Research article

Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method

  • Received: 27 February 2023 Revised: 24 March 2023 Accepted: 23 April 2023 Published: 09 May 2023
  • MSC : 35A24, 35B35, 35Q51, 35Q92, 65N06, 65N40, 65N45, 65N50

  • This article presents the Parabolic-Monge-Ampere (PMA) method for numerical solutions of two-dimensional fourth-order parabolic thin film equations with constant flux boundary conditions. We track the PMA technique, which employs special functions to acclimate and force the mesh moving associated with the physical PDE representing the thin liquid film equation. The accuracy and convergence of the PMA approach are investigated numerically using a one two-dimensional problem. Comparing the results of this method to the uniform mesh finite difference scheme, the computing effort is reduced.

    Citation: Abdulghani R. Alharbi. Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method[J]. AIMS Mathematics, 2023, 8(7): 16463-16478. doi: 10.3934/math.2023841

    Related Papers:

  • This article presents the Parabolic-Monge-Ampere (PMA) method for numerical solutions of two-dimensional fourth-order parabolic thin film equations with constant flux boundary conditions. We track the PMA technique, which employs special functions to acclimate and force the mesh moving associated with the physical PDE representing the thin liquid film equation. The accuracy and convergence of the PMA approach are investigated numerically using a one two-dimensional problem. Comparing the results of this method to the uniform mesh finite difference scheme, the computing effort is reduced.



    加载中


    [1] T. Myers, Surface tension driven thin film flows, Mech. Thin Film Coat., 1996,259–268. https://doi.org/10.1142/978981450391400_23 doi: 10.1142/978981450391400_23
    [2] T. Myers, Thin films with high surface tension, SIAM Rev., 40 (1998), 441–462. https://doi.org/10.1137/S003614459529284X doi: 10.1137/S003614459529284X
    [3] R. Griffiths, The dynamics of lava flows, Annu. Rev. Fluid Mech., 32 (2000), 477–518. https://doi.org/10.1146/annurev.fluid.32.1.477 doi: 10.1146/annurev.fluid.32.1.477
    [4] J. Grotberg, Respiratory fluid mechanics and transport processes, Annu. Rev. Biomed. Eng., 3 (2001), 421–457. https://doi.org/10.1146/annurev.bioeng.3.1.421 doi: 10.1146/annurev.bioeng.3.1.421
    [5] R. Braun, Dynamics of the tear film, Annu. Rev. Fluid Mech., 44 (2012), 267–297. https://doi.org/10.1146/annurev-fluid-120710-101042 doi: 10.1146/annurev-fluid-120710-101042
    [6] R. Craster, O. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81 (2009), 1131–1198. https://link.aps.org/doi/10.1103/RevModPhys.81.1131 doi: 10.1103/RevModPhys.81.1131
    [7] A. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc., 45 (1998), 689–697.
    [8] A. Bertozzi, M. Brenner, Linear stability and transient growth in driven contact lines, Phys. Fluids, 9 (1997), 530–539. https://doi.org/10.1063/1.869217 doi: 10.1063/1.869217
    [9] J. Goddard, S. Naire, The spreading and stability of a surfactant-laden drop on an inclined prewetted substrate, J. Fluid Mech., 772 (2015), 535–568. https://doi.org/10.1017/jfm.2015.212 doi: 10.1017/jfm.2015.212
    [10] L. Kondic, Instabilities in gravity driven flow of thin fluid films, SIAM Rev., 45 (2003), 95–115. https://doi.org/10.1137/S003614450240135 doi: 10.1137/S003614450240135
    [11] S. Troian, E. Herbolzheimer, S. Safran, Model for the fingering instability of the spreading surfactant drops, Phys. Rev. Lett., 65 (1990), 333–336. https://link.aps.org/doi/10.1103/PhysRevLett.65.333 doi: 10.1103/PhysRevLett.65.333
    [12] F. B. Carro, Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, Free Bound. Probl. Theory Appl., 323 (1995), 40–56.
    [13] L. Kondic, J. Diez, Pattern formation in the flow of thin films down an incline: Constant flux configuration, Phys. Fluids, 13 (2001), 3168–3184. https://doi.org/10.1063/1.1409965 doi: 10.1063/1.1409965
    [14] J. Diez, L. Kondic, Computing three-dimensional thin film flows including contact lines, J. Comput. Phys., 183 (2002), 274–306. https://doi.org/10.1006/jcph.2002.7197 doi: 10.1006/jcph.2002.7197
    [15] M. Warner, R. Craster, O. Matar, Fingering phenomena created by a soluble surfactant deposition on a thin liquid film, Phys. Fluids, 16 (2004), 2933–2951. https://doi.org/10.1063/1.1763408 doi: 10.1063/1.1763408
    [16] B. Edmonstone, O. Matar, R. Craster, Flow of surfactant-laden thin films down an inclined plane, J. Eng. Math., 50 (2004), 141–156. https://doi.org/10.1007/s10665-004-3689-6 doi: 10.1007/s10665-004-3689-6
    [17] B. Edmonstone, R. Craster, O. Matar, Surfactant-induced fingering phenomena beyond the critical micelle concentration, J. Fluid Mech., 564 (2006), 105–138. https://doi.org/10.1017/S0022112006001352 doi: 10.1017/S0022112006001352
    [18] R. Levy, M. Shearer, The motion of a thin liquid film driven by surfactant and gravity, SIAM J. Appl. Math., 66 (2006), 1588–1609. https://doi.org/10.1137/050637030 doi: 10.1137/050637030
    [19] R. Levy, M. Shearer, T. Witelski, Gravity-driven thin liquid films with insoluble surfactant: smooth traveling waves, Eur. J. Appl. Math., 18 (2007), 679–708. https://doi:10.1017/S0956792507007218 doi: 10.1017/S0956792507007218
    [20] A. Mavromoustaki, O. Matar, R. Craster, Dynamics of a climbing surfactant-laden film Ⅱ: Stability, J. Colloid Interf. Sci., 371 (2012), 121–135. https://doi.org/10.1016/j.jcis.2011.11.033 doi: 10.1016/j.jcis.2011.11.033
    [21] J. Barrett, J. Blowey, H. Garcke, Finite element approximation of a fourth order degenerate parabolic equation, Numer. Math., 80 (1998), 525–556. https://doi.org/10.1007/s002110050377 doi: 10.1007/s002110050377
    [22] G. Grun, M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87 (2000), 113–152. https://doi.org/10.1007/s002110000197 doi: 10.1007/s002110000197
    [23] A. Heryudono, R. Braun, T. Driscoll, K. Maki, L. Cook, P. King-Smith, Single-equation models for the tear film in a blink cycle: realistic lid motion, Math. Med. Biol., 4 (2007), 347–377. https://doi.org/10.1093/imammb/dqm004 doi: 10.1093/imammb/dqm004
    [24] M. Warner, R. Craster, O. Matar, Fingering phenomena associated with insoluble surfactant spreading on thin liquid films, J. Fluid Mech., 510 (2004), 169–200. https://doi.org/10.1017/S0022112004009437 doi: 10.1017/S0022112004009437
    [25] P. Keast, P. Muir, Algorithm 688: EPDCOL: A more efficient PDECOL code, ACM T. Math. Software, 17 (1991), 153–166. https://doi.org/10.1145/108556.108558 doi: 10.1145/108556.108558
    [26] J. Verwer, J. Blom, J. Sanz-Serna, An adaptive moving grid method for one-dimensional systems of partial differential equations, J. Comput. Phys., 82 (1989), 454–486. https://doi.org/10.1016/0021-9991(89)90058-2 doi: 10.1016/0021-9991(89)90058-2
    [27] R. Furzeland, J. Verwer, P. Zegeling, A numerical study of three moving grid methods for one-dimensional partial differential equations which are based on the method of lines, J. Comput. Phys., 89 (1990), 349–388. https://doi.org/10.1016/0021-9991(90)90148-T doi: 10.1016/0021-9991(90)90148-T
    [28] J. Blom, P. Zegeling, Algorithm 731: A moving-grid interface for systems of one-dimensional partial differential equations, ACM T. Math. Software, 20 (1994), 194–214. https://doi.org/10.1145/178365.178391 doi: 10.1145/178365.178391
    [29] P. Sun, R. Russell, J. Xu, A new adaptive local mesh refinement algorithm and its application on fourth order thin film flow problem, J. Comput. Phys., 224 (2007), 1021–1048. https://doi.org/10.1016/j.jcp.2006.11.005 doi: 10.1016/j.jcp.2006.11.005
    [30] Y. Li, D. Jeong, J. Kim, Adaptive mesh refinement for simulation of thin film flows, Meccanica, 49 (2013), 239–252. https://doi.org/10.1007/s11012-013-9788-6 doi: 10.1007/s11012-013-9788-6
    [31] Y. Lee, H. Thompson, P. Gaskell, An efficient adaptive multigrid algorithm for predicting thin film flow on surfaces containing localised topographic features, Comput. Fluids, 37 (2007), 838–855. https://doi.org/10.1016/j.compfluid.2006.08.006 doi: 10.1016/j.compfluid.2006.08.006
    [32] W. Huang, R. Russell, Adaptive moving mesh methods, Berlin: Springer, 2011. https://doi.org/10.1007/978-1-4419-7916-2
    [33] C. Budd, W. Huang, R. Russell, Adaptivity with moving grids, Acta Numer., 18 (2009), 111–241. https://doi:10.1017/S0962492906400015 doi: 10.1017/S0962492906400015
    [34] E. Walsh, Moving mesh methods for problems in meteorology, Ph.D. thesis, University of Bath, 2010.
    [35] B. Edmonstone, O. Matar, and R. Craster. Surfactant-induced fingering phenomena in thin film flow down an inclined plane, Phys. D Nonlinear Phenom., 209 (2005), 62–79. https://doi.org/10.1016/j.physd.2005.06.014 doi: 10.1016/j.physd.2005.06.014
    [36] L. Kondic, Instabilities in gravity driven flow of thin fliud films, SIAM Rev., 45 (2003), 95–115.
    [37] P. Brown, C. Hindmarsh, R. Petzold, Using Krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15 (1994), 1467–1488. https://doi.org/10.1137/0915088 doi: 10.1137/0915088
    [38] C. Budd, J. Williams, Moving mesh generation using the parabolic Monge-Ampere equation, SIAM J. Sci. Comput., 31 (2009), 3438–3465. https://doi.org/10.1137/080716773 doi: 10.1137/080716773
    [39] C. Budd, M. Cullen, E. Walsh, Monge-Ampere based moving mesh methods for numerical weather prediction, with applications to the Eady problem, J. Comput. Phys., 236 (2013), 247–270. https://doi.org/10.1016/j.jcp.2012.11.014 doi: 10.1016/j.jcp.2012.11.014
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1203) PDF downloads(79) Cited by(7)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog