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1. Introduction

In this paper, we consider the long time behavior of smooth solutions to the following parabolic
equations with oblique derivative boundary value problems,

u,— F(Vu) =0 in Q x [0, ),

u(x,0) = uo(x) on Qx {0}, (1.1)
ou
% = o(x) on 0Q x [0, ),

where € is a bounded smooth domain in R”, F is a smooth real function defined on §”, S” means n X n
real symmetric matrix space. ¢ is a given function defined on Q, 8 is the inward unit vector along <,
and satisfies the condition < v,8 >= 8, = cosd > ¢y > 0, where v is the inner normal vector to 9JQ ,
B =< Vu,B >, where Vu = (24, 2t ... 2) and uy € C™(Q) satisfies 52 = ¢(x).

At present, there are many results on various boundary value problems of partial differential
equations [1-7], and the oblique derivative boundary value problems of partial differential equations

have been widely studied. The related problems of the oblique derivative boundary value problems of
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linear and quasilinear elliptic equations can be seen in the book [8—10]. The related results of nonlinear
differential equations can be found in the literature [11-16]. In [13], Bao established the global Holder
gradient estimates for the W>” solution of the nonlinear oblique derivative problems for the second-
order fully nonlinear elliptic equations using the perturbation idea of Caffarelli. In [17], they studied
the long time behavior of the solution in the classical senses through a blow up skill for the following
parabolic equation

u,— F(Vu)=0  in QX[0,00),

u(x, 0) = up(x) on Qx {0},
% = ¢(x) on 0Q X [0, c0),
ov
where v is the inward unit normal vector. In this paper, we will consider the long-time behavior of the
solution to the above problem when the boundary condition becomes the oblique cases.
We need to make some structural assumptions about F' :
(F1) VreS", AI<F.(r), [|F(rl<polrl,
(Fr) Vr,XeS" [Fx(nl <wmlXl,
(F3) VrnXeS" Fxx(r)<0,
where A, (o, 4y are positive constsnts. Besides, we suppose
(F4) There exists a smooth function F', , such that

sTYVF(sr) = Fo(r) locally wuniformly in CYS™), as s — +oo.
First, we state our major results of this paper.

Theorem 1.1. Suppose Q C R" (n = 2) is a bounded domain with smooth boundary. If F satisfies
(F1)—(Fy), ¢ € C*(Q), then the smooth solution u(x,t) of (1.1) converges to U + tt, namely, ¥
DccQ, {<land O0<a<1,

m fluC,6) = (UO) + mDllereey = 0, lim flu, 8) = (UC) + 7D)llcsnapy = 0, (1.2)

where (U, T) is a suitable solution to

FV*’U)y=1 in Q,
ou 1.3
% =p(x) on 0Q. (1.3)
The constant 7 depends only on €, ¢ and F. The solution to (1.3) is unique up to a constant.
Remark. Note (1.3) that T depends only on F, ¢, Q.

Proof. Assume there exist two pairs (71, «) and (15, v) solving (1.3).

Namely
FV’uw)=1, in Q,
ZTZ =¢(x) on 0Q.
FVv =1, in Q,
d
é —(x) on OQ.
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Without loss of generality, we may assume 7; < 75, then,

1
fo ;F [(V?u + (1 — HV*V]dt(u — v)ap < 0,

I/ta,ﬁ
Ou —
(u—-v) o
B
By maximal principle, the minimum of u — v can be achieved at the boundary, but ‘9(;—? = 0 and strong

maximal principle indicate that the minimum can only be reached internally, which is contradictory,
thus 7 = 7.
The above proof indicates that 7 here only depends on F, ¢, Q. O

In [18], Huang and Ye established a convergence result under assumptions of a priori estimate.

Theorem 1.2. [18] Suppose Q C R" (n > 2) is a bounded domain with smooth boundary. If F satisfies

(Fy) and (F3), ¢ € C“(ﬁ) .Y T >0, suppose u € C4+“’4T(Q X (0,T)) is a unique solution of the
following nonlinear parabolic equation

u, — F(V’u) =0 in Qx[0,7),

u(x,0) = up(x) on Qx {0}, (1.4)
G(x,Vu) =0 on 0Qx|[0,T),
and u satisfies
||ut(" t)”(j(ﬁ) + ||Vl/t(, t)”c(ﬁ) + ”Vzu(’ t)”c(ﬁ) < Cl’ (15)
- 1
D G, Vi = —, (1.6)
k=1 &)

where Cy and C; are positive constants independent of t > 1. Then u(-, ) converges to a function U + 7t
in C'"*"(Q) N C*(D)ast — +00o, Y D CC Q, &< landad < a,thatis (1.2) is satisfied.

In the paper, we derive the estimate (1.5) for the problem (1.1).

Theorem 1.3. Suppose Q C R" (n > 2) is a bounded domain with smooth boundary. Assume F
satisfies (F1)—(F4), ¢ € C*(Q), then we get the uniform (in t) estimate (1.5) for the solution to (1.1).

Actually, in [19], a good proof of convergence result is provided, under the assumption of uniform
>in ) [Ju,(, t)”c@)’ [IVu(-, t)llc@ estimate of quasilinear equation. In this note, after we establish the
estimate of |[u,(-, t)llc@, [|Vu(-, t)llc@, IV2u(-, t)llc@, we use Schauder method and the process in [17]
to obtain the convergence result. We can also find more details in the work [18] of Huang and Ye.

First of all, we give some notations.

Suppose Q C R" (n > 2) is a bounded domain, dQ € C?. Set

d(x) = dist(x, 0Q),

and
Q,={xeQ:dx)<u}.
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Then there exists a positive constant gy > 0 such that V u < puy,d(x) € C3(§ﬂ). As mentioned
in Lieberman [8], we can prolong v as Dd in €, which is a C? vector field. We also have the

following expressions
VY + V3V < C(n, Q) in Q,,

> vV =0 in Q, (1.7)
1<i<n
vl =1 in Q.

Furthermore, in this paper, to simplify the proof of the theorems, we use O(z) to represent an
expression that there exists a uniform constant C > 0 satisfying |0O(z)| < Cz.

In the following part of the paper, we make the following arrangement. In the second section, we
think about the special case of F(V?u) = Au, and use a blow-up technique to control |[u(-, Dllc@) and
then derive the estimate of ||Vu(-, 1)l and IV2u(-, Dllc@)- In the third section , we study the general
F(V?u) and derive the priori estimates.

2. Long time behavior for the diffusion equation

In this part, we discuss the long time behavior of the following diffusion equation with oblique
derivative boundary conditions

u, — Au =0, in Qx[0,7),
u(x,0) = up(x), on Qx {0}, 2.1)
Ug = @, on 0Q x[0,T),

where Q2 C R" is a bounded smooth domain, ¢(x), uy(x) € Cm(ﬁ), and upg = ¢(x) on 0Q2.

As before, we denote by v the inner normal vector field along Q. Set {Tl};’:‘l1 to be the unit tangent
vector fields which joint with v form a unit normal frame along 0Q. Assume 8 = g,v + Z;’z‘ll,BITI,
therefore, ¢(x) = g—/’; =< Vu,B >= 9B, + ZPuy;, where u; =< Vu,T; > .

Lemma 2.1. Suppose Q C R" (n > 2) is a bounded domain with smooth boundary. If u(x,t) is a
smooth solution to (2.1), then

2 2
sup |u;|” = sup |u,(x,0)|7,
Qx[0.T) Q

so there exists a constant C = C(ugy) > 0, such that ¥(x,t) € Q x [0, T),
| |(x, 1) < C.

Proof. Because (A — 2)(u?) = Au? — 2(u?) = 2u,Au, + 2|Du|* — 2u,u, = 2|Du,|* > 0 , from the weak
maximum principle, we have

2 2
sup |u|” = sup Joas| "
Qx(0.T) QxX{0}UAQX(0,T)

On the other hand, (u?)s = 2u,uz = 2up, = 0.
Hopf lemma shows that the maximum cannot appear on 9 x (0,7) , then

2 2 2
sup |u,[” = sup [u,|" = sup |Auol|".
Qx(0,T) Qx{0} Q

O
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Take xy € Q and let v(x,1) = u(x,t) — u(xy,t) , in the following, we first give a time independent
bound of |v| by using a blow-up method. With the C° estimate of v, we then obtain the C? estimate
of v. Naturally, the estimates for |[Vu| and |V?u| follow. Finally, the convergence results are obtained
by using [18].

Lemma 2.2. Let QO C R" (n > 2) be a bounded domain with smooth boundary. If u(x,t) is a smooth
solution to (2.1), v(x, t) as defined above, then there exists a constant Ay > 0, independent of T, so that

IVllcoaxio.ry < Ao- (2.2)

Proof. Let A = |Vl|coaxpo.ry - Without loss of generality, we assume A > 6 = 6(ug) > 0, (otherwise we
get a constant solution to (2.1)). Assume A is unbounded, i.e., A — oo, as T — oo. Let

w(x, t) = V(Z’ 0

Then, w(xy,t) =0,1r€[0,T), |W|c0(§x[o,T)) = 1, and satisfies

ow _ u(xo,1) :

E_Aw_— A mn QX[O,T),

wix, 0) = o) ;‘”"(XO)) on Qx {0}, (2.3)
ow 1

% = Z()p(x) on 0Qx|[0,T).

To finish the proof, we need the following propositions.

Proposition 2.3. Let w € C**(Q x [0, T)) and satisfy

0
a—V: —Aw = f@®), Wl < 1,in Q% [0,T).
Then, Y Q' cc Q,
sup |Vw| < C(dist(Y', 0Q), |f11=qo.ry)-
Q'x[0,T)
Remark. We can see the proof process of this proposition in [17], so we skip it here. Note that
f= ——"’(ZO’I), we have

sup |VW| < C(diSt(Q,, QQ), |f|L°°([O,T))) = C(diSt(Q,, (9(2), l/l()). (24)

Q'x[0,T)

Proposition 2.4. Let Q C R" (n > 2) be a bounded domain with smooth boundary. Assume that
w € C3’2(ﬁ X [0,T) is a solution to (2.3), Then there is a constant C = C(Q, n, u, ||¢,0||C3@) such that
foro < oy,
sup |VW| <C. (25)
Q,x[0,T)
Proof. For 0 < T' < T, We will prove that we can give |Vw| a bound independent of 7’ on 0Q2 x [0, T"]

and then take a limit.
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n—1
Let ¢’ = % = g—g =< Vw,B >= 28, + El,Bzwl and p = w— £5 thenw = p + cos@ and
, P n—1 n=l nl
SO(_X) (p cosG)ﬂn+ Zﬁl(l)-‘l_coﬂﬁ)l ﬁn+l;ﬁlpl:0:>%:_§ ﬁ_’ipl-
Thus
n—1 n—1 -1
cos’ 6 = = (|V 2y sin? 6. 2.6
() (2/3@);; = (|VpP - a)) (2.6)
Therefore,
@ 2 2.2
(Zy2 < \VpP sin? 6. 2.7)
ov
Let

¢ = Vpl - (me = Y 65— ddppns = Y oy
i,j=1 i,j=1
and
® = log ¢ + 7d + pud?,

where 7, u are two constants to be determined later.

Suppose that the maximum value of ® on Q, X [0,7’] (o < o) is obtained at (xy, fy). Let us
discuss it in several cases:
Case 1. 1y = 0. If this happens, it is easy to get the gradient estimate.
Case 2. xy € 0Q,, () Q. In this way, the estimate is transformed into interior gradient estimate.
Case 3. x; € 0Q. Select a suitable coordinate at x, so that % =, and a%(i =1,---,n—1) are tangent
along 0Q. Then, we have

0’d 0’d

dnzl,di:()9 :0’ = - ié‘i"
0x,0x, 0x;0x; Ki0ij

where 1 <i,j<n, 1 <a <n-1,and k; is the principal curvatures of JQ at x.
Because xy is the maximum point of @, then we have,

D, =0,1<i<n-1, (2.8)
and
0>9, = % +T. (2.9)

By (2.8), for 1 <i <n—1, we have

0 = ®; =(VpP) = () pada);
a=1

n—1 n—1

=23 pipii =2 ) pupscy (2.10)
p =
n—1

=2 Z PiPji + 20npiki.

J=1
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Using (2.10) to calculate ¢, , we obtain
n n n—1
¢n :(|Vp|2)n - (Z pada)i =2 Zpipin - 2pnpnn =2 Zpipin

=2 szpm +2 Z pipjki; =2 sz(_ pl)z +2 Z KijpiP j

i,j=1 il=1 i,j=1

2.11)
PzPlz,Bl
__22 _2szpl( )l+2’ZKljplpj
il=1 i,j=1
n—1
:2& plklﬁl 2 Zptpl( )l +2 Z Kt]plp}»
Bn =1 il=1 B i,j=1
where we denote by «;; the Weingarten matrix.
Thus,
2"” 2 ; i+ 2 10
Z KiBipr — Z PPz(ﬁ )i ZJZ_ KijOiP 2.12)
0>, = s +T.

From (2.7), we have
cé|V,0|2 < |Vpl*cos? 6 < ¢ < |Vp|*.

If we make 7 large enough determined by the geometry of 0€, ¢y and |Blci(sq), this case can
not happen.
Case 4. xp € Q,, and 1, > 0.

First, we show that [Vw|* gets the maximum value at the boundary.

By simple calculation, we have A(|[Vw|?) — (|Vw|?), > 0, then

2 2
sup |VW| < sup |VW| . (213)
Qx[0,T7] 0Qx[0,77]1J Qx{0}

Choose a special coordinate, such that p; = [Vpl, p;=0 (I =2,3,--- ,n)and (p;;) 2<i,j<n)is
diagonal. We assume that [Vw| is large enough such that [Vp|, |Vw| are equivalent at this point.

Under this coordinate and by the assumption that |Vw| at (xg, fp) is large enough, we first give a
basic fact

C' > C(oy, o, plcr iy ol @) > 0. (2.14)

In fact, the maximum point of |Vw| on 0Q x [0, T'] is denoted by (x1, t;), without loss of generality,
we suppose that [Vw|(x, 1) > 4 sup |-£

cos@'"
We propose a precondition that
po < 1. (2.15)

Because of ®(xy, 1) < D(xp, 1y), (2.7) and (2.13), then we obtain
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0
B(xo,10) = e TV p(x1, 1)) = C[|Vpl* - (6—6)2]()61, 1)
> C[|Vpl* cos? 0)(xy, 1) = C|Vpl*(xy, 1)

’

12
v
cos @

>C sup |Vw]
Qx[0,77]

> C|Vw|*(x0, 1) = C|Vp|*(x0, t).

Note that C may be different in each line of the above processes.
Through an easy observation, it can be seen that

=C|Vw — *(x1,11) = CIVW*(xy, 1) (2.16)

c''">C>o. (2.17)

Since (xo, fo) is the maximum point, we have

Ckl ; ;
0= = PP L i 2ndd; = % + 7d; + 2udd,. (2.18)
Hence one can see that
% = —le' - Zﬂddl,
s ol (2.19)
C¥pripr = _E(T + 2ud)d; - T’Pkﬂz-
Fori =1, we get
. 1
Clorr + Y, o = =5C"pr = -+ (220)
6=2 1
For § > 1, we have
1
Cpus + CPopus = =5C' oy = 5 + 2y @21)
L1
Then ch C's (1 + 2ud)ds c' 22
P10 = =GP ~ SEmP1 T ) p1=—cnPet O(|Vp)). (2.22)
Replace (2.22) back to (2.20), we have
_(E0,  CC | Clpit 2ud)dy  CUa i@+ 2ud)d,
P11 Cli Pss 2(C1Tye P1 2CT chlpl 2 023
C16 ’
=(zm)"Pas + O(VPD.
At this point we still have
ki
0<d, = % _ %, (2.24)
and
A \Y
0> a0 = ?"5 —~ (%’)2 + (1 + 2ud)Ad + 2u|Vd]. (2.25)
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Combining (2.19), (2.24) and (2.25), we gain

A -
02A®—®ﬁ:¢ ¢KMT+mumd+mmmF—u+mmfwm2
(2.26)
A —_
> ¢¢¢ﬂ+pu—@+2mﬂﬁwm2—u+2mb%.
Where Ad > —kj on Q.
Next, we calculate the term #. Note that
I=20¢—¢ =n(Cpip))— ¢
=2[CY(ap)ipj — CYpipj] + 2CY pppjx + 4CY oup; + ACYpip (2.27)
=I+I1T+1II+1V.
For the term 1,
ij ij ij ‘Pld
I =2[CY(ap)ipj — CYpip;] = 2CY{[(aw); — (A )]pj Piwyj}
90, d (p, d (2.28)
=2C"{[w;; — (A ) lp; — piwij} = =2C7(a )ipj = O(IVpl).
cos 6
For the term 1V,
1V = CY yupip; = O(VpP). (2.29)
For the term 711, - .
111 =4CY ypup; = 401C" 1poix
=4p;C" 1p11 +4p1C” 1p15 + 4p1C" 5015 + 4p1C°" 5pss (2.30)
=111, + 11, + 1115 + 1114,
where

mﬁ@mlm—%ﬁﬁﬁ
=0(IVwl)pss + O(Vw[*),

C”) pss + O(p1)]

C16
1L + 1115 =4p,(C°' | + C" 5)p1s = 40, (C°' | + C" 5)(— —7Pss + O(Vpl))

=0(Vw)pss + O(VwP),

then
111 = O(|Vw|)pss + O(Vw)?). (2.31)
For the term /1,
11 =2C"0up 4 = 2C"  pppix + 2C°pups = 11, + 11, (2.32)
where

11, =2C"pypix = (=C" 1pi — /;i(T + 2ud)d)pik
|

=(—C11,1P1 —pi1(t + 2ud)d))py; + (_Cll,épl — pi(T + 2ud)ds)pis
:II“ + 1112,
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11}, =(—C”,1,01 = pi(7 + 2ud)d)pi;
16

C
=(=C" 1p1 —pi(T + 2,Ud)d1)((ﬁ

=" 0(Vwhpss + O(Vw),

)20ss + O(p1))

11> =(=C" sp1 = pi (1 + 2ud)ds)p1s
15

C
=(=C" sp1 —pi(T + 2,Ud)d6)(—ﬁp&s +O(IVpl)

= 0(Vwpss + O(Vw),
0=2
then
Il = )" 0(Vwhpss + O(Vwl?).
Where .
1L, =2C°pupsi = 2C " p1ipsr + 2C parpsi
=2C 161911,051 + 2C16P15,055 + zcmspcxlp&l + 2C66P§5
21121 + 1122 + 1123 + 1124,
16 2
11y =2C"pipst = 2[- Z U —ipas + OVpD] X [Z( Ppus + OQTD]
= (C11)3 Z C1*C(C" paa)(C Ppps) + Z O(IVplpss + O(VpP),
Iha =2 COupss == ) =amPa+ ), O1VpDpss.
0=2 0=2 0=2
C'e Cc'"¥
I3 =2C*paips: = 2 Z C*¥[- ~CiiPaa t O(IVpD] x [ ciiPest O(IVpD]
a,B=2
2 n N n
= e 2 €€ pa)(Cpy) + ), O ppss + 0P,

a,B=2 0=2

hence

1L =11 + 11y + 113 + 115,

2
(Cu)z

n

2
Z CC X CPpa) = iy ) € CPC aaX C )
=2

n

2 C16)2
R e T - i Z OV ppss + O,
6=2

11
0=2 ¢
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Thus
11 =II, + 112
C“ﬁ(C“’ 0a)(C o) — Cl”CIﬁ(Cm oa)(C¥pgp)
s5 2 2( 16)2 n
+2 Z Cpss — Z ol 05 + Z O(IVpl)pss + O(VpP).
6=2 6=2
And
2 C af o la 18 2 C la 1B Hla 18
80 =4 = ez O, CPC ) o) = o ), CUCP(C pu)(CPpy)
=2 =2
2(C)y? " (2.34)
+2 Z C¥p?, - Z =GP+ D, 01Vphpss + O(VpP)
5= 6=2
=II; + IL,.
For the term I1;,
2 C af 1 2 \ la 1B la 18
m = D CB(C paa)(C¥pgs) - T D CCH(Cpaa)(C P pge)
a,f=2 a,[=2

2 Q) a a
() Z(CUC P = ClCP)(C paa)(C P pgp)
a,B=2

2 n
Ty Z [(1 = d1)éap = dadp)(C'paa)(Cpgs)
a,B=2

>0.

The above formula is nonnegative, because the matrix ((1 — d%)éaﬂ — dydg)ep>2> 15 semi positive
definite, due to |[Vd|> = 1.
Next we set out to deal with the term I1,,

2(C16) n
I, =2 Z C%p3, Z Pt Z O(19pN)pss + OVpP)

=G Z(c“c“ (CP)p%s + Z O(Vplpss + O(VpI)

=2 Z Lodhodp s > 0(Vphpss + O(VpI)
0=2
=2 Z esys + Z O(IVplpss + O(VpP),
6=2 0=2
where es = #
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According to equation Aw — w, = f(f), we can obtain by Lemma 2.1 that Ap = O(1). Joint with
16
pi1 = (57)%pss + O(p1), we get

Z(l +( CM) Yoss = O(Vpl).

Therefore
n (Cll)Z + (C16)2
p2 = O(|Vpl) - Z (1T + (CpP
P

Substituting p,, into I1,, we can get

M, =2 )" espis + ), OUVpDpss + OVpl)
0=2 0=2
(Cll)l + (C16)2
—2e (Z

CTr TP +2 Z esys + Z O(IVpDpss + O(VpP).

0=3

Now let us consider the quadratic form in I1,, which is a quadratic form of p33, P44, - , Pn-

Let
(CII)Z + (C16)2
A=2e 2(2 it et +2Z€6/355—2€2(Z85p55) +2Ze5p55

Through observation, we know that

n

0<es<1, (2§5§n),265:n—2,

0=2

so at most one of e,,- -+ , e, 1s zero, it is obvious that 0 < Cy < g5 < C,6 = 3,--- ,n, the quadratic
form A is positive definite.

Next, we give a positive controllable lower bound for the eigenvalues of this quadratic form.

We can regard A as a 3n-5 variables function, and its definition domain is

n
= {(eZ’eSa"' 5 €py E3,° "¢ 98nap337”' ,pnn)|0 S €s S 1’26(5 = n_2a
0=2

O<CQS85SC],6:3a"'7nazp<256:1}'

It is easy to see that D is a compact set. The minimum value of A on D is denoted by A, then the
positive number A, is a general positive lower bound of the eigenvalue of the quadratic form, that is

A2 ) phy
0=3

Therefore, in light of ax® + bx > —%, if a > 0 we can obtain

~I

2T 2 Aoy pls+ | O(VpDpss + O(VpP) = ~kiIVpP. (2.35)

0=3 0=3
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Meanwhile, in consideration of ¢ = [Vp[>C"!

I k
AD — @, = p + (74 2ud)Ad + 2u — (T + 2ud)* > —El, — (74 2ud)ky — (7 + 2ud)* +2u.  (2.36)

First, select u to make

k
==+ T+ 12+ T+ Dko+ 1.
C

Then, select oo < o7y to make 2uo < 1, then we have a contradiction 0 > A® — ®, > 0, so |Vp| must
be bounded.
Namely,

[Vl < C(Q, n, uo, llellesgy)s Y(x,1) € Qp X [0, T7]. (2.37)

Since the bound is independent of 7", Proposition 2.4 is proved. By the uniform estimate of u,, we can

deduce the estimate of uniform bound of w,, Combining with Propositions 2.3 and 2.4, we then get the

uniform C** estimate for k € Z* and 0 < a < 1 by the Schauder theory. O

Proof of Lemma 2.2. We continue to prove Lemma 2.2. For n € Z*, denoted by w, = wlg, (o ,;» SUpPpose
A, = sup |w,| which is obtained at the point (x,,t,). For (x, s) € Q x [0, 1], Let gn(x,8) = wy(x, s +

Ox[0,n]
t, — 1), Then g,(x, s) suits
%—Agn:—f(s-;—t:_l) in Qx[0,1],
2a(x,0) = w,(x, 1, — 1) on Qx {0}, (2.38)
%ﬁ; = ‘iif) on dQ x[0,1].

Since we have obtained the uniform C! estimate of w,(x,) independent of ¢ € [0,n], g,(x, s) also
has the uniform estimate of gradient independent of n and s. Therefore, (for convenience, we set

gn(x,0) = wy(x,t, — 1) 2 a,(x)), {a,(x)} and its derivative sequence are uniformly bounded. Thus,
from the Arzela-Ascoli theorem, g,(x, 0) has convergent subsequences. Without losing generality, we
suppose that g,(x, 0) converges to a continuous function gy(x) defined on Q satisfying go(xo) = 0 and

sup |go(x)| < 1.
xeQ

From the relationship between g, and w,,, we can obtain the uniform C*® estimate of g, on Qx [0, 1].
So we choose a subsequence of g, converges in the sense of Ck* (ke Z and 0 < @ < 1) to g on
Q x [0, 1]. Clearly, we get

a—g—Ag:O in Qx][0,1],

0s _

g(x,0) = go(x) on Qx{0}, (2.39)
g

%—0 on 0Q x[0,1].

Because of % — Ag = 0, g obtains the maximum value on Q X {0} or 9Q X [0, 1], but Z—Z = 0 shows
that it can only be achieved at QX {0}, however g reaches the maximum at s = 1. Itis a contradiction by
the maximum principle and Hopf Lemma for the parabolic differential equations. Thus, we complete
the proof of Lemma 2.2. O
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Theorem 2.5. V T > 0, supposing that u is a smooth solution to (2.1), then we have the estimate,
e, Dlley + 1VUC, Dlle, + V24t Dlleg, < G, (2.40)

where C is a constant independent of t and T.
Proof. From the definition of v, v satisfies the following equation

ov

E —Av = —u,(xp, 1) in Qx(0,7),

v(x,0) = up(x) — up(x))  on Qx {0}, 2.41)
ov

% = (x) on 0Q x (0,T).

From Lemma 2.2 we have |[v| < Ay, the step similar to Propositions 2.3 and 2.4 deduces
||VV(', t)”c(ﬁ) <C.

Schauder theory then deduces
IV2v(, Dl < C.

Since v(x,1) = u(x,1) — u(xo, 1), we get
Vu(-, t)”(j(ﬁ) + ||V2M(', t)”C(ﬁ) <C.

Combining with Lemma 2.1, we finish the proof of Theorem 2.5. O
3. Long time behavior for the Fully Nonlinear equation

In this part, we consider

uy = F(u;;) in Qx[0,7),
u(x,0) = up(x) on Q x {0},
ou

% = p(x) on 0Q x[0,T),

3.1

where Q C R" is a smooth bounded domain, ¢(x), uy(x) € C oo(ﬁ), so that upg = ¢(x) on Q. Moreover,
we assume that F’ satisfies (F;)—(F}).

Lemma 3.1. Let Q C R" (n > 2) be a bounded domain with smooth boundary. Assuming that u(x,t)
is a smooth solution to (3.1), there is a constant Co = Co(ug) > 0 such that ¥(x,t) € Q X (0, o),

sl (x, 1) < Co.

Proof. Let F, f/ denote %lrzvzuF (Nand L = F ,ij 0, — 0,, take the derivative of ¢ on both sides of u, =
ij
F(V?u) , we have
Uy = Fi,juijt’
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then L(u?) = 2 Y, Fluguj+2F; wug;—2uuy > 2 Y, Flugu,; > 0, from the weak maximum principle,
i,j=1 i,j=1
we get
2 _ 2
sup |u|” = sup Joas| "
Qx(0.T) Qx{0}UIQX(0.T)

Since, (uf)ﬁ = 2uup = 2uup, = 0. Hopf lemma makes it impossible for the maximum to occur on
0Q x (0,T), then

2 2 NE
sup |u* = sup |u,* = sup |[F(V2uo)|".
Qx(0,T) Qx{0} Q

O

Let v(x,t) = u(x,t) — u(xo, t) where x, € Q. Similar to Section 2, we first give a time-independent
bound for [v| by a blow-up technique. Then from the C° estimate of v, we get the bound of |[v||c2.
Naturally, it follows the estimates of |Vu| and |V2u|. Finally, we get the convergence result according
to the method of [1].

Lemma 3.2. Let QQ C R" (n > 2) be a bounded domain with smooth boundary. If u(x,t) is a smooth
solution to (3.1), v(x, t) is defined as above, then there is a constant Ay > 0, independent of T , such that

IVl L @xio.1y) < Ao- (3.2)

Proof. Let A = ||V||coiaxqo.y) - Without loss of generality, we assume that A > 6 = 6(ug) > 0, (otherwise
the solution to (3.1) is a constant). Assume A is unbounded, that is, A — oo, as T — oo. Let
_v(x, 1)

w(x, 1) = 1

Obviously w satisfies w(xg,t) =0,t € [0,T), |W|Co(ﬁx[o,T)) =1, and

ow 1 2o X0, 1) :

w(x, 0) = (o(x) ;MO(XO)) on Qx (0}, (3.3)
ow 1

% = Z(p(x) on 0Qx|[0,T).

In order to prove the above estimate, we need the following propositions.

Proposition 3.3. If w € C**(Q x [0, T)) satisfies |w| < M for a normal number M and

% -~ %F(AVZW) = 1(1) in Qx[0,7),
(3.4)
w(x,0) = ) ;‘uO(xO)) = wp(x) on QX {0}.

ThenV Q' cc Q,

Sup |VW| < C(/L Mo, M1, M’ wo, diSt(Ql’ aQ)a |f|L°°([O,T)))*
Q’'x[0,T)
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Remark. One can refer to [17] for the proof of this proposition. Note that f = —W, M =1in
problem (3.3), we get

sup |Dw| < C(4, po, p1, dist(Q', 0Q), uy). (3.5)

Qx[0,T)
Proposition 34. If Q C R" (n > 2) is a bounded domain with smooth boundary. Assuming that
w e C3=2(§ X [0,7)) is a solution to (3.3), there exists a constant C = C(Q, n, uy, ¢, 4, 1o, 1) such that
foro <oy,
sup |Vw| < C. (3.6)
Q,x[0,T)

Proof. For 0 < T" < T, we will complete the proof on Q, X [0,7’] and show that the bound is
independent of 7”.

Let
® =log ¢ + d + pd?,

¢ =IVpl - (Zp,-d,-)z = Z(éij —didppip; = Zcijpipj,
i=1

ij=1 i,j=1

¢'d
cosf’

and(p’:@:g—;:

where 7, u are positive constants to be determined later, p = w —

n-1
2B, + 1—21 Biwi.
Assume @ gets the maximum value at (x, #p) on , X [0,7"].
Case 1. 1H = 0. we get
IVwI*(x0,0) < C(Q, 1, up).

Case 2. xy € 0Q,()Q. In this case, the estimate follows from interior gradient estimate in
Proposition 3.3.
Case 3. x( € 0Q. Similar to the process of Proposition 2.4, we can choose the appropriate 7 to guarantee
this case does not occur.
Case 4. xp € Q,, and 1y > 0.

Select a particular coordinate, so that p; = [Vp|, o, =0 (I = 2,3,--- ,n) and (p;;) (2<1i,j<n)is
diagonal. We assume that [Vw]| is large enough at this point so that |Vp|, |Vw| are equivalent.

Through a process similar to Proposition 2.4, we have

1< ~
C > C(oy, co, ol luoler)) > 0.
At the maximum point (xy, fy), we have

_ o)
¢

i

0= (Di + le' + 2,uddl = E + Td,' + 2/.ldd,,

thus it can be seen

i
— = —71d; - 2udd,,
¢

kl

(O
C¥pipr = —g(T +2ud)d; - Tpkpl-
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When i = 1, it follows

. 1
C'piy + Z C%'ps1 = _EC“,IPI - 2i(T +2ud)d,.
= L1

When § > 1, we obtain

1
C“Pla + pr&s = _Ecll,épl - %(T + 2ud)ds.
Thus,
cP C's (1 + 2ud)ds cY
P10 = =GP = SEmP1 T > P = TamPet O(|Vpl),
and
_CP colctt Colp\(t +2ud)d; CU p1(T + 2ud)d,
P11 —(@) Pss + —2(C11)2 P1 Xell - 2C11p1 - 2
CI(S
=(Gm)"Pss + O(1Vp)).

At the same time, at this point we have

kl
0< =& - 2P

¢ ¢
and p
0>®;= ?j — (1 + 2ud)*did; + (7 + 2ud)d;; + 2ud.d,.

Then,

y Flig;: —
OZFU(DU—(I)[: %

+ (1t + 2ud)Fd;; + [2u — (7 + 2ud)*1Fdd;.
First, we come to calculate F¥¢y; — ¢,,

F¥q — ¢, =2C7F¥pjup; — 2Cppi + 2CF¥pup s + AFCY ypup; + FCY upip;

=[+11+1I1+1V,
where - N _
I =2CYF piap; — 2C"p pie = 2CY[F" piy = pirlp;
ij ¢'d
=2CY[-F"( Jiloj = O(IVw)),
cosf
1V =F¥CY ypip; = O(IVwl),
11 =4FNCY 1pyp; = 4FYC" 1pupr = 40 FF'CY yo11 + 401 FF'CY 115
+ 40, FPCY 1 p1s + 4p F*C 1p5s = I + 111, + 1115 + 111,
and
C16 )
I1 =4p FFLCY ypry = 4p1 FCH A5 pas + OCp1)]

= O(IVw))pss + O(IVw[?),

HL+111; = 4p, FX'C 1p15 + 40, FFC" 1p15 = 4p (FF'C°' i + FRPCY Dpys
Clé
= 4p1(FF'C”  + Fkécll,k)(—ﬁpéa +O(IVpl))

= O(Vwhpss + O(IVwP),
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thus,

1T = O(Vwhpss + O(VWP).

For the second term

11 =2F"Clpypji = 2F"CVpypy1; + 2F"CPpyps = 11, + 11,
11, = 2F"CYpypy = FH(-C" 10, — g(T + 2ud)d)py
1

= FF'(-C" 1p1 — C"pi (1 + 2ud)d)p11 + F(=C" 1o — CVpi (1 + 2ud)dy)p1s

=11 + 115,
and
Iy = —=F*(C" 41 + C"p1(7 + 2ud)d)pn,
= —F*(C" o1 + Cpi (7 + 2ud)dk)(<g—f)2p65 + 0(p1)) = O(IVw)pss + O(Vw]),
1, = FP(=C" 1p; — C"pi (7 + 2ud)dy)pis
= FO(-C" yp1 - C''py(x + 2ud>dk)(—c—fp55 + O(IVpl)) = O(Vwl)pss + O(VwP),
therefore,

11y = O(IVwhpss + O(IVwP).

For I1,, we have

11, =2F"C?pyps = 2F"CYpiips + 2FX C* porpsi
=2F"Cp11ps + 2F*'CYpropsi + 2F ' C* poa1ps + 2F' C*paopis
21121 + 1122 + 1123 + 1124,

where

1Ly =2F"C"py1p5 = 2F"' Cp11015 + 2F°C"p1 1965

(€ chy, wots,  C00
=2F" [~ ci Poot O(IVpD] x [(E) pss + O(VpD] + 2F°C péé[(ﬁ) Paa + O(IVpl)]
2 - N 2 - N
=~z F" D €V C Y poapps + s ) (CVFPCY puopys
( ) a,B=2 ( ) a,B=2
+ > 0(1VpDpss + O1VpP),
o=
1y =2F*'C"p1ops = 2F*' Cp1opis + 2F°Cp1apss
Al Cla C16 Sls Cla
=2F*'C [_Epaa + 0(|VP|)][—EP&5 +O0(VpD] + 2F*°C p&é[_ﬁp(m +O0(IVpD]
2 C laHla 1852 2 C af ~la 16
:(C11)2 Z F°C (C )szpﬂﬁ - E Z F*CC PaaPpp
a,f=2 a,B=2
+ ) 0(VpDpss + O(pP),
5=
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113 =2F"C®paipsr = 2F" C*pi1ap1s + 2F° C* poipss

la 16 Cla
=2F"C*[- @pm +O(IVphIl- C“ ciPo + OUVpD] + 2F°Cpss(= = poa + O(VPD)
2F1T & wBola la
~(Cy Z CPCHCY puapys - cn Z FYCPCY poappp
=2 a,5=2

+ > 0(9pDpss + O(VpP),
0=2

1124 :2Falca6pa/ap51 — 2Fa1 Ca/apaapé] + 2Fa'(5ca(5paap66
Clzi
=2F*'C* aa[_ﬁp(w + O(VpD] + 2F*°C*paapss

2 n n n
== 5 Y FCPCYpuupps +2 Y FPCPpoapps + > OUVpDpss,
a,8=2 a,B=2 5=2

then,
2 C (o7 a C (07 [e7
el Z CPFCYpoopps +2 Z FPC%poapps
,p=2 a,5=2

2F11 n 2 n

. of ~la 1B _ = 18 aB ~la
+ oy D B C Py ol > FBCPC s

a =2 ap=2

—2 Y @ @ 2 C 7 a
+ (C“)2 Z Flec! (Clﬂ)mep/g/g— E Z FeBC! Clﬁpmpﬁﬁ
B= a,B=2

2

N (C1)3

F! Z(C“) (C"*Y pasts + —rrs Z FCYC¥ poapps

a,f=2

(C11)2
+ ), 0Vphpss + O(VpP).
0=2

thus, we have

Z F'"C¥CYpoupps +2 ) FPCPpoapps
a,f=2 =2

2F11 n )
- af Hla 16 _

+ (C11y2 Q;ZC CC P paapps (C1)?
—4 Y arla 2 " Q a

+ 1y Z Flect (Clﬁ)zpmypﬂﬁ_ E Z Fec! Clﬂpmpﬂﬂ

a,f=2 a,8=2

F'' Y (€ Y(CP) paapps
=2

+ > 0(Vphpss + O1pP).

0=2

We mainly deal with the quadratic term in /1,
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Il = C“ Z chaﬂclﬂ PaaPpB +2 Z F ﬂC PaaPpB

apB=2 =2
2F" O s e 2 Sy
+ C11y2 Z C BC] Clﬁpm’pﬁﬁ - cl 3F“ Z(Cl )2(Clﬁ)2paap,3ﬁ
€ & (C') &
4 Y acla 2 : o a
+ (C11)y? Z Flec! (Clﬁ)mepﬁ;g el Z FPc! Clﬁpmpﬁﬁ.
,p=2 a,B=2

Simplify the above formula, we get

_ n 2[Fa,6'(cll)2 + Fllclaclﬁ _ Flaclﬂcll _ Flﬁclacl]][c]lcaﬁ _ Claclﬂ]
= Z (C11)3 Paalpss

=2

where C!'C% — C'*C" = (1 — d})Sup — dodp.
To deal with the above quadratic form, let us make the following preparations:
Definition 3.5. Suppose A, B are two m-order symmetric matrices, its Hadamard product is defined

as A o B = (ajj - bjj)mxm , that is, the element product at the corresponding position is defined as the
element at the corresponding position of the Hadamard product matrix.

Theorem 3.6. If A and B are two m order positive semi-definite matrices, A o B is also a m order
positive semi-definite matrix; If A and B are two m order positive definite matrices, A o B is also a m
order positive definite matrix .

Corollary 3.7. If A > AE, B> 0,then Ao B> AE o B.

With the above knowledge about matrices, let’s look at the two matrices contained in IT, one is

A= Z (FQ’B(C“)Z + Fllclaclﬁ _ Flaclﬂcll _ Flﬁcl(lcll),
a,f=2
and the other is .
B= ) (1 = d)us — dudp).
a,f=2

Because |Vd|* = 1, it’s easy to see that matrix B is positive semi-definite.

Let’s consider symmetric matrix A.

Remark that F'/ is positive definite and by the assumption we know that AE < F'/ < AE, for any
X = (x2,x3,---, x,), we have

Z(Faﬁ(cll)z + Fllcl(l/clﬁ _ Flaclﬂcll _ Flﬁclafcll)xaxﬁ
a,B=2

= (C'Y? Z Fx,x5+ F“(Z Cl7x,)* - C“(Zn: Flaxa)(zn: C'x,)

a,B=2
o . Fla 18
> (C') [Z FPx, x5 - F“(Z Flox, ] = (C"') Z(F“f’ ).
=2 ,p=2
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We want to show that the matrix (F®® — L l;jﬁlﬂ)2<w,ﬁsn i1s positive definite and its eigenvalues

are bounded from below by A. In fact, since AE < FY < AE, we have that the
matrix (FY) — diag{0,A4,A4,---,1} is positive semi-definite. = However, according to a series
of elementary transformations we can deduce that (F) — diag{0,4,A,---,A} is congruent with

Fl1 0
( I R =
are bounded from below by A.

So, (F*(C'")?* + F!'CleC'¥ — FleCC! — FIAC'*C) > ((C')?A8,p) and then by the corollary we
have that

la . .. . . .
). Therefore, (F% — FF—ﬁlﬁ)QSaﬁs,, is positive definite and its eigenvalues

M2 Z((l A6 — dod)SopPocss
=2

(1 _d2 (1 2 N
_2/1 Z Cll a/a/ 2/1 Z eO/pa/(l
Accordlng to the first equation in (3.3), we can get a;;p;; = O(1), where 10;; < a;; < Ad;;. Reuse
P = (Cu) pss + O(p1), there is

16

C
Z(Cl&s + all(cll) a15C11 pss = O(IVpl).

Write " s
C C
Ys = dss T all(ﬁ)z - 2015@
Thus )
A 1 2
O<—S’}/§SA(1+(:)2+:).
A c C
Therefore ;
Y
pn = O(|Vp|) - Z 2 pss.
5=3 V2
Then

IT >27 Z eapl, = 24[ex03, + Z P’y

a=2 a=3
=2A[ex( —pPss)” + €] + O(IVp|)pss + O(IVpl*).

Consider the quadratic form in brackets in the above formula, which is about the quadratic form of

P335P445 " 5 Pnns
n n
Ys 2 2
0= ez(z —pss5)” + Z €5Ps6s-
53 72 6=3
Since the coefficients e, e3, - - - , e, satisfy

0<e;<1,8=2,3--,n, Ze(;:n—Z,
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so, at most one of e,, - - - , e, 1s zero, and considering the condition about s, so this quadratic form is
positive definite.

Next, we give a positive controllable lower bound for the eigenvalues of this quadratic form.

We can regard O as a 3n-4 variables function, and its definition domain is

n

D = {(62563"” 5€ns Y25 s VYns P33, ’pm’l)|0 < €s < 1’266 = n_z’
6=2

A2 1 2 -
0<—<ys <Al +(=)*+2), ) pi =1}
INERL = Z %

It is easy to see that D is a compact set, so, the minimum value of ® on D is written as Ay, then the
positive mumber A, is a general positive lower bound of the eigenvalue of the quadratic form , that is

0= 62(2 72/055)2 + Z esPss = Ao ZP?&
53 5=3 6=3

. 2 . .
Therefore, on the basis of ax* + bx > —f—a, if a > 0 we can obtain

1122000 ) ps + ) OUphpss + OYpP’) =~ [Vl

0=3 0=3

In consideration of ¢ = |Vp|*C'", and supposing d;; > —k,6;; we have

05Fid,; 0, = P04 2ud)Fiidy; + 2 2udy)Fid;d

>Fid;; — @, = 5 + (7 + 2ud)FVd;j + (2 — (7 + 2ud)"|FVd,d,;
k

2—C—lll—(T+2,ud)k2nA—(T+2,ud)2A+2,u/l.

First, select u to make
k
2ud = = + At + 1> + (t + DkanA + 1.
C
Then, select o < o to make 2uo < 1, hence we have a contradiction 0 > F/® — @, > 0, so then
|Vp| must be bounded.

Then
|DW|2(X, t) < C(/l’ Hos M1, Ug, ||<)0||C3(§)’ n, Q)’ V(.x, t) € QO’ X [0’ T/] (37)

Since the bound is independent of 7", the proof of Proposition 3.4 is completed. O
Proposition 3.8. If w € C**(Q X [0, T)) satisfies ||wllcixqo.ry < M1 ( My > 0) and

6W 1 2 _ .
o~ Al@AVw = fO in Qx[0,7), (3.8)

w(x,0) = wo(x) in Q.
Then ¥ Q' cc Q,

sup |V2w| < CQA, o, w1, My, wo, dist(QY, 0Q), ||fllz=o.y).
Q'x[0,T)
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Remark. One can refer to [17] for the proof of this proposition.

Proposition 3.9. If Q C R" (n > 2) is a bounded domain with smooth boundary. Assuming that
w € C4’2(ﬁ x [0,T)) is a solution to (3.3), there is a constant C = C(Q, n, uy, ¢, A, to, 141) , such that
foro < oy,
sup V2w < C(1+ sup |wggl). (3.9)
Q,x[0.T) 8Qx[0.T)
Proof. For 0 < T’ < T, we will give the bound of [V>w| on Q, x [0, 7"] independent of 7".
Let

H(x,1,€) = " (wee + Bwp),

where @, B (> 0) to be determined later, and £ € "' is a fixed unit vector, we can assume that Weel > 1,
otherwise, there is nothing to do. We first set the following differential inequality.

Z F'H;;—H, >0 mod VH on Q,x(0,T]. (3.10)
ij=1
In fact,
0= H,' :ad,-H + €ad(W§§i + B(W?),),
H, =¢"/(wge + BWY))),
H;; =(ad;; — o>did))H + € (wegij + BWp)i)).
Therefore
D FUH; - H,
ij=1
= Z Fij(adij - deidj)H + €ad(Z FijW&:ij - Wfé:t) + Beltd(z Fij(WéZ:)ij - (W?)Z)
ij=1 ij=1 ij=1
=I+1I+11I,
where

1] <t (@C? + @)e™|weel + Cola, py, n, Q),
11 >0,

111 :2B€ad Z Fingl_ng + 2B€adW§(Z FijWé:ij - Wé:t)

ij=1 ij=1

n
>2Be"2 ) weil.
i=1

n . n
From Cauchy inequality, we have |[wgl* = | 3 waé'? < 3 W;i’ and then according to the hypothesis
’ i=1 i=1

lweel > 1, we get
HIT > 2Be™ Awel.

Then if we take B = £ (11(@C? + @?) + Cp), s0 (3.10) is proved.
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Suppose that the maximum point of H is (xo, ty, &), according to the maximum principle, it must
occur on Q, X {0} x "1, (0Q, N Q)X [0, T']xS" ! or 9Q x [0, T'] x S"~!. Let’s discuss it one by one
in the following situations.

Case 1. (xo, t0, &) € Qy X {0} x S"~1. Then

Wfofo(-x07 tO) < maX{H(X(), Oa é‘:())’ O} < C(”O’ Q)

Case 2. (xo, 1y, &) € (0Q, (N Q) %[0, T’]1xS"!. In this case, it is transformed into the interior estimate,
and Proposition 3.8 guarantees the conclusion.
Case 3. (xo, to, &) € 0Q x [0, T’] x S"~!. Under this condition, we have

0> Hﬁ = a’ﬁn(Wfogo + BW?O) + Weogop T 2BW§0W§0/3. 3.11)

First,we suppose that & - v = 0.
Let’s write w; jTi/.lj with w,,, take the tangential derivatives on both sides of wg = ¢' = %, and

we have o .
Z Z Cpq(wkﬁk)pfg — Z Z Cpq(()D/)pfg,

p.g=1 k=1 p=1 ¢=1
Pq — — Pyl = — i
where C?1 =6, — vV = 6,, — d,d, in Q. Thus

Wep = (@), = Z Wil 4£5.
k=1

It can be seen that there is a constant A = A(e, C. , ||Vw||C0@X[0 T») such that

Iweosl < A (3.12)
Taking double tangential derivative on both sides of wz = ¢’ = £, we get
DT wBYEE = Y CIICTY ) gk,

i,jk.p,q=1 L,jpq=1

thus . .
Weap = ). CHCPGEEN+ e = > ENEU WY+ wigBh + wiBh,)
Lj.pq=1 k.p.q=1
= Y ECtE B,

i,p,q.k=1

Therefore,

~ —
|W$o§oﬁ + szfowfold < 2C|V Wl + C(“‘P”CZ(ﬁ)a C, ”lelco(ﬁx[oj))’ B)

Because w; is bounded, operator F is uniformly elliptic, by classical theory of uniform elliptic
differential equations, V (x, 1) € Q, X [0, 7], we have

IV2w] < Co(A, i1, uo)(1 + sup wi).

}’ES n—1
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Without loss of generality, we assume that sup1 wy, = wg > 0.
yesn-

—_ n—1 —_ n—1
Choose a proper coordinate at x : el ,ent, B.suchthat . = 3 aie, + a,fB,let {7 = Y ae,
i=1 =1
H
then = {7 + a, 8, we then have by (3.12)

IV2w| < Co(1 +wgy)
< Co(l + Werer + 2a,,wm; + a,leﬁB)
< Ci(1 +2A + H(xy, to, o) + lwggl)

2
< Ci(1+ 28 + W, + BV 0 ) + WasD:

Then,
Weogop + 2BWeWepl < 2C15(1 + Wepeo + Iwpgl) + C(||<P||C2@), E, B, ”VW”cO(ﬁx[o,T)))'
Substitute the above inequality into (3.11), take @ = 2C16 + 1, and then we deduce

Wfofo(x()’ t()) < C(l + sup |wﬁﬁ|)’
0Qx[0,T)

where C = C(/L M1, U, ”‘)DHCZ(ﬁ)a 57 Ba ”VW”CO(ﬁX[O,T)))'
n—1

—_ n—1
If & - v # 0, similar to the above discussion process, let & = ), bie +b, B.and &) = 3 bie., then
i= i=1

-1
T - l
é‘:o = é:o + bnﬁ )
then we obtain )
Weoty =WeTer + 2baWerp + Dywig
<C( + |Wﬂﬁ|).

Combined with all the above, we come to the conclusion that

sup V2w < C(1+ sup |wgl),
Q,x[0,T7] 0Qx[0,T)

where C = C(4, uy, Q, n, @, uy, ”VWHCO(ﬁx[o,T))) which is independent of 7", so we finish the proof of
Proposition 3.9. O

Proposition 3.10. If Q c R" (n > 2) is a bounded domain with smooth boundary. Assume that

w e C4’2(5X [0, 7)) is a solution to (3.3), Then there is a constant C = C(Q, n, ug, ¢, 4, o, i1 ), such that

sup |Wﬂ,3| <C. (313)
8QX[0,T)
Proof. For any 0 < T” < T, we use the barrier function to give |wgg| a bound independent of 7’ on
0Q x [0,T’], and then take a limit.

Let
M, = sup IV2w).
Qx[0,T)

AIMS Mathematics Volume 9, Issue 2, 2824-2853.
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As before, we think about a function G(x, 1) = 3, w;8' — % defined on Q, X [0, T’], and we have

i=1
G| < CUIVWlico@xio.ry- tos llgllco@)) == 6
Suppose the barrier function is
H(x,t) = 4CK(d - Kd*) + G,

where i
K>—,
20’1
is a positive number to be determined. Clearly,
H=0 onoQx[0,T].

Notice that if Ko = 5, we get

1
bR

H>0 on (0Q,NQ)x[0,T].

On Q. X {0}, note that G(x, 0) is a function related only to uy(x) and we can suppose that

K>C+

—_ )

J max |[AG(x, 0)|
=~ Q
4C

where C is from (1.6).
Now Let’s compute AH(x, 0) on Q, X {0}. Combined with Ko = %, we get
AH(x,0) :45K(Ad —2KdAd - 2K) + AG
<4CK(C - 2K) + AG
<-4CK*+ AG <0,
From the fact H(x,0) > 0 on 0Q, derived from (3.15) and (3.16), we derive that
H>0 on Q,x{0}.

Now we start to think about the function H(x, ) on Q, x (0, T].
Set F'/ = 2L|,_s52,,F(r), thus on Q, x (0, 7],
ij

Zn: FiG, -G, = Zn: Fiiw " - Zn: Wi+ Z”: F(wifB + wiefBF) = Zn: %F Yij
i=1

i,j=1 i,jk=1 i, k=1 ij=1
n n 1
= > Flwats +wiBd) - > 2 Flgy
J JKIFi A Ly
i,jk=1 i,j=1
consequently,

| Y FliG,; - G < Caur, Q. n, o, liglle@)I1 + Mol

ij=1

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Hence, on Q, x (0,7T’]

i,j=1 ij=1 bj=1
<4CK(u;C — 2K 1) + Cy(1 + M)
< —4CAK* + Co(1 + My) <0,

ks HtC, [CU+M) (3.19)
A 42C

Combined with (3.14), (3.17) and (3.19), let

1 ¢ [c,a+m) max [AG(, O)
K= T o P oS e 2 S BT | (3.20)
20 1 41C 4C

o= —. (3.21)

if we take

and

then we get
Hz;>0 on 0Qx[0,T'].

On the other side, we obtain
Hg =4CKp, + Gy

- 1
=4CKB, + (wyB'B + w8 - Z‘Plﬁl)-

Therefore, from Proposition 3.9, V (x,t) € Q, X [0, T’], we gain

|WBB| < C\/l + M, < Cﬂl +|ngﬁ|,

therefore,
|W,3,5'| <C.

then the proof of Proposition 3.10 is completed. O

Proof of Lemma 3.2. We continue to prove Lemma 3.2. It is almost similar to the proof process in the
last part of Lemma 2.2, From conditions (F), (F;) and (F4), we can deduce the following uniformly
parabolic differential equation

Z—g - F.(V’g) =0 in Qx][0,1],

S

g(x,0) = go(x) on Qx {0}, (3.22)
3—2:0 on 0Qx|[0,1),
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where go(x) is a continuous function defined on Q and lgo(x)] < 1.
It can be inferred from F,(0) = O that (3.22) can also be expressed as

g~ ("
6_§_Zf Fi(tVig)dt-gj=0 in Qx[O0,1],
0

ij=1

g(x,0) = go(x) on Qx {0},
og
%—0 on 0Q x [0, 1).

(3.23)

H_owever, similar to the proof of Lemma 2.2, for s € [0, 1], we have g(x(,s) = 0 and for some
x € Q, |g(x, 1)] = 1. This also runs counter to the maximum principle and Hopf Lemma of parabolic

differential equations. Therefore, we receive (3.2) and finish the proof of Lemma 3.2.

Theorem 3.11. For any T > 0, if u is a smooth solution to (3.1), thus we get the estimate,
i, Dll e, + 1VuC, Dl + IV Dl < C

where C is a constant independent of t and T.

Proof. The equation for v is

% — F(A*) = —u,(x, 1) in Q X (0, c0),
v(x, 0) = up(x) — up(xo) on Q x {0},
Z_;:"D on 9Q x (0, o).

From Lemma 3.2 we gain |v| < Ay, A process similar to Propositions 3.3 and 3.4 deduces
||VV(" t)”c(ﬁ) <C

Schauder theory derives
IV2v(, Dl < C.

Since v(x,1) = u(x,t) — u(xp,t), combining with Lemma 3.1, we conclude that

s Dll ey + 176G, Dl + IV, Dl < C.

In this way, we have completed the proof of Theorem 3.11.

4. Conclusions

O

(3.24)

(3.25)

Based on the conclusion of the above theorem, we have completed the proof of Theorem 1.3. On
this basis, according to the Theorem 1.2, we ensure the validity of Theorem 1.1, thus obtaining the

convergence conclusion of the equation solution discussed in this paper.
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