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1. Introduction

In this paper, we consider the long time behavior of smooth solutions to the following parabolic
equations with oblique derivative boundary value problems,

ut − F(∇2u) = 0 in Ω × [0,∞),

u(x, 0) = u0(x) on Ω × {0},
∂u
∂β

= ϕ(x) on ∂Ω × [0,∞),

(1.1)

where Ω is a bounded smooth domain in Rn, F is a smooth real function defined on S n, S n means n× n
real symmetric matrix space. ϕ is a given function defined on Ω, β is the inward unit vector along ∂Ω,

and satisfies the condition < ν, β >= βn = cos θ ≥ c0 > 0, where ν is the inner normal vector to ∂Ω ,
∂u
∂β

=< ∇u, β >, where ∇u = ( ∂u
∂x1
, ∂u
∂x2
, · · · ∂u

∂xn
) and u0 ∈ C∞(Ω) satisfies ∂u0

∂β
= ϕ(x).

At present, there are many results on various boundary value problems of partial differential
equations [1–7], and the oblique derivative boundary value problems of partial differential equations
have been widely studied. The related problems of the oblique derivative boundary value problems of
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linear and quasilinear elliptic equations can be seen in the book [8–10]. The related results of nonlinear
differential equations can be found in the literature [11–16]. In [13], Bao established the global Hölder
gradient estimates for the W2,p solution of the nonlinear oblique derivative problems for the second-
order fully nonlinear elliptic equations using the perturbation idea of Caffarelli. In [17], they studied
the long time behavior of the solution in the classical senses through a blow up skill for the following
parabolic equation 

ut − F(∇2u) = 0 in Ω × [0,∞),

u(x, 0) = u0(x) on Ω × {0},
∂u
∂ν

= ϕ(x) on ∂Ω × [0,∞),

where ν is the inward unit normal vector. In this paper, we will consider the long-time behavior of the
solution to the above problem when the boundary condition becomes the oblique cases.

We need to make some structural assumptions about F :
(F1) ∀r ∈ S n, λI ≤ Fr(r), |F(r)| ≤ µ0|r|,
(F2) ∀r, X ∈ S n, |FX(r)| ≤ µ1|X|,
(F3) ∀r, X ∈ S n, FXX(r) ≤ 0,

where λ, µ0, µ1 are positive constsnts. Besides, we suppose
(F4) There exists a smooth function F∞ , such that

s−1F(sr)→ F∞(r) locally uni f ormly in C1(S n), as s→ +∞.

First, we state our major results of this paper.

Theorem 1.1. Suppose Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary. If F satisfies
(F1)–(F4), ϕ ∈ C∞(Ω), then the smooth solution u(x, t) of (1.1) converges to U + τt, namely, ∀
D ⊂⊂ Ω, ζ < 1 and 0 < α < 1,

lim
t→+∞

‖u(·, t) − (U(·) + τt)‖C1+ζ (Ω) = 0, lim
t→+∞

‖u(·, t) − (U(·) + τt)‖C4+α(D) = 0, (1.2)

where (U, τ) is a suitable solution to 
F(∇2U) = τ in Ω ,

∂U
∂β

= ϕ(x) on ∂Ω.
(1.3)

The constant τ depends only on Ω, ϕ and F. The solution to (1.3) is unique up to a constant.

Remark. Note (1.3) that τ depends only on F, ϕ,Ω.

Proof. Assume there exist two pairs (τ1, u) and (τ2, v) solving (1.3).
Namely 

F(∇2u) = τ1 in Ω ,

∂u
∂β

= ϕ(x) on ∂Ω.
F(∇2v) = τ2 in Ω ,

∂v
∂β

= ϕ(x) on ∂Ω.

AIMS Mathematics Volume 9, Issue 2, 2824–2853.



2826

Without loss of generality, we may assume τ1 < τ2, then,
∫ 1

0

∂F
∂uαβ

[t∇2u + (1 − t)∇2v]dt(u − v)αβ < 0,

∂(u − v)
∂β

= 0.

By maximal principle, the minimum of u− v can be achieved at the boundary, but ∂(u−v)
∂β

= 0 and strong
maximal principle indicate that the minimum can only be reached internally, which is contradictory,
thus τ1 = τ2.

The above proof indicates that τ here only depends on F, ϕ,Ω. �

In [18], Huang and Ye established a convergence result under assumptions of a priori estimate.

Theorem 1.2. [18] Suppose Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary. If F satisfies
(F1) and (F3), ϕ ∈ C∞(Ω) . ∀ T > 0 , suppose u ∈ C4+α, 4+α

2 (Ω × (0,T )) is a unique solution of the
following nonlinear parabolic equation

ut − F(∇2u) = 0 in Ω × [0,T ),

u(x, 0) = u0(x) on Ω × {0},
G(x,∇u) = 0 on ∂Ω × [0,T ),

(1.4)

and u satisfies
||ut(·, t)||C(Ω) + ||∇u(·, t)||C(Ω) + ||∇2u(·, t)||C(Ω) ≤ C1, (1.5)

n∑
k=1

Gpk(x,∇u)νk ≥
1

C2
, (1.6)

where C1 and C2 are positive constants independent of t > 1. Then u(·, t) converges to a function U +τt
in C1+ξ(Ω)

⋂
C4+α′(D) as t → +∞, ∀ D ⊂⊂ Ω, ξ < 1 and α′ < α, that is (1.2) is satisfied.

In the paper, we derive the estimate (1.5) for the problem (1.1).

Theorem 1.3. Suppose Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary. Assume F
satisfies (F1)–(F4), ϕ ∈ C∞(Ω) , then we get the uniform (in t) estimate (1.5) for the solution to (1.1).

Actually, in [19], a good proof of convergence result is provided, under the assumption of uniform
(in t) ‖ut(·, t)‖C(Ω), ‖∇u(·, t)‖C(Ω) estimate of quasilinear equation. In this note, after we establish the
estimate of ‖ut(·, t)‖C(Ω), ‖∇u(·, t)‖C(Ω), ‖∇

2u(·, t)‖C(Ω), we use Schauder method and the process in [17]
to obtain the convergence result. We can also find more details in the work [18] of Huang and Ye.

First of all, we give some notations.
Suppose Ω ⊂ Rn (n ≥ 2) is a bounded domain, ∂Ω ∈ C3. Set

d(x) = dist(x, ∂Ω),

and
Ωµ = {x ∈ Ω : d(x) < µ}.
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Then there exists a positive constant µ1 > 0 such that ∀ µ ≤ µ1, d(x) ∈ C3(Ωµ). As mentioned
in Lieberman [8], we can prolong ν as Dd in Ωµ which is a C2 vector field. We also have the
following expressions

|∇ν| + |∇2ν| ≤ C̃(n,Ω) in Ωµ,∑
1≤i≤n

νi∇iν
j = 0 in Ωµ,

|ν| = 1 in Ωµ.

(1.7)

Furthermore, in this paper, to simplify the proof of the theorems, we use O(z) to represent an
expression that there exists a uniform constant C > 0 satisfying |O(z)| ≤ Cz.

In the following part of the paper, we make the following arrangement. In the second section, we
think about the special case of F(∇2u) = 4u, and use a blow-up technique to control ‖u(·, t)‖C(Ω̄) and
then derive the estimate of ‖∇u(·, t)‖C(Ω̄) and ‖∇2u(·, t)‖C(Ω̄). In the third section , we study the general
F(∇2u) and derive the priori estimates.

2. Long time behavior for the diffusion equation

In this part, we discuss the long time behavior of the following diffusion equation with oblique
derivative boundary conditions

ut − ∆u = 0, in Ω × [0,T ),

u(x, 0) = u0(x), on Ω × {0} ,
uβ = ϕ, on ∂Ω × [0,T ),

(2.1)

where Ω ⊂ Rn is a bounded smooth domain, ϕ(x), u0(x) ∈ C∞(Ω), and u0,β = ϕ(x) on ∂Ω.
As before, we denote by ν the inner normal vector field along ∂Ω. Set {Tl}

n−1
l=1 to be the unit tangent

vector fields which joint with ν form a unit normal frame along ∂Ω. Assume β = βnν + Σn−1
l=1 βlTl,

therefore, ϕ(x) = ∂u
∂β

=< ∇u, β >= ∂u
∂ν
βn + Σβlul, where ul =< ∇u,Tl > .

Lemma 2.1. Suppose Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary. If u(x, t) is a
smooth solution to (2.1), then

sup
Ω×[0,T )

|ut|
2 = sup

Ω

|ut(x, 0)|2,

so there exists a constant C = C(u0) > 0, such that ∀(x, t) ∈ Ω × [0,T ),

|ut|(x, t) ≤ C.

Proof. Because (∆ − ∂
∂t )(u

2
t ) = ∆u2

t −
∂
∂t (u

2
t ) = 2ut∆ut + 2|Dut|

2
− 2ututt = 2|Dut|

2
≥ 0 , from the weak

maximum principle, we have
sup

Ω×(0,T )
|ut|

2 = sup
Ω×{0}∪∂Ω×(0,T )

|ut|
2.

On the other hand, (u2
t )β = 2ututβ = 2utϕt = 0.

Hopf lemma shows that the maximum cannot appear on ∂Ω × (0,T ) , then

sup
Ω×(0,T )

|ut|
2 = sup

Ω×{0}
|ut|

2 = sup
Ω

|∆u0|
2.

�
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Take x0 ∈ Ω and let v(x, t) = u(x, t) − u(x0, t) , in the following, we first give a time independent
bound of |v| by using a blow-up method. With the C0 estimate of v, we then obtain the C2 estimate
of v. Naturally, the estimates for |∇u| and |∇2u| follow. Finally, the convergence results are obtained
by using [18].

Lemma 2.2. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary. If u(x, t) is a smooth
solution to (2.1), v(x, t) as defined above, then there exists a constant A0 > 0 , independent of T , so that

‖v‖C0(Ω×[0,T )) ≤ A0. (2.2)

Proof. Let A = ‖v‖C0(Ω×[0,T )) . Without loss of generality, we assume A ≥ δ = δ(u0) > 0, (otherwise we
get a constant solution to (2.1)). Assume A is unbounded, i.e., A→ ∞, as T → ∞. Let

w(x, t) =
v(x, t)

A
.

Then, w(x0, t) = 0, t ∈ [0,T ), |w|C0(Ω×[0,T )) = 1, and satisfies

∂w
∂t
− ∆w = −

ut(x0, t)
A

in Ω × [0,T ),

w(x, 0) =
(u0(x) − u0(x0))

A
on Ω × {0},

∂w
∂β

=
1
A
ϕ(x) on ∂Ω × [0,T ).

(2.3)

To finish the proof, we need the following propositions.

Proposition 2.3. Let w ∈ C3,2(Ω × [0,T )) and satisfy

∂w
∂t
− ∆w = f (t), |w| ≤ 1, in Ω × [0,T ).

Then, ∀ Ω′ ⊂⊂ Ω,

sup
Ω′×[0,T )

|∇w| ≤ C(dist(Ω′, ∂Ω), | f |L∞([0,T ))).

Remark. We can see the proof process of this proposition in [17], so we skip it here. Note that
f = −

ut(x0,t)
A , we have

sup
Ω′×[0,T )

|∇w| ≤ C(dist(Ω′, ∂Ω), | f |L∞([0,T ))) = C(dist(Ω′, ∂Ω), u0). (2.4)

Proposition 2.4. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary. Assume that
w ∈ C3,2(Ω × [0,T ) is a solution to (2.3), Then there is a constant C = C(Ω, n, u0, ||ϕ||C3(Ω)) such that
for σ ≤ σ1,

sup
Ωσ×[0,T )

|∇w| ≤ C. (2.5)

Proof. For 0 < T ′ < T, We will prove that we can give |∇w| a bound independent of T ′ on ∂Ω× [0,T ′]
and then take a limit.
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Let ϕ′ =
ϕ(x)

A = ∂w
∂β

=< ∇w, β >= ∂w
∂ν
βn +

n−1∑
l=1
βlwl and ρ = w − ϕ′d

cos θ , then w = ρ +
ϕ′d

cos θ and

ϕ′(x) =
∂(ρ+

ϕ′d
cos θ )
∂ν

βn +
n−1∑
l=1
βl(ρ +

ϕ′d
cos θ )l ⇒

∂ρ

∂ν
βn +

n−1∑
l=1
βlρl = 0⇒ ∂ρ

∂ν
= −

n−1∑
l=1

βl
βn
ρl.

Thus

(
∂ρ

∂ν
)2 cos2 θ = (−

n−1∑
l=1

βlρl)2 ≤

n−1∑
l=1

β2
l

n−1∑
l=1

ρ2
l = (|∇ρ|2 − (

∂ρ

∂ν
)2) sin2 θ. (2.6)

Therefore,

(
∂ρ

∂ν
)2 ≤ |∇ρ|2 sin2 θ. (2.7)

Let

φ = |∇ρ|2 − (
n∑

i=1

ρidi)2 =

n∑
i, j=1

(δi j − did j)ρiρ j ,
n∑

i, j=1

Ci jρiρ j,

and
Φ = log φ + τd + µd2,

where τ, µ are two constants to be determined later.
Suppose that the maximum value of Φ on Ωσ × [0,T ′] (σ ≤ σ1) is obtained at (x0, t0). Let us

discuss it in several cases:
Case 1. t0 = 0. If this happens, it is easy to get the gradient estimate.
Case 2. x0 ∈ ∂Ωσ

⋂
Ω. In this way, the estimate is transformed into interior gradient estimate.

Case 3. x0 ∈ ∂Ω. Select a suitable coordinate at x0, so that ∂
∂xn

= ν, and ∂
∂xi

(i = 1, · · · , n− 1) are tangent
along ∂Ω. Then, we have

dn = 1, di = 0,
∂2d

∂xn∂xα
= 0,

∂2d
∂xi∂x j

= −κiδi j,

where 1 ≤ i, j < n, 1 ≤ α ≤ n − 1, and κi is the principal curvatures of ∂Ω at x0.

Because x0 is the maximum point of Φ, then we have,

Φi = 0, 1 ≤ i < n − 1, (2.8)

and
0 ≥ Φn =

φn

φ
+ τ. (2.9)

By (2.8), for 1 ≤ i < n − 1, we have

0 = Φi =(|∇ρ|2)i − (
n∑
α=1

ραdα)2
i

=2
n−1∑
j=1

ρ jρ ji − 2
n−1∑
j=1

ρnρ jdi j

=2
n−1∑
j=1

ρ jρ ji + 2ρnρiκi.

(2.10)
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Using (2.10) to calculate φn , we obtain

φn =(|∇ρ|2)n − (
n∑
α=1

ραdα)2
n = 2

n∑
i=1

ρiρin − 2ρnρnn = 2
n−1∑
i=1

ρiρin

=2
n−1∑
i=1

ρiρin + 2
n−1∑
i, j=1

ρiρ jκi j = 2
n−1∑
i,l=1

ρi(−
βl

βn
ρl)i + 2

n−1∑
i, j=1

κi jρiρ j

= − 2
n−1∑
i,l=1

ρiρliβl

βn
− 2

n−1∑
i,l=1

ρiρl(
βl

βn
)i + 2

n−1∑
i, j=1

κi jρiρ j

=2
ρn

βn

n−1∑
l=1

ρlκlβl − 2
n−1∑
i,l=1

ρiρl(
βl

βn
)i + 2

n−1∑
i, j=1

κi jρiρ j,

(2.11)

where we denote by κi j the Weingarten matrix.
Thus,

0 ≥ Φn =

2ρn
βn

n−1∑
l=1
κlβlρl − 2

n−1∑
i,l=1

ρiρl(
βl
βn

)i + 2
n−1∑
i, j=1

κi jρiρ j

φ
+ τ.

(2.12)

From (2.7), we have

c2
0|∇ρ|

2 ≤ |∇ρ|2 cos2 θ ≤ φ ≤ |∇ρ|2.

If we make τ large enough determined by the geometry of ∂Ω, c0 and |β|C1(∂Ω), this case can
not happen.
Case 4. x0 ∈ Ωσ, and t0 > 0.

First, we show that |∇w|2 gets the maximum value at the boundary.
By simple calculation, we have ∆(|∇w|2) − (|∇w|2)t ≥ 0, then

sup
Ω×[0,T ′]

|∇w|2 ≤ sup
∂Ω×[0,T ′]

⋃
Ω×{0}
|∇w|2. (2.13)

Choose a special coordinate, such that ρ1 = |∇ρ|, ρl = 0 (l = 2, 3, · · · , n) and (ρi j) (2 ≤ i, j ≤ n) is
diagonal. We assume that |∇w| is large enough such that |∇ρ|, |∇w| are equivalent at this point.

Under this coordinate and by the assumption that |∇w| at (x0, t0) is large enough, we first give a
basic fact

C11 ≥ C̃(σ1, c0, |ϕ|C1(Ω), |u0|C1(Ω)) > 0. (2.14)

In fact, the maximum point of |∇w| on ∂Ω × [0,T ′] is denoted by (x1, t1), without loss of generality,
we suppose that |∇w|(x1, t1) ≥ 4 sup

∂Ω

|
ϕ′

cos θ |.

We propose a precondition that

µσ ≤ 1. (2.15)

Because of Φ(x1, t1) ≤ Φ(x0, t0), (2.7) and (2.13), then we obtain
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φ(x0, t0) ≥ e−(τ+1)σ1φ(x1, t1) = C[|∇ρ|2 − (
∂ρ

∂ν
)2](x1, t1)

≥ C[|∇ρ|2 cos2 θ](x1, t1) ≥ C|∇ρ|2(x1, t1)

= C|∇w −
ϕ′

cos θ
ν|2(x1, t1) ≥ C|∇w|2(x1, t1)

≥ C sup
Ω×[0,T ′]

|∇w|2

≥ C|∇w|2(x0, t0) ≥ C|∇ρ|2(x0, t0).

(2.16)

Note that C may be different in each line of the above processes.
Through an easy observation, it can be seen that

C11 ≥ C̃ > 0. (2.17)

Since (x0, t0) is the maximum point, we have

0 = Φi =
(Cklρkρl)i

φ
+ τdi + 2µddi =

φi

φ
+ τdi + 2µddi. (2.18)

Hence one can see that
φi

φ
= −τdi − 2µddi,

Cklρkiρl = −
φ

2
(τ + 2µd)di −

Ckl
,i

2
ρkρl.

(2.19)

For i = 1, we get

C11ρ11 +

n∑
δ=2

Cδ1ρδ1 = −
1
2

C11
,1ρ1 −

φ

2ρ1
(τ + 2µd)d1. (2.20)

For δ > 1, we have

C11ρ1δ + C1δρδδ = −
1
2

C11
,δρ1 −

φ

2ρ1
(τ + 2µd)dδ. (2.21)

Then

ρ1δ = −
C1δ

C11ρδδ −
C11

,δ

2C11ρ1 −
(τ + 2µd)dδ

2
ρ1 = −

C1δ

C11ρδδ + O(|∇ρ|). (2.22)

Replace (2.22) back to (2.20), we have

ρ11 =(
C1δ

C11 )2ρδδ +
Cδ1C11

,δ

2(C11)2 ρ1 +
Cδ1ρ1(τ + 2µd)dδ

2C11 −
C11

,1

2C11 ρ1 −
ρ1(τ + 2µd)d1

2

=(
C1δ

C11 )2ρδδ + O(|∇ρ|).
(2.23)

At this point we still have

0 ≤ Φt =
φt

φ
=

2Cklρkρlt

φ
, (2.24)

and
0 ≥ 4Φ =

4φ

φ
− (
∇φ

φ
)2 + (τ + 2µd)4d + 2µ|∇d|2. (2.25)
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Combining (2.19), (2.24) and (2.25), we gain

0 ≥ 4Φ − Φt =
4φ − φt

φ
+ (τ + 2µd)4d + 2µ|∇d|2 − (τ + 2µd)2|∇d|2

≥
4φ − φt

φ
+ [2µ − (τ + 2µd)2]|∇d|2 − (τ + 2µd)k0.

(2.26)

Where 4d ≥ −k0 on Ωσ1 .

Next, we calculate the term 4φ−φt
φ
. Note that

I = 4φ − φt = 4(Ci jρiρ j) − φt

= 2[Ci j(4ρ)iρ j −Ci jρiρt j] + 2Ci jρikρ jk + 4Ci j
,kρikρ j + 4Ci jρiρ j

= I + II + III + IV.

(2.27)

For the term I,

I =2[Ci j(4ρ)iρ j −Ci jρiρt j] = 2Ci j{[(4w)i − (4
ϕ′d

cos θ
)i]ρ j − ρiwt j}

=2Ci j{[wti − (4
ϕ′d

cos θ
)i]ρ j − ρiwt j} = −2Ci j(4

ϕ′d
cos θ

)iρ j = O(|∇ρ|).
(2.28)

For the term IV ,
IV = Ci j

,kkρiρ j = O(|∇ρ|2). (2.29)

For the term III,
III =4Ci j

,kρikρ j = 4ρ1Ci1
,kρik

=4ρ1C11
,1ρ11 + 4ρ1Cδ1

,1ρ1δ + 4ρ1C11
,δρ1δ + 4ρ1Cδ1

,δρδδ

=III1 + III2 + III3 + III4,

(2.30)

where

III1 =4ρ1C11
,1ρ11 = 4ρ1C11

,1[(
C1δ

C11 )2ρδδ + O(ρ1)]

=O(|∇w|)ρδδ + O(|∇w|2),

III2 + III3 =4ρ1(Cδ1
,1 + C11

,δ)ρ1δ = 4ρ1(Cδ1
,1 + C11

,δ)(−
C1δ

C11ρδδ + O(|∇ρ|))

=O(|∇w|)ρδδ + O(|∇w|2),

then
III = O(|∇w|)ρδδ + O(|∇w|2). (2.31)

For the term II,
II = 2Ci jρikρ jk = 2C1iρikρ1k + 2Ciδρikρδk = II1 + II2, (2.32)

where
II1 =2C1iρikρ1k = (−Ci1

,kρi −
φ

ρ1
(τ + 2µd)dk)ρ1k

=(−C11
,1ρ1 − ρ1(τ + 2µd)d1)ρ11 + (−C11

,δρ1 − ρ1(τ + 2µd)dδ)ρ1δ

=II11 + II12,
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II11 =(−C11
,1ρ1 − ρ1(τ + 2µd)d1)ρ11

=(−C11
,1ρ1 − ρ1(τ + 2µd)d1)((

C1δ

C11 )2ρδδ + O(ρ1))

=

n∑
δ=2

O(|∇w|)ρδδ + O(|∇w|2),

II12 =(−C11
,δρ1 − ρ1(τ + 2µd)dδ)ρ1δ

=(−C11
,δρ1 − ρ1(τ + 2µd)dδ)(−

C1δ

C11ρδδ + O(|∇ρ|))

=

n∑
δ=2

O(|∇w|)ρδδ + O(|∇w|2),

then

II1 =

n∑
δ=2

O(|∇w|)ρδδ + O(|∇w|2).

Where
II2 =2Ciδρikρδk = 2C1δρ1kρδk + 2Cαδραkρδk

=2C1δρ11ρδ1 + 2C1δρ1δρδδ + 2Cαδρα1ρδ1 + 2Cδδρ2
δδ

=II21 + II22 + II23 + II24,

II21 =2C1δρ11ρδ1 = 2[−
n∑
δ=2

(C1δ)2

C11 ρδδ + O(|∇ρ|)] × [
n∑
δ=2

(
C1δ

C11 )2ρδδ + O(|∇ρ|)]

= −
2

(C11)3

n∑
α,β=2

C1αC1β(C1αραα)(C1βρββ) +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2),

II22 = 2
n∑
δ=2

C1δρ1δρδδ = −

n∑
δ=2

2(C1δ)2

C11 ρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ,

II23 =2Cαδρα1ρδ1 = 2
n∑

α,β=2

Cαβ[−
C1α

C11 ραα + O(|∇ρ|)] × [−
C1β

C11ρββ + O(|∇ρ|)]

=
2

(C11)2

n∑
α,β=2

Cαβ(C1αραα)(C1βρββ) +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2),

hence
II2 =II21 + II22 + II23 + II24

=
2

(C11)2

n∑
α,β=2

Cαβ(C1αραα)(C1βρββ) −
2

(C11)3

n∑
α,β=2

C1αC1β(C1αραα)(C1βρββ)

+ 2
n∑
δ=2

Cδδρ2
δδ −

n∑
δ=2

2(C1δ)2

C11 ρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2).
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Thus
II =II1 + II2

=
2

(C11)2

n∑
α,β=2

Cαβ(C1αραα)(C1βρββ) −
2

(C11)3

n∑
α,β=2

C1αC1β(C1αραα)(C1βρββ)

+ 2
n∑
δ=2

Cδδρ2
δδ −

n∑
δ=2

2(C1δ)2

C11 ρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2).

(2.33)

And

4φ − φt =
2

(C11)2

n∑
α,β=2

Cαβ(C1αραα)(C1βρββ) −
2

(C11)3

n∑
α,β=2

C1αC1β(C1αραα)(C1βρββ)

+ 2
n∑
δ=2

Cδδρ2
δδ −

n∑
δ=2

2(C1δ)2

C11 ρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2)

=Π1 + Π2.

(2.34)

For the term Π1,

Π1 =
2

(C11)2

n∑
α,β=2

Cαβ(C1αραα)(C1βρββ) −
2

(C11)3

n∑
α,β=2

C1αC1β(C1αραα)(C1βρββ)

=
2

(C11)3

n∑
α,β=2

(C11Cαβ −C1αC1β)(C1αραα)(C1βρββ)

=
2

(C11)3

n∑
α,β=2

[(1 − d2
1)δαβ − dαdβ](C1αραα)(C1βρββ)

≥0.

The above formula is nonnegative, because the matrix ((1 − d2
1)δαβ − dαdβ)α,β≥2 is semi positive

definite, due to |∇d|2 = 1.
Next we set out to deal with the term Π2,

Π2 =2
n∑
δ=2

Cδδρ2
δδ −

n∑
δ=2

2(C1δ)2

C11 ρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2)

=
2

C11

n∑
δ=2

(C11Cδδ − (C1δ)2)ρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2)

=2
n∑
δ=2

1 − d2
1 − d2

δ

C11 ρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2)

=2
n∑
δ=2

eδρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2),

where eδ =
1−d2

1−d2
δ

C11 .
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According to equation 4w − wt = f (t), we can obtain by Lemma 2.1 that 4ρ = O(1). Joint with
ρ11 = (C1δ

C11 )2ρδδ + O(ρ1), we get
n∑
δ=2

(1 + (
C1δ

C11 )2)ρδδ = O(|∇ρ|).

Therefore

ρ22 = O(|∇ρ|) −
n∑
δ=3

(C11)2 + (C1δ)2

(C11)2 + (C12)2ρδδ.

Substituting ρ22 into Π2, we can get

Π2 =2
n∑
δ=2

eδρ2
δδ +

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2)

=2e2(
n∑
δ=3

(C11)2 + (C1δ)2

(C11)2 + (C12)2ρδδ)
2 + 2

n∑
δ=3

eδρ2
δδ +

n∑
δ=3

O(|∇ρ|)ρδδ + O(|∇ρ|2).

Now let us consider the quadratic form in Π2, which is a quadratic form of ρ33, ρ44, · · · , ρnn.
Let

Λ = 2e2(
n∑
δ=3

(C11)2 + (C1δ)2

(C11)2 + (C12)2ρδδ)
2 + 2

n∑
δ=3

eδρ2
δδ = 2e2(

n∑
δ=3

εδρδδ)2 + 2
n∑
δ=3

eδρ2
δδ.

Through observation, we know that

0 ≤ eδ ≤ 1, (2 ≤ δ ≤ n),
n∑
δ=2

eδ = n − 2,

so at most one of e2, · · · , en is zero, it is obvious that 0 < C0 ≤ εδ ≤ C1, δ = 3, · · · , n, the quadratic
form Λ is positive definite.

Next, we give a positive controllable lower bound for the eigenvalues of this quadratic form.
We can regard Λ as a 3n-5 variables function, and its definition domain is

D = {(e2, e3, · · · , en, ε3, · · · , εn, ρ33, · · · , ρnn)|0 ≤ eδ ≤ 1,
n∑
δ=2

eδ = n − 2,

0 < C0 ≤ εδ ≤ C1, δ = 3, · · · , n,
n∑
δ=3

ρ2
δδ = 1}.

It is easy to see that D is a compact set. The minimum value of Λ on D is denoted by λ0, then the
positive number λ0 is a general positive lower bound of the eigenvalue of the quadratic form, that is

Λ ≥ λ0

n∑
δ=3

ρ2
δδ.

Therefore, in light of ax2 + bx ≥ − b2

4a , if a > 0 we can obtain

I ≥ Π2 ≥ λ0

n∑
δ=3

ρ2
δδ +

n∑
δ=3

O(|∇ρ|)ρδδ + O(|∇ρ|2) ≥ −k1|∇ρ|
2. (2.35)
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Meanwhile, in consideration of φ = |∇ρ|2C11

4Φ − Φt =
I
φ

+ (τ + 2µd)4d + 2µ − (τ + 2µd)2 ≥ −
k1

C̃
− (τ + 2µd)k0 − (τ + 2µd)2 + 2µ. (2.36)

First, select µ to make

2µ =
k1

C̃
+ (τ + 1)2 + (τ + 1)k0 + 1.

Then, select σ ≤ σ1 to make 2µσ ≤ 1, then we have a contradiction 0 ≥ 4Φ − Φt > 0, so |∇ρ| must
be bounded.

Namely,
|∇w| ≤ C(Ω, n, u0, ||ϕ||C3(Ω)), ∀(x, t) ∈ Ωσ × [0,T ′]. (2.37)

Since the bound is independent of T ′, Proposition 2.4 is proved. By the uniform estimate of ut, we can
deduce the estimate of uniform bound of wt, Combining with Propositions 2.3 and 2.4, we then get the
uniform Ck,α estimate for k ∈ Z+ and 0 < α < 1 by the Schauder theory. �

Proof of Lemma 2.2. We continue to prove Lemma 2.2. For n ∈ Z+, denoted by wn = w|Ω×[0,n], suppose
An = sup

Ω×[0,n]

|wn| which is obtained at the point (xn, tn). For (x, s) ∈ Ω × [0, 1], Let gn(x, s) = wn(x, s +

tn − 1), Then gn(x, s) suits

∂gn

∂s
− ∆gn = −

f (s + tn − 1)
An

in Ω × [0, 1],

gn(x, 0) = wn(x, tn − 1) on Ω × {0},
∂gn

∂β
=
ϕ(x)
An

on ∂Ω × [0, 1].

(2.38)

Since we have obtained the uniform C1 estimate of wn(x, t) independent of t ∈ [0, n], gn(x, s) also
has the uniform estimate of gradient independent of n and s. Therefore, (for convenience, we set
gn(x, 0) = wn(x, tn − 1) ∆

= an(x)), {an(x)} and its derivative sequence are uniformly bounded. Thus,
from the Arzela-Ascoli theorem, gn(x, 0) has convergent subsequences. Without losing generality, we
suppose that gn(x, 0) converges to a continuous function g0(x) defined on Ω satisfying g0(x0) = 0 and
sup
x∈Ω
|g0(x)| ≤ 1.

From the relationship between gn and wn, we can obtain the uniform Ck,α estimate of gn on Ω×[0, 1].
So we choose a subsequence of gn converges in the sense of Ck,α ( k ∈ Z+ and 0 < α < 1) to g on
Ω × [0, 1]. Clearly, we get 

∂g
∂s
− ∆g = 0 in Ω × [0, 1],

g(x, 0) = g0(x) on Ω × {0},
∂g
∂β

= 0 on ∂Ω × [0, 1].

(2.39)

Because of ∂g
∂s − ∆g = 0, g obtains the maximum value on Ω × {0} or ∂Ω × [0, 1], but ∂g

∂β
= 0 shows

that it can only be achieved at Ω×{0}, however g reaches the maximum at s = 1. It is a contradiction by
the maximum principle and Hopf Lemma for the parabolic differential equations. Thus, we complete
the proof of Lemma 2.2. �
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Theorem 2.5. ∀ T > 0, supposing that u is a smooth solution to (2.1), then we have the estimate,

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C, (2.40)

where C is a constant independent of t and T.

Proof. From the definition of v, v satisfies the following equation

∂v
∂t
− ∆v = −ut(x0, t) in Ω × (0,T ),

v(x, 0) = u0(x) − u0(x0) on Ω × {0} ,
∂v
∂β

= ϕ(x) on ∂Ω × (0,T ).

(2.41)

From Lemma 2.2 we have |v| ≤ A0, the step similar to Propositions 2.3 and 2.4 deduces

‖∇v(·, t)‖C(Ω) ≤ C.

Schauder theory then deduces
‖∇2v(·, t)‖C(Ω) ≤ C.

Since v(x, t) = u(x, t) − u(x0, t), we get

‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C.

Combining with Lemma 2.1, we finish the proof of Theorem 2.5. �

3. Long time behavior for the Fully Nonlinear equation

In this part, we consider 
ut = F(ui j) in Ω × [0,T ),

u(x, 0) = u0(x) on Ω × {0} ,
∂u
∂β

= ϕ(x) on ∂Ω × [0,T ),

(3.1)

where Ω ⊂ Rn is a smooth bounded domain, ϕ(x), u0(x) ∈ C∞(Ω), so that u0,β = ϕ(x) on ∂Ω. Moreover,
we assume that F satisfies (F1)–(F4).

Lemma 3.1. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary. Assuming that u(x, t)
is a smooth solution to (3.1), there is a constant C0 = C0(u0) > 0 such that ∀(x, t) ∈ Ω × (0,∞),

|ut|(x, t) ≤ C0.

Proof. Let F i j
u denote ∂

∂ri j
|r=∇2uF(r) and L = F i j

u ∂i j − ∂t, take the derivative of t on both sides of ut =

F(∇2u) , we have
utt = F i j

u ui jt,
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then L(u2
t ) = 2

n∑
i, j=1

F i j
u utiut j+2F i j

u ututi j−2ututt ≥ 2
n∑

i, j=1
F i j

u utiut j ≥ 0 , from the weak maximum principle,

we get
sup

Ω×(0,T )
|ut|

2 = sup
Ω×{0}∪∂Ω×(0,T )

|ut|
2.

Since, (u2
t )β = 2ututβ = 2utuβt = 0. Hopf lemma makes it impossible for the maximum to occur on

∂Ω × (0,T ), then
sup

Ω×(0,T )
|ut|

2 = sup
Ω×{0}
|ut|

2 = sup
Ω

∣∣∣F(∇2u0)
∣∣∣2.

�

Let v(x, t) = u(x, t) − u(x0, t) where x0 ∈ Ω. Similar to Section 2, we first give a time-independent
bound for |v| by a blow-up technique. Then from the C0 estimate of v, we get the bound of ‖v‖C2 .

Naturally, it follows the estimates of |∇u| and |∇2u|. Finally, we get the convergence result according
to the method of [1].

Lemma 3.2. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary. If u(x, t) is a smooth
solution to (3.1), v(x, t) is defined as above, then there is a constant A0 > 0 , independent of T , such that

‖v‖L∞(Ω×[0,T )) ≤ A0. (3.2)

Proof. Let A = ‖v‖C0(Ω×[0,T )) . Without loss of generality, we assume that A ≥ δ = δ(u0) > 0, (otherwise
the solution to (3.1) is a constant). Assume A is unbounded, that is, A→ ∞, as T → ∞. Let

w(x, t) =
v(x, t)

A
.

Obviously w satisfies w(x0, t) = 0, t ∈ [0,T ), |w|C0(Ω×[0,T )) = 1, and

∂w
∂t
−

1
A

F(A∇2w) = −
ut(x0, t)

A
in Ω × [0,T ),

w(x, 0) =
(u0(x) − u0(x0))

A
on Ω × {0},

∂w
∂β

=
1
A
ϕ(x) on ∂Ω × [0,T ).

(3.3)

In order to prove the above estimate, we need the following propositions.

Proposition 3.3. If w ∈ C3,2(Ω × [0,T )) satisfies |w| ≤ M for a normal number M and
∂w
∂t
−

1
A

F(A∇2w) = f (t) in Ω × [0,T ),

w(x, 0) =
(u0(x) − u0(x0))

A
= w0(x) on Ω × {0}.

(3.4)

Then ∀ Ω′ ⊂⊂ Ω,

sup
Ω′×[0,T )

|∇w| ≤ C(λ, µ0, µ1, M, w0, dist(Ω′, ∂Ω), | f |L∞([0,T ))).
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Remark. One can refer to [17] for the proof of this proposition. Note that f = −
ut(x0,t)

A ,M = 1 in
problem (3.3), we get

sup
Ω′×[0,T )

|Dw| ≤ C(λ, µ0, µ1, dist(Ω′, ∂Ω), u0). (3.5)

Proposition 3.4. If Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary. Assuming that
w ∈ C3,2(Ω × [0,T )) is a solution to (3.3), there exists a constant C = C(Ω, n, u0, ϕ, λ, µ0, µ1) such that
for σ ≤ σ1,

sup
Ωσ×[0,T )

|∇w| ≤ C. (3.6)

Proof. For 0 < T ′ < T, we will complete the proof on Ωσ × [0,T ′] and show that the bound is
independent of T ′.

Let
Φ = log φ + τd + µd2,

φ =|∇ρ|2 − (
n∑

i=1

ρidi)2 =

n∑
i, j=1

(δi j − did j)ρiρ j ,
n∑

i, j=1

Ci jρiρ j,

where τ, µ are positive constants to be determined later, ρ = w − ϕ′d
cos θ , and ϕ′ =

ϕ(x)
A = ∂w

∂β
=

∂w
∂ν
βn +

n−1∑
l=1
βlwl.

Assume Φ gets the maximum value at (x0, t0) on Ωσ × [0,T ′].
Case 1. t0 = 0. we get

|∇w|2(x0, 0) ≤ C(Ω, n, u0).

Case 2. x0 ∈ ∂Ωσ

⋂
Ω. In this case, the estimate follows from interior gradient estimate in

Proposition 3.3.
Case 3. x0 ∈ ∂Ω. Similar to the process of Proposition 2.4, we can choose the appropriate τ to guarantee
this case does not occur.
Case 4. x0 ∈ Ωσ, and t0 > 0.

Select a particular coordinate, so that ρ1 = |∇ρ|, ρl = 0 (l = 2, 3, · · · , n) and (ρi j) (2 ≤ i, j ≤ n) is
diagonal. We assume that |∇w| is large enough at this point so that |∇ρ|, |∇w| are equivalent.

Through a process similar to Proposition 2.4, we have

C11 ≥ C̃( σ1, c0, |ϕ|C1(Ω), |u0|C1(Ω)) > 0.

At the maximum point (x0, t0), we have

0 = Φi =
(Cklρkρl)i

φ
+ τdi + 2µddi =

φi

φ
+ τdi + 2µddi,

thus it can be seen
φi

φ
= −τdi − 2µddi,

Cklρkiρl = −
φ

2
(τ + 2µd)di −

Ckl
,i

2
ρkρl.
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When i = 1, it follows

C11ρ11 +

n∑
δ=2

Cδ1ρδ1 = −
1
2

C11
,1ρ1 −

φ

2ρ1
(τ + 2µd)d1.

When δ > 1, we obtain

C11ρ1δ + C1δρδδ = −
1
2

C11
,δρ1 −

φ

2ρ1
(τ + 2µd)dδ.

Thus,

ρ1δ = −
C1δ

C11ρδδ −
C11

,δ

2C11ρ1 −
(τ + 2µd)dδ

2
ρ1 = −

C1δ

C11ρδδ + O(|∇ρ|),

and

ρ11 =(
C1δ

C11 )2ρδδ +
Cδ1C11

,δ

2(C11)2 ρ1 +
Cδ1ρ1(τ + 2µd)dδ

2C11 −
C11

,1

2C11 ρ1 −
ρ1(τ + 2µd)d1

2

=(
C1δ

C11 )2ρδδ + O(|∇ρ|).

At the same time, at this point we have

0 ≤ Φt =
φt

φ
=

2Cklρkρlt

φ
,

and
0 ≥ Φi j =

φi j

φ
− (τ + 2µd)2did j + (τ + 2µd)di j + 2µdid j.

Then,

0 ≥ F i jΦi j − Φt =
F i jφi j − φt

φ
+ (τ + 2µd)F i jdi j + [2µ − (τ + 2µd)2]F i jdid j.

First, we come to calculate Fklφkl − φt,

Fklφkl − φt =2Ci jFklρiklρ j − 2Ci jρ jρit + 2Ci jFklρikρ jl + 4FklCi j
,kρilρ j + FklCi j

,klρiρ j

=I + II + III + IV,

where
I =2Ci jFklρiklρ j − 2Ci jρ jρit = 2Ci j[Fklρikl − ρit]ρ j

=2Ci j[−Fkl(
ϕ′d

cos θ
)ikl]ρ j = O(|∇w|),

IV =FklCi j
,klρiρ j = O(|∇w|2),

III =4FklCi j
,kρilρ j = 4FklCi1

,kρilρ1 = 4ρ1Fk1C11
,kρ11 + 4ρ1Fk1Cδ1

,kρ1δ

+ 4ρ1FkδC11
,kρ1δ + 4ρ1FkδCδ1

,kρδδ = III1 + III2 + III3 + III4,

and

III1 =4ρ1Fk1C11
,kρ11 = 4ρ1Fk1C11

,k[(
C1δ

C11 )2ρδδ + O(ρ1)]

= O(|∇w|)ρδδ + O(|∇w|2),
III2+III3 = 4ρ1Fk1Cδ1

,kρ1δ + 4ρ1FkδC11
,kρ1δ = 4ρ1(Fk1Cδ1

,k + FkδC11
,k)ρ1δ

= 4ρ1(Fk1Cδ1
,k + FkδC11

,k)(−
C1δ

C11ρδδ + O(|∇ρ|))

= O(|∇w|)ρδδ + O(|∇w|2),
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thus,
III = O(|∇w|)ρδδ + O(|∇w|2).

For the second term

II = 2FklCi jρikρ jl = 2FklC1iρikρ1l + 2FklCiδρikρδl = II1 + II2,

II1 = 2FklC1iρikρ1l = Fkl(−Ci1
,kρi −

φ

ρ1
(τ + 2µd)dk)ρ1l

= Fk1(−C11
,kρ1 −C11ρ1(τ + 2µd)dk)ρ11 + Fkδ(−C11

,kρ1 −C11ρ1(τ + 2µd)dk)ρ1δ

= II11 + II12,

and

II11 = −Fk1(C11
,kρ1 + C11ρ1(τ + 2µd)dk)ρ11

= −Fk1(C11
,kρ1 + C11ρ1(τ + 2µd)dk)((

C1δ

C11 )2ρδδ + O(ρ1)) = O(|∇w|)ρδδ + O(|∇w|2),

II12 = Fkδ(−C11
,kρ1 −C11ρ1(τ + 2µd)dk)ρ1δ

= Fkδ(−C11
,kρ1 −C11ρ1(τ + 2µd)dk)(−

C1δ

C11ρδδ + O(|∇ρ|)) = O(|∇w|)ρδδ + O(|∇w|2),

therefore,
II1 = O(|∇w|)ρδδ + O(|∇w|2).

For II2, we have

II2 =2FklCiδρikρδl = 2FklC1δρ1kρδl + 2FklCαδραkρδl

=2F1lC1δρ11ρδl + 2FαlC1δρ1αρδl + 2F1lCαδρα1ρδl + 2FαlCαδρααρδl

=II21 + II22 + II23 + II24,

where

II21 =2F1lC1δρ11ρδl = 2F11C1δρ11ρ1δ + 2F1δC1δρ11ρδδ

=2F11[−
(C1δ)2

C11 ρδδ + O(|∇ρ|)] × [(
C1δ

C11 )2ρδδ + O(|∇ρ|)] + 2F1δC1δρδδ[(
C1α

C11 )2ραα + O(|∇ρ|)]

= −
2

(C11)3 F11
n∑

α,β=2

(C1α)2(C1β)2ρααρββ +
2

(C11)2

n∑
α,β=2

(C1α)2F1βC1βρααρββ

+

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2),

II22 =2FαlC1δρ1αρδl = 2Fα1C1δρ1αρ1δ + 2FαδC1δρ1αρδδ

=2Fα1C1δ[−
C1α

C11 ραα + O(|∇ρ|)][−
C1δ

C11ρδδ + O(|∇ρ|)] + 2FαδC1δρδδ[−
C1α

C11 ραα + O(|∇ρ|)]

=
2

(C11)2

n∑
α,β=2

F1αC1α(C1β)2ρααρββ −
2

C11

n∑
α,β=2

FαβC1αC1βρααρββ

+

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2),
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II23 =2F1lCαδρα1ρδl = 2F11Cαδρ1αρ1δ + 2F1δCαδρα1ρδδ

=2F11Cαδ[−
C1α

C11 ραα + O(|∇ρ|)][−
C1δ

C11ρδδ + O(|∇ρ|)] + 2F1δCαδρδδ(−
C1α

C11 ραα + O(|∇ρ|))

=
2F11

(C11)2

n∑
α,β=2

CαβC1αC1βρααρββ −
2

C11

n∑
α,β=2

F1βCαβC1αρααρββ

+

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2),

II24 =2FαlCαδρααρδl = 2Fα1Cαδρααρδ1 + 2FαδCαδρααρδδ

=2Fα1Cαδραα[−
C1δ

C11ρδδ + O(|∇ρ|)] + 2FαδCαδρααρδδ

= −
2

C11

n∑
α,β=2

F1αCαβC1βρααρββ + 2
n∑

α,β=2

FαβCαβρααρββ +

n∑
δ=2

O(|∇ρ|)ρδδ,

then,

II2 = −
2

C11

n∑
α,β=2

CαβF1αC1βρααρββ + 2
n∑

α,β=2

FαβCαβρααρββ

+
2F11

(C11)2

n∑
α,β=2

CαβC1αC1βρααρββ −
2

C11

n∑
α,β=2

F1βCαβC1αρααρββ

+
2

(C11)2

n∑
α,β=2

F1αC1α(C1β)2ρααρββ −
2

C11

n∑
α,β=2

FαβC1αC1βρααρββ

−
2

(C11)3 F11
n∑

α,β=2

(C1α)2(C1β)2ρααρββ +
2

(C11)2

n∑
α,β=2

F1β(C1α)2C1βρααρββ

+

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2),

thus, we have

II2 = −
4

C11

n∑
α,β=2

F1αCαβC1βρααρββ + 2
n∑

α,β=2

FαβCαβρααρββ

+
2F11

(C11)2

n∑
α,β=2

CαβC1αC1βρααρββ −
2

(C11)3 F11
n∑

α,β=2

(C1α)2(C1β)2ρααρββ

+
4

(C11)2

n∑
α,β=2

F1αC1α(C1β)2ρααρββ −
2

C11

n∑
α,β=2

FαβC1αC1βρααρββ

+

n∑
δ=2

O(|∇ρ|)ρδδ + O(|∇ρ|2).

We mainly deal with the quadratic term in II2,
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Π = −
4

C11

n∑
α,β=2

F1αCαβC1βρααρββ + 2
n∑

α,β=2

FαβCαβρααρββ

+
2F11

(C11)2

n∑
α,β=2

CαβC1αC1βρααρββ −
2

(C11)3 F11
n∑

α,β=2

(C1α)2(C1β)2ρααρββ

+
4

(C11)2

n∑
α,β=2

F1αC1α(C1β)2ρααρββ −
2

C11

n∑
α,β=2

FαβC1αC1βρααρββ.

Simplify the above formula, we get

Π =

n∑
α,β=2

2[Fαβ(C11)2 + F11C1αC1β − F1αC1βC11 − F1βC1αC11][C11Cαβ −C1αC1β]
(C11)3 ρααρββ,

where C11Cαβ −C1αC1β = (1 − d2
1)δαβ − dαdβ.

To deal with the above quadratic form, let us make the following preparations:

Definition 3.5. Suppose A, B are two m-order symmetric matrices, its Hadamard product is defined
as A ◦ B = (ai j · bi j)m×m , that is, the element product at the corresponding position is defined as the
element at the corresponding position of the Hadamard product matrix.

Theorem 3.6. If A and B are two m order positive semi-definite matrices, A ◦ B is also a m order
positive semi-definite matrix; If A and B are two m order positive definite matrices, A ◦ B is also a m
order positive definite matrix .

Corollary 3.7. If A ≥ λE, B ≥ 0, then A ◦ B ≥ λE ◦ B.

With the above knowledge about matrices, let’s look at the two matrices contained in Π, one is

A =

n∑
α,β=2

(Fαβ(C11)2 + F11C1αC1β − F1αC1βC11 − F1βC1αC11),

and the other is

B =

n∑
α,β=2

((1 − d2
1)δαβ − dαdβ).

Because |∇d|2 = 1, it’s easy to see that matrix B is positive semi-definite.
Let’s consider symmetric matrix A.
Remark that F i j is positive definite and by the assumption we know that λE ≤ F i j ≤ ΛE, for any

X = (x2, x3, · · · , xn), we have
n∑

α,β=2

(Fαβ(C11)2 + F11C1αC1β − F1αC1βC11 − F1βC1αC11)xαxβ

= (C11)2
n∑

α,β=2

Fαβxαxβ + F11(
n∑
α=2

C1αxα)2 − 2C11(
n∑
α=2

F1αxα)(
n∑
α=2

C1αxα)

≥ (C11)2[
n∑

α,β=2

Fαβxαxβ −
1

F11 (
n∑
α=2

F1αxα)2] = (C11)2
n∑

α,β=2

(Fαβ −
F1αF1β

F11 )xαxβ.
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We want to show that the matrix (Fαβ − F1αF1β

F11 )2≤α,β≤n is positive definite and its eigenvalues
are bounded from below by λ. In fact, since λE ≤ F i j ≤ ΛE, we have that the
matrix (F i j) − diag{0, λ, λ, · · · , λ} is positive semi-definite. However, according to a series
of elementary transformations we can deduce that (F i j) − diag{0, λ, λ, · · · , λ} is congruent with(

F11 0
0 Fαβ − λδαβ −

F1αF1β

F11

)
. Therefore, (Fαβ − F1αF1β

F11 )2≤α,β≤n is positive definite and its eigenvalues

are bounded from below by λ.
So, (Fαβ(C11)2 + F11C1αC1β − F1αC1βC11 − F1βC1αC11) ≥ ((C11)2λδαβ) and then by the corollary we

have that

Π ≥
2λ
C11

n∑
α,β=2

((1 − d2
1)δαβ − dαdβ)δαβρααρββ

=2λ
n∑
α=2

(1 − d2
1) − d2

α

C11 ρ2
αα , 2λ

n∑
α=2

eαρ2
αα.

According to the first equation in (3.3), we can get ai jρi j = O(1), where λδi j ≤ ai j ≤ Λδi j. Reuse
ρ11 = (C1δ

C11 )2ρδδ + O(ρ1), there is

n∑
δ=2

(aδδ + a11(
C1δ

C11 )2 − 2a1δ
C1δ

C11 )ρδδ = O(|∇ρ|).

Write

γδ = aδδ + a11(
C1δ

C11 )2 − 2a1δ
C1δ

C11 .

Thus

0 <
λ2

Λ
≤ γδ ≤ Λ(1 + (

1

C̃
)2 +

2

C̃
).

Therefore

ρ22 = O(|∇ρ|) −
n∑
δ=3

γδ
γ2
ρδδ.

Then

Π ≥2λ
n∑
α=2

eαρ2
αα = 2λ[e2ρ

2
22 +

n∑
α=3

eαρ2
αα]

=2λ[e2(
n∑
δ=3

γδ
γ2
ρδδ)2 +

n∑
α=3

eαρ2
αα] +

n∑
δ=3

O(|∇ρ|)ρδδ + O(|∇ρ|2).

Consider the quadratic form in brackets in the above formula, which is about the quadratic form of
ρ33, ρ44, · · · , ρnn,

Θ = e2(
n∑
δ=3

γδ
γ2
ρδδ)2 +

n∑
δ=3

eδρ2
δδ.

Since the coefficients e2, e3, · · · , en satisfy

0 ≤ eδ ≤ 1, δ = 2, 3 · · · , n,
n∑
δ=2

eδ = n − 2,
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so, at most one of e2, · · · , en is zero, and considering the condition about γδ, so this quadratic form is
positive definite.

Next, we give a positive controllable lower bound for the eigenvalues of this quadratic form.
We can regard Θ as a 3n-4 variables function, and its definition domain is

D = {(e2, e3, · · · , en, γ2, · · · , γn, ρ33, · · · , ρnn)|0 ≤ eδ ≤ 1,
n∑
δ=2

eδ = n − 2,

0 <
λ2

Λ
≤ γδ ≤ Λ(1 + (

1

C̃
)2 +

2

C̃
),

n∑
δ=3

ρ2
δδ = 1}.

It is easy to see that D is a compact set, so, the minimum value of Θ on D is written as λ0, then the
positive mumber λ0 is a general positive lower bound of the eigenvalue of the quadratic form , that is

Θ = e2(
n∑
δ=3

γδ
γ2
ρδδ)2 +

n∑
δ=3

eδρ2
δδ ≥ λ0

n∑
δ=3

ρ2
δδ.

Therefore, on the basis of ax2 + bx ≥ − b2

4a , if a > 0 we can obtain

II ≥ 2λλ0

n∑
δ=3

ρ2
δδ +

n∑
δ=3

O(|∇ρ|)ρδδ + O(|∇ρ|2) ≥ −k1|∇ρ|
2.

In consideration of φ = |∇ρ|2C11, and supposing di j ≥ −k2δi j we have

0 ≥F i jΦi j − Φt =
F i jφi j − φt

φ
+ (τ + 2µd)F i jdi j + [2µ − (τ + 2µd)2]F i jdid j

≥ −
k1

C11 − (τ + 2µd)k2nΛ − (τ + 2µd)2Λ + 2µλ.

First, select µ to make

2µλ =
k1

C̃
+ Λ(τ + 1)2 + (τ + 1)k2nΛ + 1.

Then, select σ ≤ σ1 to make 2µσ ≤ 1, hence we have a contradiction 0 ≥ F i jΦ − Φt > 0, so then
|∇ρ| must be bounded.

Then
|Dw|2(x, t) ≤ C(λ, µ0, µ1, u0, ||ϕ||C3(Ω), n,Ω), ∀(x, t) ∈ Ωσ × [0,T ′]. (3.7)

Since the bound is independent of T ′, the proof of Proposition 3.4 is completed. �

Proposition 3.8. If w ∈ C4,2(Ω × [0,T )) satisfies ||w||C1(Ω×[0,T )) ≤ M1 ( M1 > 0) and
∂w
∂t
−

1
A

F(A∇2w) = f (t) in Ω × [0,T ),

w(x, 0) = w0(x) in Ω.
(3.8)

Then ∀ Ω′ ⊂⊂ Ω,

sup
Ω′×[0,T )

∣∣∣∇2w
∣∣∣ ≤ C(λ, µ0, µ1, M1, w0, dist(Ω′, ∂Ω), || f ||L∞([0,T ))).
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Remark. One can refer to [17] for the proof of this proposition.

Proposition 3.9. If Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary. Assuming that
w ∈ C4,2(Ω × [0,T )) is a solution to (3.3), there is a constant C = C(Ω, n, u0, ϕ, λ, µ0, µ1) , such that
for σ ≤ σ1,

sup
Ωσ×[0,T )

|∇2w| ≤ C(1 + sup
∂Ω×[0,T )

|wββ|). (3.9)

Proof. For 0 < T ′ < T, we will give the bound of |∇2w| on Ωσ × [0,T ′] independent of T ′.
Let

H(x, t, ξ) = eαd(wξξ + Bw2
ξ),

where α, B (> 0) to be determined later, and ξ ∈ S n−1 is a fixed unit vector, we can assume that |wξξ | ≥ 1,
otherwise, there is nothing to do. We first set the following differential inequality.

n∑
i, j=1

F i jHi j − Ht ≥ 0 mod ∇H on Ωσ × (0,T ′]. (3.10)

In fact,
0 = Hi =αdiH + eαd(wξξi + B(w2

ξ)i),

Ht =eαd(wξξt + B(w2
ξ)t),

Hi j =(αdi j − α
2did j)H + eαd(wξξi j + B(w2

ξ)i j).

Therefore

n∑
i, j=1

F i jHi j − Ht

=

n∑
i, j=1

F i j(αdi j − α
2did j)H + eαd(

n∑
i, j=1

F i jwξξi j − wξξt) + Beαd(
n∑

i, j=1

F i j(w2
ξ)i j − (w2

ξ)t)

=I + II + III,

where
|I| ≤µ1(αC̃2 + α2)eαd|wξξ | + C0(α, µ1, n,Ω),
II ≥0,

III =2Beαd
n∑

i, j=1

F i jwξiwξ j + 2Beαdwξ(
n∑

i, j=1

F i jwξi j − wξt)

≥2Beαdλ

n∑
i=1

|wξi|
2.

From Cauchy inequality, we have |wξξ |
2 = |

n∑
i=1

wξiξ
i|2 ≤

n∑
i=1

w2
ξi, and then according to the hypothesis

|wξξ | ≥ 1, we get
III ≥ 2Beαdλ|wξξ |.

Then if we take B = 1
2λ (µ1(αC̃2 + α2) + C0), so (3.10) is proved.
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Suppose that the maximum point of H is (x0, t0, ξ0), according to the maximum principle, it must
occur on Ωσ × {0} × S n−1, (∂Ωσ

⋂
Ω)× [0,T ′]× S n−1 or ∂Ω× [0,T ′]× S n−1. Let’s discuss it one by one

in the following situations.
Case 1. (x0, t0, ξ0) ∈ Ωσ × {0} × S n−1. Then

wξ0ξ0(x0, t0) ≤ max{H(x0, 0, ξ0), 0} ≤ C(u0,Ω).

Case 2. (x0, t0, ξ0) ∈ (∂Ωσ

⋂
Ω)× [0,T ′]×S n−1. In this case, it is transformed into the interior estimate,

and Proposition 3.8 guarantees the conclusion.
Case 3. (x0, t0, ξ0) ∈ ∂Ω × [0,T ′] × S n−1. Under this condition, we have

0 ≥ Hβ = αβn(wξ0ξ0 + Bw2
ξ0

) + wξ0ξ0β + 2Bwξ0wξ0β. (3.11)

First,we suppose that ξ0 · ν = 0.
Let’s write wi jτ

iµ j with wτµ, take the tangential derivatives on both sides of wβ = ϕ′ =
ϕ

A , and
we have

n∑
p,q=1

n∑
k=1

Cpq(wkβ
k)pξ

q
0 =

n∑
p=1

n∑
q=1

Cpq(ϕ′)pξ
q
0,

where Cpq = δpq − ν
pνq = δpq − dpdq in Ωσ. Thus

wξ0β = (ϕ′)ξ0 −

n∑
k=1

wkβ
k
,qξ

q
0.

It can be seen that there is a constant Λ = Λ(ϕ, C̃, ||∇w||C0(Ω×[0,T ))) such that

|wξ0β| ≤ Λ. (3.12)

Taking double tangential derivative on both sides of wβ = ϕ′ =
ϕ

A , we get

n∑
i, j,k,p,q=1

C jq(Cip(wkβ
k)p)qξ

i
0ξ

j
0 =

n∑
i, j,p,q=1

C jq(Cipϕ′p)qξ
i
0ξ

j
0,

thus

wξ0ξ0β =

n∑
i, j,p,q=1

C jqCip
,qϕ
′
pξ

i
0ξ

j
0 + ϕ′ξ0ξ0

−

n∑
k,p,q=1

ξ
p
0ξ

q
0(wkpβ

k
q + wkqβ

k
p + wkβ

k
pq)

−

n∑
i,p,q,k=1

ξ
q
0Cip

,q ξ
i
0(wkβ

k)p.

Therefore,
|wξ0ξ0β + 2Bwξ0wξ0β| ≤ 2C̃|∇2w| + C(||ϕ||C2(Ω), C̃, ||∇w||C0(Ω×[0,T )), B).

Because wt is bounded, operator F is uniformly elliptic, by classical theory of uniform elliptic
differential equations, ∀ (x, t) ∈ Ωσ × [0,T ′], we have

|∇2w| ≤ C0(λ, µ1, u0)(1 + sup
γ∈S n−1

w+
γγ).
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Without loss of generality, we assume that sup
γ∈S n−1

w+
γγ = wζζ > 0.

Choose a proper coordinate at x0 : −→e1, · · · ,
−−→en−1,

−→
β , such that ζ =

n−1∑
i=1

ai
−→ei + an

−→
β , let ζ> =

n−1∑
i=1

ai
−→ei ,

then ζ = ζ> + an
−→
β , we then have by (3.12)

|∇2w| ≤ C0(1 + wζζ)
≤ C0(1 + wζ>ζ> + 2anwζ>β + a2

nwββ)
≤ C1(1 + 2Λ + H(x0, t0, ξ0) + |wββ|)
≤ C1(1 + 2Λ + wξ0ξ0 + B||∇w||2

C0(Ω×[0,T ))
+ |wββ|).

Then,

|wξ0ξ0β + 2Bwξ0wξ0β| ≤ 2C1C̃(1 + wξ0ξ0 + |wββ|) + C(||ϕ||C2(Ω), C̃, B, ||∇w||C0(Ω×[0,T ))).

Substitute the above inequality into (3.11), take α = 2C1C̃ + 1, and then we deduce

wξ0ξ0(x0, t0) ≤ C(1 + sup
∂Ω×[0,T )

|wββ|),

where C = C(λ, µ1, u0, ||ϕ||C2(Ω), C̃, B, ||∇w||C0(Ω×[0,T ))).

If ξ0 · ν , 0, similar to the above discussion process, let ξ0 =
n−1∑
i=1

bi
−→ei + bn

−→
β , and ξ>0 =

n−1∑
i=1

bi
−→ei , then

ξ0 = ξ>0 + bn
−→
β ,

then we obtain
wξ0ξ0 =wξ>0 ξ

>
0

+ 2bnwξ>0 β
+ b2

nwββ

≤C(1 + |wββ|).

Combined with all the above, we come to the conclusion that

sup
Ωσ×[0,T ′]

|∇2w| ≤ C(1 + sup
∂Ω×[0,T )

|wββ|),

where C = C(λ, µ1,Ω, n, ϕ, u0, ||∇w||C0(Ω×[0,T ))) which is independent of T ′, so we finish the proof of
Proposition 3.9. �

Proposition 3.10. If Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary. Assume that
w ∈ C4,2(Ω×[0,T )) is a solution to (3.3), Then there is a constant C = C(Ω, n, u0, ϕ, λ, µ0, µ1), such that

sup
∂Ω×[0,T )

|wββ| ≤ C. (3.13)

Proof. For any 0 < T ′ < T , we use the barrier function to give |wββ| a bound independent of T ′ on
∂Ω × [0,T ′], and then take a limit.

Let
M2 = sup

Ω×[0,T )
|∇2w|.
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As before, we think about a function G(x, t) =
n∑

i=1
wiβ

i −
ϕ

A defined on Ωσ × [0,T ′], and we have

|G| < C(||∇w||C0(Ω×[0,T )), u0, ||ϕ||C0(Ω)) := Ĉ.

Suppose the barrier function is
H(x, t) = 4ĈK(d − Kd2) ±G,

where
K ≥

1
2σ1

, (3.14)

is a positive number to be determined. Clearly,

H = 0 on ∂Ω × [0,T ′]. (3.15)

Notice that if Kσ = 1
2 , we get

H > 0 on (∂Ωσ ∩Ω) × [0,T ′]. (3.16)

On Ωσ × {0}, note that G(x, 0) is a function related only to u0(x) and we can suppose that

K ≥ C̃ +

√√
max

Ω

|∆G(x, 0)|

4Ĉ
, (3.17)

where C̃ is from (1.6).
Now Let’s compute ∆H(x, 0) on Ωσ × {0}. Combined with Kσ = 1

2 , we get

∆H(x, 0) =4ĈK(∆d − 2Kd∆d − 2K) ± ∆G

≤4ĈK(C̃ − 2K) ± ∆G

≤ − 4ĈK2 ± ∆G ≤ 0.

From the fact H(x, 0) ≥ 0 on ∂Ωσ derived from (3.15) and (3.16), we derive that

H > 0 on Ωσ × {0}. (3.18)

Now we start to think about the function H(x, t) on Ωσ × (0,T ′].
Set F i j = ∂

∂ri j
|r=A∇2wF(r), thus on Ωσ × (0,T ′],

n∑
i, j=1

F i jGi j −Gt =

n∑
i, j,k=1

F i jwi jkβ
k −

n∑
i=1

wktβ
k +

n∑
i, j,k=1

F i j(wikβ
k
j + w jkβ

k
i ) −

n∑
i, j=1

1
A

F i jϕi j

=

n∑
i, j,k=1

F i j(wikβ
k
j + w jkβ

k
i ) −

n∑
i, j=1

1
A

F i jϕi j,

consequently,

|

n∑
i, j=1

F i jGi j −Gt| ≤ C2(µ1,Ω, n, u0, ||ϕ||C2(Ω))[1 + M2].
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Hence, on Ωσ × (0,T ′]

n∑
i, j=1

F i jHi j − Ht =4ĈK
n∑

i, j=1

F i j(di j − 2Kdid j − 2Kddi j) ± (
n∑

i, j=1

F i jGi j −Gt)

≤4ĈK(µ1C̃ − 2Kλ) + C2(1 + M2)

≤ − 4ĈλK2 + C2(1 + M2) ≤ 0,

if we take

K ≥
µ1C̃
λ

+

√
C2(1 + M2)

4λĈ
. (3.19)

Combined with (3.14), (3.17) and (3.19), let

K =
1

2σ1
+
µ1C̃
λ

+

√
C2(1 + M2)

4λĈ
+ C̃ +

√√
max

Ω

|∆G(x, 0)|

4Ĉ
, (3.20)

and
σ =

1
2K

, (3.21)

then we get
Hβ ≥ 0 on ∂Ω × [0,T ′].

On the other side, we obtain

Hβ =4ĈKβn ±Gβ

=4ĈKβn ± (wklβ
kβl + wkβ

k
l β

l −
1
A
ϕlβ

l).

Therefore, from Proposition 3.9, ∀ (x, t) ∈ Ωσ × [0,T ′], we gain

|wββ| ≤ C
√

1 + M2 ≤ C
√

1 + |wββ|,

therefore,
|wββ| ≤ C.

then the proof of Proposition 3.10 is completed. �

Proof of Lemma 3.2. We continue to prove Lemma 3.2. It is almost similar to the proof process in the
last part of Lemma 2.2, From conditions (F1), (F2) and (F4), we can deduce the following uniformly
parabolic differential equation

∂g
∂s
− F∞(∇2g) = 0 in Ω × [0, 1],

g(x, 0) = g0(x) on Ω × {0},
∂g
∂β

= 0 on ∂Ω × [0, 1),

(3.22)
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where g0(x) is a continuous function defined on Ω and |g0(x)| ≤ 1.
It can be inferred from F∞(0) = 0 that (3.22) can also be expressed as

∂g
∂s
−

n∑
i, j=1

∫ 1

0
F i j
∞(t∇2g)dt · gi j = 0 in Ω × [0, 1],

g(x, 0) = g0(x) on Ω × {0},
∂g
∂β

= 0 on ∂Ω × [0, 1).

(3.23)

However, similar to the proof of Lemma 2.2, for s ∈ [0, 1], we have g(x0, s) = 0 and for some
x ∈ Ω, |g(x, 1)| = 1. This also runs counter to the maximum principle and Hopf Lemma of parabolic
differential equations. Therefore, we receive (3.2) and finish the proof of Lemma 3.2. �

Theorem 3.11. For any T > 0, if u is a smooth solution to (3.1), thus we get the estimate,

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C, (3.24)

where C is a constant independent of t and T.

Proof. The equation for v is

∂v
∂t
− F(∆2v) = −ut(x0, t) in Ω × (0,∞),

v(x, 0) = u0(x) − u0(x0) on Ω × {0} ,
∂v
∂β

= ϕ on ∂Ω × (0,∞).

(3.25)

From Lemma 3.2 we gain |v| ≤ A0, A process similar to Propositions 3.3 and 3.4 deduces

‖∇v(·, t)‖C(Ω) ≤ C.

Schauder theory derives
‖∇2v(·, t)‖C(Ω) ≤ C.

Since v(x, t) = u(x, t) − u(x0, t), combining with Lemma 3.1, we conclude that

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C.

In this way, we have completed the proof of Theorem 3.11. �

4. Conclusions

Based on the conclusion of the above theorem, we have completed the proof of Theorem 1.3. On
this basis, according to the Theorem 1.2, we ensure the validity of Theorem 1.1, thus obtaining the
convergence conclusion of the equation solution discussed in this paper.

Use of AI tools declaration

The author declares she has not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 9, Issue 2, 2824–2853.



2852

Acknowledgments

The author would like to thank Professor Peihe Wang for his guide and encouragement.
The author is supported by Shandong Provincial Natural Science Foundation ZR2020MA018.

References

1. S. J. Altschuler, L. F. Wu, Translating surfaces of the non-parametric mean curvature
flow with prescribed contact angle, Calc. Var. Partial Dif., 2 (1994), 101–111.
https://doi.org/10.1007/BF01234317

2. M. Arisawa, Long time averaged reflection force and homogenization of oscillating Neumann
boundary conditions, Ann. Inst. H. Poincaŕ Anal., 20 (2003), 293–332.
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Ann. Inst. H. Poincaŕ Anal., 12 (1995), 507–575.

15. J. Urbas, Oblique boundary value problems for equations of Monge-Ampere type, Calc. Var. Partial
Dif., 7 (1998), 19–39. https://doi.org/10.1007/s005260050097

16. F. D. Jiang, N. S. Trudinger, Oblique boundary value problems for augmented Hessian equations
II, Nonlinear Anal., 154 (2017), 148–173. https://doi.org/10.1016/j.na.2016.08.007

AIMS Mathematics Volume 9, Issue 2, 2824–2853.

http://dx.doi.org/https://doi.org/10.1007/BF01234317
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2007.06.052
http://dx.doi.org/https://doi.org/10.1016/j.anihpc.2004.09.001
http://dx.doi.org/https://doi.org/10.1515/crelle.2012.001
http://dx.doi.org/https://doi.org/10.1007/s002290200265
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2017.05.066
http://dx.doi.org/https://doi.org/10.1007/BF01163605
http://dx.doi.org/https://doi.org/10.1007/s005260050097
http://dx.doi.org/https://doi.org/10.1016/j.na.2016.08.007


2853

17. Z. H. Gao, P. H. Wang, Global C2 -estimates for smooth solutions to uniformly parabolic
equations with Neumann boundary condition, Discrete Cont. Dyn., 42 (2022), 1201–1223.
http://dx.doi.org/10.3934/dcds.2021152

18. R. L. Huang, Y. H. Ye, A convergence result on the second boundary value problem for parabolic
equations, Pac. J. Math., 310 (2021), 159–179. https://doi.org/10.2140/pjm.2021.310.159

19. P. H. Wang, Y. N. Zhang, Mean curvature flow with linear oblique derivative boundary conditions,
Sci. China Math., 65 (2022),1413–1430. https://doi.org/10.1007/s11425-020-1795-2

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 2, 2824–2853.

http://dx.doi.org/http://dx.doi.org/10.3934/dcds.2021152
http://dx.doi.org/https://doi.org/10.2140/pjm.2021.310.159
http://dx.doi.org/https://doi.org/10.1007/s11425-020-1795-2
http://creativecommons.org/licenses/by/4.0

	Introduction
	Long time behavior for the diffusion equation
	Long time behavior for the Fully Nonlinear equation
	Conclusions

