functions.

The steps in solving a boundary value problem using fem are:
P0. (D) The direct formulation of the problem;
P1. (V) A variational (weak) formulation for problem (D);
P2. The construction of a finite element mesh (triangulation);
P3. The construction of the finite dimensional space of test

function (called finite element basis functions);
P4. (Vnn) A discrete analogous of (V);
P5. Assembly of the system of linear equations;
P6. Solve the system in P5.

The finite element method is used in the sequel in order to deduce the discrete state equations. A
conceptual numerical algorithm of fractional step type is then formulated to approximate the weak
solution corresponding to (3.1)–(3.2), that is:(

ρVuεt +
`

2
ϕεt , ψ

)
+ k(∇uε,∇ψ) + h

∫
∂Ω

uεψdxdy =

∫
∂Ω

w1ψdxdy, (4.1)

∀ψ ∈ H1(Ω), a.e. in (iε, (i + 1)ε),

αξ(ϕεt , ζ) + ξ(∇ϕε,∇ζ) −
1
2ξ

(ϕε, ζ) = s
ξ
(uε, ζ) +

∫
∂Ω

w2ζdxdy, (4.2)

∀ζ ∈ H1(Ω), a.e. in (iε, (i + 1)ε),

together with the initial conditions

u(0, x) = u0(x), ϕ(0, x) = ϕ0(x), x ∈ Ω.

By (·, ·) we have denoted the scalar product in L2(Ω).
Let ε = T/M be the time step size. We assume that Ω ⊂ IR2 is a polygonal domain. Let Tr be the

triangulation (mesh) over Ω and Ω̄ = ∪K∈Tr K, and let N j = (xk, yl), j = 1, nn, be the nodes associated
to Tr. Denoting by Vnn the corresponding finite element space to Tr, then the basic functions {b j}

nn
j=1 of

Vnn are defined by
b j(Ni) = δ ji, i, j = 1, nn,

and so
Vnn = span {b1, b2, ..., bnn}.

For i = 1,M, we denote by ui and ϕi the Vnn interpolant of uε and ϕε, respectively. Then ui, ϕi ∈ Vnn

and

ui(x, y) =

nn∑
l=1

ui
lbl(x, y) i = 1,M, (4.3)
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ϕi(x, y) =

nn∑
l=1

ϕi
lbl(x, y) i = 1,M, (4.4)

where ui
l = uε(ti,Nl), ϕi

l = ϕε(ti,Nl), i = 1,M, l = 1, nn are the unknowns to be computed.
Using in addition an implicit (backward) finite difference scheme in time, we introduce now the

discrete equations corresponding to (4.1)–(4.2) as follows (see [7, 12–16]) for more explanations)
Rui

l + `
2 Bϕi

l + εhFRui
l = B

(
ρVui−1

l + `
2ϕ

i−1
l + εwi−1,l

1

)
Sϕi

l − s
ξ
εBui

l = B
(
αξϕi−1

l + εwi−1,l
2

)
, i = 1,M

(4.5)

where ui
l and ϕi

l, l = 1, nn, are the vectors of unknowns for time level i.
From the initial conditions (1.3) we have

u0(x, y) not
= u0(x, y) =

nn∑
l=1

u0(Nl)bl(x, y),

ϕ0(x, y) not
= ϕ0(x, y) =

nn∑
l=1

ϕ0(Nl)bl(x, y),
(4.6)

and then from (4.6) we get (see (4.3)–(4.4))

u0
l = u0(Nl) l = 1, nn,

ϕ0
l = ϕ0(Nl) l = 1, nn.

(4.7)

The numerical algorithm to compute the approximate solution by fractional steps method can be
obtained from the following sequence (again, i denotes the time level)
Begin algfrac fem

i := 0 → Compute u0
l , ϕ

0
l , l = 1, nn from (4.7);

Choose wi,l
1 = w1(ti,Nl), wi,l

2 = w2(ti,Nl), Nl ∈ ∂Ω, i = 0,M−1, l = 1, nn;
For i := 1 to M do
Compute zl = z(·,Nl), l = 1, nn from (3.7);
ϕi−1 := zl, l = 1, nn;

Compute ui
l, ϕ

i
l, l = 1, nn, solving the linear system (4.5);

End-for;
End.

The convergence result established by Theorem 2.1 guaranty that the approximate solution
computed by the conceptual algorithm algfrac fem is in fact the approximate solution of the
nonlinear parabolic system (1.1)–(1.3).

5. Industrial implementation

The aim of this section is to present an industrial implementation of conceptual algorithm
algfrac fem established in the preview section (in fact an implementation of the numerical model
stated by the linear system (4.5) (see P5)).
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From the thermo-kinetics point of view, the solidification and cooling, as well as the simultaneous
heating in a continuous casting process of steel, represents a very complex problem of non-stationary
heat and mass transfer (see [25]). To solve at present such a problem it is impossible without numerical
models of the temperature field and computer technology. In the sequel we will present in short a
continuous casting machine, including the key phenomena of interest and a new numerical model that
we have used in the settlement of the problem mentioned above.

The continuous casting process in the metallurgy. In a modern steel casting machine (its essential
features are illustrated in Figure 2), the molten metal is tapped from a ladle into a copper mold
(crystallizer). Here, the water-cooled walls of the mold (the primary cooling zone) extract heat what
leads to solidify a shell that contains the liquid pool. Below the mold (the secondary cooling zone),
the product is supported by rollers and is cooled down by water sprays that extract heat from the
surface, and, eventually, the core becomes fully solid when the metallurgical length increase at
1213m. After the end of secondary cooling zone the product is cooled only by radiation (traiber).
Finally, the continuous-casting product must be cut into the optimum lengths (cutting) to achive a
maximum yield of metal.

Figure 2. Schematic representation of a continuous casting machine.

The application of the numerical model (4.5) to the continuous casting process, requires
experimental research and measurements of operational parameters at MTC2 from Mittal Steel S.A.
Galaţi, as well as laboratory research. So, the most important input data in order to do this are (in
round bracket we have written the value used by our Matlab program to do the numerical
simulations):

• the casting speed (V = 12.5 mm/s);
• physical parameters:

◦ the density (ρ = 7850 kg/m3),
◦ the latent heat (` = 65.28kcal/kg),
◦ the relaxation time (α = 1.0e + 2),
◦ the length of separating zone (ξ = .5),

AIMS Mathematics Volume 4, Issue 3, 648–662.
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◦ the coefficients of heat transfer (h = 32.012),
◦ T = 44s;

• the boundary conditions:
(w1(ti,Nl), Nl ∈ ∂Ω, i = 0,M−1, l = 1, nn, in the primary cooling zone (see Figure 4)),
(w1(ti,Nl), Nl ∈ ∂Ω, i = 0,M−1, l = 1, nn, in the secondary cooling zone (see Figure 8)) and
w2(ti,Nl) = 0, Nl ∈ ∂Ω, i = 0,M−1, l = 1, nn ;
• dimensions of cristallizer (650 x 1900 x 220), in mm;
• the casting temperature (u0 = 15300C);
• the termal conductivity k(u):

k(u) = [20 100 200 300 400 500 600 700 800 850 900 1000 1100 1200 1600;
1.43e-5 1.42e-5 1.42e-5 1.42e-5 1.42e-5 9.5e-6 9.5e-6 9.5e-6 8.3e-6 ...
8.3e-6 8.3e-6 7.8e-6 7.8e-6 7.4e-6 7.4e-6].

Numerical experiments. In Figure 3 it can be seen the number of nodes associated to the mesh Tr in
the x1 and x2 – axis directions of one half of a rectangular profile. Considering the symmetrical heat
removal from the continuous casting (CC) according to the vertical symmetry axis of the rectangular
profile, only a half of the cross-section is used in the computation program.

The numerical model (4.5) uses the temperatures w(t, x, y), t ∈ [0,T ], (x, y) ∈ ∂Ω measured by the
thermocouples; the values are illustrated in the Figure 4.

Figure 3. The triangulation Tr over Ω=[0,650]×[0,220].
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Figure 4. a) the values wi,l
1 on the mobile part

b) the values wi,l
1 on the immobile part – the primary cooling zone.
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Figures 5–7 represents the approximate solution ui, ϕi (see (4.3), (4.4)), corresponding to different
moments of time (i = 1, i = 5 and i = M).

A close examination of the Figures 5–7 tell us the dimension of the solid and liquid zone resulting
by runing the Matlab computation program developed on the basis of the conceptual algorithm
algfrac fem.

Moreover (see [17]), the shape of the graphs shows the stability and accuracy of the numerical
results obtained by implementing the fractional steps method.

The most interesting aspect that we can observe analysing the Figures 6–7 are the supercooling and
superheating phenomenon.
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Figure 5. a) the approximate temperature u1,
b) the approximate function ϕ1.

Figure 6. The approximate temperature u5.
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Figure 7. The approximate temperature u20.

Figure 8. The values wi,l
1 on the fix part - the secondary cooling zone.

6. Conclusions

• The solidification model that we have considered in this work consist in a nonlinear system of two
parabolic differential equations [4]. This new mathematical description of the real phenomenon
reflects more accurately the physical aspects, like: superheating, supercooling (see Figures 7 and
11, for example), the effects of surface tension, separating zone of solid and liquid states, etc.
• From numerical point of view, the main difficulty in treating the phase field transition system

(1.1) is due to the presence of the nonlinear equation corresponding to phase function ϕ. Thus it is
intensely motivated the work in finding more efficient algorithms in order to compute numerically
the solution of such system. A scheme of fractional steps type is considered in this sense. This
numerical method avoids the iterative process required by the classical methods (e.g., Newtons
type approaches) in passing from a time level to another. Numerical tests show that the fractional
steps method is faster (CPU-time spent is very small) and the stability and accuracy are higher
(see [16, 17]) than the Newtons methods.
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• The distribution of the temperature and the thickness of the solidifying shell, calculated with the
numerical model (4.5) obtained following this technique, show that it really is (see Figures 5–7).
New fundamental material properties can also be extracted by analysing the implementation of
the numerical model 4.5 (see Figure 7).
This model is able to simulate the temperature field of a CCM (Continuous Casting Machine)
as a whole or any of its parts. In addition, the program elaborated may be used for different
slab profiles. The industrial implementation of the numerical model enable us the analysis of the
temperature field of the slab when it passes through primary, secondary and traiber zone. The
Figures 9–11 display the calculated isotherms in the secondary cooling zone, while the Figure 12
display the temperature curves on the mobile part, corresponding to the final time level tM.
• In order to refer the continuous casting process, the following boundary conditions was

considered: ∂
∂ν

u + hu = w1(t, x, y), where h is the heat transfer coefficient and the given function
w1(t, x, y) represents the temperature of the surrounding at t ∈ [0,T ] and (x, y) ∈ ∂Ω, Ω ⊂ IR2.
Generally, the numerical method considered here can be used to approximate the solution of a
nonlinear parabolic equation (system) containing a general nonlinear part.
• The numerical solution of the phase field transition system of solidification, approximated by

this numerical scheme, can be considered as an admissible one for the corresponding boundary
optimal control problem (see [16]), formulated in order to study the optimization of the continuous
casting process. The numerical results presented in Figures 9-11 illustrate the accuracy of the
numerical model (the influence of the density of the net: M = 20, nkx1 = 10, nky1 = 10; M = 20,
nkx1 = 20, nky1 = 10; M = 40, nkx1 = 20, nky1 = 10). So, it is strongly motivated to investigate
in further the numerical stability of this new numerical model taking into account all parameters
(steel casting parameters, physical parameters, net parameters, etc.)
A detailed discussions on the errors produced by the fractional steps method, illustrate the
influence of time and space parameters as well as of all physical parameters (see [17]).

Figure 9. The approximate temperature u20, nkx1 = 10.
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Figure 10. The approximate temperature u20, nkx1 = 20.

Figure 11. The approximate temperature u40, nkx1 = 20.

Figure 12. The temperature on the mobile part in the secondary zone: M = 40, nkx1 = 20.

AIMS Mathematics Volume 4, Issue 3, 648–662.



661

Conflict of interest

The author declares that there is no conflicts of interest in this paper.

References

1. O. Axelson and V. Barker, Finite element solution of boundary value problems, Academic Press,
1984.
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13. C. Moroşanu, Fractional steps method for approximation the solid region via phase field transition
system, 6-th International Conference APLIMAT2007, Bratislava, 6-9 Feb. 2007.

14. C. MoroÅanu, et al., Report Stage III/2007, CEEX program no. 84/2005.
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