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Abstract: This article presents the Parabolic-Monge-Ampere (PMA) method for numerical solutions
of two-dimensional fourth-order parabolic thin film equations with constant flux boundary conditions.
We track the PMA technique, which employs special functions to acclimate and force the mesh
moving associated with the physical PDE representing the thin liquid film equation. The accuracy and
convergence of the PMA approach are investigated numerically using a one two-dimensional problem.
Comparing the results of this method to the uniform mesh finite difference scheme, the computing
effort is reduced.
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1. Introduction

Thin-film flows caused by outside forces, like surface tension or gravity gradients, are used in
business [1, 2], geophysics, the environment [3, 4], and biology [4, 5]. Finite-time singularities that
cause instability in fingers and film breakage, as well as wave propagation and regression, are some of
the fascinating dynamics of thin-film liquid flows [6]. When both physical and mathematical factors
are taken into account simultaneously, a certain class of thin-film flow issues, such as moving waves
with fast oscillations and the effects of surface tension, become very important [7]. In these situations,
the apparent changes usually happen in areas with very small scales, like surface tension, especially
near the connection lines, where the free surface of the film has significant internal changes in how it
curves. The effect diminishes and becomes more insignificant the farther the interior layers are from
the surface tension. It is essential to keep in mind that these effects and how they change show up as
shaky spatial transversal fingers in the inner layers [8–11]. Thus, it is crucial to research and appreciate
the root of finger instability. Because the answer to these problems changes over time, it is best to use a
moving mesh to find the numerical answer. Because of this, it has more precise grids in some areas and
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more dense grids in others, creating many variations in space. Often, an even grid with equal steps is
employed. But this kind of mesh is not good enough because the size of the diffusion flows gets much
bigger and it takes a long time for the fingers of instability to show up. Using the Parabolic-Monge-
Ampere (PMA) method, the fourth-order parabolic thin film equations are numerically solved in two
dimensions with constant flux boundary conditions. Instead of a mesh solution with the same step size,
these inner layers will be accurately resolved by computers. An extended lubrication approximation
or wavelength [6] is usually used to get the given equations. Surface tension changes the boundary
conditions and controlling variables of thin-film liquid flows into a non-linear PDE that describes how
the free surface of the film changes [12]. For example, a parabolic PDE, usually second-order, could
be used to describe the surfactant concentration. For thin film liquid flow equations on a uniform or
non-uniform grids, the finite difference method in two-dimensional PDEs has been applied in various
numerical investigations [9–11, 13–20]. Finite element and spectral methods have both been used to
investigate numerical solutions [21–23].

Many numerical analyses with an adaptable mesh have shown varying outcomes. By applying
open-source solvers, Warner et al. [15, 24] are able to solve PDEs based on adaptive mesh techniques,
such as PDECOL [25], and TOMS731 [26–28]. Sun et al. [29] use the h-adaptive method to solve a
two-dimensional flow problem caused by gravity. Li et al. [30] solved a two-dimensional flow equation
that was driven by gravity by combining an r-adaptive moving mesh technique with a fully discrete and
nonlinear multi-grid scheme. They used an h-adaptive based on a finite-difference approach. All of
the above numerical techniques were able to find the traveling wave and the fingering instabilities and
fix them because they used fewer mesh points and took less time to calculate than uniform solutions.
The proposed problem is solved numerically over a plane using a complete approximation repository
multi-grid technique with running automated grid adaptivity [31].

We use the Parabolic-Monge-Ampere (PMA) method [32–34], which uses a monitor function with a
smoothing monitor function and a two-dimensional PMA equation to adjust and control the movement
of the mesh connected to the physical PDE that represents a two-dimensional fourth-order parabolic
thin film problem with constant flux boundary conditions.

1.1. Fourth-order 2D parabolic thin films problem for gravity-driven downward diffusion on an
inclined, pre-wetted plane

The two-dimensional fourth-order parabolic thin film problem [16, 35] is given by

Ut + ∇ ·

[
1
3
βU3
∇∇

2U −
1
3

D(θ)U3
∇∇U

]
+ U2Ux = 0, (x, y) ∈ [a, b] × [c, d], and t > 0, (1.1)

where, ∇ =
(
∂

∂x
,
∂

∂y

)T

and ∇2 =

(
∂2

∂x2 ,
∂2

∂y2

)
are the gradient and the Laplacian operators, respectively.

A derivation of this equation can be found in Kondic [36].
We emphasize that equation was created by balancing the viscous forces with the horizontal

component of gravity (1.1). It is a fourth-order nonlinear degraded parabolic PDE for the
development of U(x, y, t). The expression degenerates because the high-derivative coefficient equals 0
when U equals 0. The horizontal gravity component controls the fourth term in Eq (1.1). In contrast,
the third term in Eq (1.1), the vertical component of gravity, frames second-order diffusion, while the
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second term in Eq (1.1), surface tension, frames fourth-order diffusion. The three parameters are:
D (θ), which represents the equilibrium between the horizontal and vertical components of gravity,
which indicates the angle of inclination of the substrate, and the capillary number, β, which is related
to the idea of surface tension. U = U(x, y, t), where t > 0 is the temporal variable, and x and y are
space variables that depend on the direction of flow, which stands for the film height.

The boundary conditions (BCs) for Eq (1.1) are provided by

U(a, y, t) = 1, U (b, y, t) = α, Uxxx(a, y, t) = Uxxx (b, y, t) = 0, ∀y ∈ [c, d] ,

Uy (x, c, t) = Uy (x, d, t) = Uyyy (x, d, t) = Uyyy (x, d, t) = 0, ∀x ∈ [a, b] ,
(1.2)

where, α ≪ 1 refers to the precursor film’s thickness, a, b are the endpoints of x-direction and c, d are
the endpoints of y-direction.

The initial condition is given by

U(x, y, 0) = U0(x) +
m,n∑

i=1, j=1

A j cos( jπy) exp
(
−Ki (x − xi)2

)
.

U0(x) =
(
1 − x2

)
H(1 − x) + bH(x − 1), x ∈ [a, b],

(1.3)

where H(x) is the Heaviside function, j denotes the wavenumber of every sinusoidal mode with period
j/2, A j denotes the amplitude of the traveling wave solution, and Ki denotes the breadth of the localized
concerns at xi. Figure 1 shows the initial condition (1.3) with the following values: m = 2, A1 = 0,
A2 = 0, B1 = 20, B2 = 100, precursor film thickness 0.1, a = 0, b = 20, c = 1, and d = 1. The capillary
ridge and the point where the front connects to the precursor film, respectively, are located at x1 and
x2,, which govern a single transverse perturbation ( j = n = 1).

To obtain the evolution of U(x, y, t) using finite difference techniques, we search the numerical
results of Eq (1.1) with the constant flux border Eq (1.2) and the beginning conditions Eq (1.3). Both
the Parabolic Monge-Ampere method and the uniform mesh with equal step sizes are used to carry out
the numerical operations.

Figure 1. This diagram displays the initial condition (1.3) with the values j = n = 1, m = 2,
A1 = 0.1, A2 = 0.01, B1 = 20, B2 = 100, the precursor film thickness α = 0.1, a = 0,
b = 20, c = 1, and d = 1.Where the front connects to the precursor film is at x1 the capillary
ridge and x2 the appropriate contact line. At the time t = 2, U0(x) is extracted from second
equation (1.3) as x.
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2. Numerical solution of Eq (1.1) on a uniform mesh

The rectangular spatial domain [a, b] × [c, d] is uniformly split into (M + 1) × (N + 1) mesh
points, respectively, as follows:
(x j, yi) = (( j − 1)hx + a, (i − 1)hy + c), j = 1, 2, . . . ,M + 1, i = 1, 2, . . . ,N + 1, where

(hx, hy) =
(
b − a

M
,

d − c
N

)
is the width per sub-rectangular domain. The fundamental idea is to

discretize the spatial derivatives in Eq (1.1) utilizing finite difference notations while maintaining the
continuity of the temporal derivative.

Hence, a semi-discretisation of Eq (1.1) is given by

(Ut) j,i +
1
3
β∇ ·

[
U3
∇∇

2U
]

j,i
−

1
3

D(θ)∇ ·
[
U3
∇U

]
j,i
+

1
3

(
U3

)
x j,i
= 0. (2.1)

The second-term in Eq (2.1) with writing ∇2U(x, y, t) = Γ(x, y, t) is discretised as

∇ ·
[
U3
∇Γ

]
j,i
=

1
h2

x

[
U3

j+ 1
2 ,i

(
Γ j+1,i − Γ j,i

)
− U3

j− 1
2 ,i

(
Γ j,i − Γ j−1,i

)]
+

1
h2

y

[
U3

j,i+ 1
2

(
Γ j,i+1 − Γ j,i

)
− U3

j,i− 1
2

(
Γ j,i − Γ j,i−1

)]
,

where, Γ j,i =
1
h2

x

[
U j+1,i − 2U j,i + U j−1,i

]
+

1
h2

y

[
U j,i+1 − 2U j,i + U j,i−1)

]
.

(2.2)

The third term in Eq (2.1) is discretised as

∇ ·
[
U3
∇U

]
j,i
=

1
h2

x

[(
U3

)
j+ 1

2 ,i

(
U j+1,i − U j,i

)
−

(
U3

)
j− 1

2 ,i

(
U j,i − U j−1,i

)]
+

1
3h2

y

[(
U3

)
j,i+ 1

2

(
U j,i+1 − U j,i

)
−

(
U3

)
j,i− 1

2

(
U j,i − U j,i−1

)]
.

(2.3)

The fourth term is discretised as

(U3)x j,i =
1
hx

[
U3

j+ 1
2 ,i
− U3

j− 1
2 ,i

]
, (2.4)

where

U3
j+ 1

2 ,i
=

U3
j+1,i + U3

j,i

2
, and U3

j,i+ 1
2
=

U3
j,i+1 + U3

j,i

2
,

with the same manner for U3
j− 1

2 ,i
and U3

j,i− 1
2
. Estimating the interior points at j = 1,M+1 and i = 1,N+1

must have fictitious points U0,i, UM+2,i, U j,0, U j,−1, U j,N+2 and U j,N+3 which are evaluated via discretising
Eq (1.2) utilizing finite differences. Consequently, U j,0 = U j,2, U j,−1 = U j,3, U j,N+2 = U j,N , U j,N+3 =

U j,N−1, U0,i = U2,i and UM+2,i = hM,i. Their ODE form returns the boundary conditions U(x = 0, y, t) =
1, U(x = Lx, y, t) = α:

dU
dt

∣∣∣∣∣
1,i
= 0,

dU
dt

∣∣∣∣∣
M+1,i

= 0, i = 1, . . . ,N + 1. (2.5)
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With a 13−point stencil and second-order accuracy, the numerical scheme (Eqs (2.1–2.4)) is applied.
As a result, when employing a centered finite difference approach on the x and y axes, it utilizes less
bandwidth than a 26−point stencil. One can estimate the system of ODEs that is produced by using the
ODE solver DASPK [37]. The linearized system uses an iterative strategy based on Krylov sub-space
techniques, including preconditioning via LU−factorizing the Jacobian matrix. It significantly affected
the implementation, in contrast to other solvers like DASSL. We must select sufficient large fill-ins
to decompose the Jacobian matrix using LU. In this situation, the convergence of the iterative solver
would be pretty slow.

The preceding numerical scheme converges as long as (hx, hy) → 0, which we have confirmed
(but have not presented here). As a result, the numerical findings for hx = 0.01, and hy = 0.01 are
accurate enough to be regarded as good approximation results. The surface plots of U(x, y, t) at a fixed
time t = 30 are shown in Figure 2 (a,b). It is obvious that, given the parameter values used here, the
construction of a single finger agrees with the linear stability analysis. Figure 3 (a,c,f) show the surface
plots of U(x, y, t) exhibiting its progression over time at the indicated times of t = 10, 20, and 30. Early
t = 10 slow growth of a finger is observed. According to the linear stability study, the finger evolves
with a preferred breadth as time t increases. In the contour plots shown in Figure 4 (b,d,e), where the
finger’s width is around one, and it lengthens as time t grows, this is more clearly shown.

Figure 2. U(x, y, t) surface plots in (a) side and (b) top views at constant time t = 30. The
development of fingering instability has been seen to occur. We take the values: β = 0.001,
D(θ) = 0, α = 0.001, a = 0, b = 20, c = −1, d = 1, M = 2000 and N = 200, ( hx = hy =

0.01).
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Figure 3. Surface plots of the temporal history of U(x, y, t) at (a) t = 10, (c) t = 20 and ( f )
t = 30. We take the values: β = 0.001, D(θ) = 0, α = 0.1, a = 0, b = 20, c = −1, d = 1,
M = 2000 and N = 200.

Figure 4. Contour plots of the history of U(x, y, t) at (b) t = 10, (d) t = 20 and (e) t = 30.
We take the values: β = 0.001, D(θ) = 0, α = 0.1, a = 0, b = 20, c = −1, d = 1, M = 2000
and N = 200.
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3. Numerical results of Eq (1.1) using PMA equation

Consider the Eq (1.1) is supplemented by boundary conditions (1.2) and the initial condition (1.3).
We seek the numerical results of Eq (1.1) using PMA equation [34]. First, we require to Express
Eq (1.1) as

Ut − (UxPt,ξ + UyPt,η) + ∇ · [β
U3

3
∇∇2U − D(θ)

U3

3
∇U] +

(
U3

3

)
x
= 0. (3.1)

Here, the spatial variables x(ξ, t) = (x(ξ, η, t), y(ξ, η, t)) are depend on time and the transformation are
achieved using x = ∇ξP, by

Ux =
1
H

(
PηηUξ − PξηUη

)
,

Uy =
1
H

(
PξξUη − PξηUξ

)
,

H = |H| = PξξPηη − P2
ηξ,

(3.2)

where ξ = (ξ, η), ∇ξ =
(
∂
∂ξ
, ∂
∂η

)t
and H is the Hessian matrix given by [33]

H(P) =
[

Pξξ Pξη
Pξη Pηη

]
.

Thus, the spatial derivative of Eq (3.1) is given by

1
3

U3
x =

1
3H

[
PηηU3

ξ − PξηU3
η

]
. (3.3)

The high-derivatives terms can be given by

∇ ·
[
U3
∇U

]
=

1
H

[(
U3R

)
ξ
+

(
U3S

)
η

]
,

∇ ·
[
U3
∇G

]
=

1
H

[(
U3R1

)
ξ
+

(
U3S 1

)
η

]
,

Γ = ∇2U =
1
H

[
(R)ξ + (S )η

]
,

R =
[
aUξ − cUη

]
, S =

[
qUη − cUξ

]
, R1 =

[
aΓξ − cΓη

]
, S 1 =

[
qΓη − cΓξ

]
,

a =
1
H

(
P2
ηη + P2

ξη

)
, q =

1
H

(
P2
ξξ + P2

ξη

)
, c =

1
H

(
PξηPηη + PξηPξξ

)
.

(3.4)

Now, we present the PMA equation described in [34]:

τPt =
(
Φ(∇ξP, t)H(P)

) 1
2
, x = ∇ξP, (3.5)

where x = (x, y) and ξ = (ξ, η).

Subject to the boundary conditions:

Pξ
∣∣∣
1,i
= a, Pξ

∣∣∣
M+1,i

= b,

Pη
∣∣∣
j,1
= c, Pη

∣∣∣
N+1,i
= d.

(3.6)
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The initial condition is given by

P(ξ, η, t = 0) =
1
2

(
(b − a)ξ2 + (d − c)η2

)
. (3.7)

Here, We choose the mesh density function to be [32]:

Φ =
(
1 + |∇2U |2

) 1
4
. (3.8)

Figure 5 (a, c, f ) shows the surface plots for the temporal development of U obtained by the PMA
approach employing the curvature mesh density function (3.8). With M = 200 and N = 40, the
parameter values are provided by β = 0.001, D(θ) = 0, α = 0.1, a = 0, b = 20, c = −1, d = 1
(thus initial hx = 0.1 and hy = 0.05). At time t = 10, a finger begins to form gradually. The finger
develops over time with a specific width that is consistent with the linear stability investigation. The
best representation of it may be found in Figure 6 (b, d, e), where it is approximately one finger’s
breadth wide and grows with time. Using the Parabolic-Monge-Ampere scheme with M = 200, N = 40
(thus, starting hx = 0.1 and hy = 0.05), Figure 7 show the moving mesh at times (a) t = 10, (b) t = 20,
and (c) t = 30,respectively. When the propagating finger gradually takes shape, we can plainly see the
mesh adaption in both x and y.

Figure 5. Surface plots of the temporal history of U(x, y, t) at (a) t = 10, (c) t = 20 and ( f )
t = 30 using PMA method. We take the values: β = 0.001, D(θ) = 0, α = 0.1, a = 0, b = 20,
c = −1, d = 1, M = 400 and N = 40 about hx = 0.1, hy = 0.05.
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Figure 6. Contour plots of the temporal history of U(x, y, t) at (b) t = 10, (d) t = 20 and (e)
t = 30 using PMA method. We take the values: β = 0.001, D(θ) = 0, α = 0.1, a = 0, b = 20,
c = −1, d = 1, M = 400 and N = 40 about hx = 0.1, hy = 0.05.

Figure 7. These figures present the moving mesh at times (a) t = 10, (b) t = 20 and (c) t = 30
using the Parabolic-Monge-Ampere scheme with M = 200, N = 40 (so, initial hx = 0.1 and
hy = 0.05). We take the values: β = 0.001, D(θ) = 0, α = 0.1, a = 0, b = 20, c = −1, d = 1
and we use the curvature mesh density function (3.8).
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We use the curvature mesh density function and the following values: a = 0, b = 20, c = 1, d = 1
and β = 0.001, D(θ) = 0, α = 0.1, (3.8). We observe the mesh transforming in both the x and y
directions as the propagating finger gradually expands. The surface plots of U at time t = 30 are shown
in Figure 8 (a, b) using the PMA moving mesh equation with the curvature mesh density function (3.8)
and M = 200, N = 40. It is evident that the single finger visually resembles the uniform solution shown
in Figure 2 (a, b) (note M = 2000 and N = 200 for the uniform solution). We can see the clustering
of mesh points in the direction of y along the finger in Figure 8 (c), which shows the matching PMA
moving mesh.

Figure 8. Surface plots of U(x, y, t) (a) side view (b) top view at fixed time t = 30 using
PMA method with curvature mesh density function. It is observed that the formation of a
fingering instability. We take the values: β = 0.001, D(θ) = 0, α = 0.001, a = 0, b = 20,
c = −1, d = 1, M = 200 and N = 40, ( hx = 0.1, hy = 0.05). (c) presents the associated
adaptive moving mesh.

It can be noticed that a distinct grouping of mesh points in the y-direction along the finger in
Figure 8 (c), which depicts the matching PMA moving mesh. Figure 9 (a, b) illustrates this as well by
plotting the adaptive meshes y and x, respectively, at time t = 30. Figure 9 (b, c) shows that when y is
plotted as a function of η for fixed ξ ∈ [0.6, 0.8], it deviates from a straight line (indicating a uniform
mesh) with more points clustered in the interval [0.5, 0.5], which is roughly the width of a finger. The
variable y seems to remain uniform in the direction of ξ. Like y changes non-uniformly as a function
of, x also exhibits non-linear variation, with more points concentrated around ξ ∈ [0.6, 0.8], which is
roughly the finger length scale. The variable x is uniform in the direction of η. The curvature-based
mesh density function at t = 30 is depicted in Figure 9 (c), where there are significant fluctuations
in the curvature close to the finger region. As can be seen in Figure 9, this causes the mesh to be
refined (a, b).
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Figure 9. Surface plots illustrating the adaptive mesh (a) y(ξ, η) and (b) x(ξ, η), as well as the
mesh density function ρ(x, y, t) corresponding to figure 8 at t = 30 using the PMA moving
mesh scheme withβ = 0.001, D(θ) = 0, α = 0.001, a = 0, b = 20, c = −1, d = 1, M = 200
and N = 40, ( hx = 0.1, hy = 0.05).

In Table 1, we give a number of metrics for accuracy, with a focus on the most important finger
properties, so that you can check how accurate the numerical results are when the PMA moving mesh
approach is used instead of the uniform mesh solution. As follows: Finger-length is the length of
the finger, and finger-width is the width of the finger at a certain point (chosen as ξ = 8.5). % L2

“Relative-Error” (using the relative error, we evaluated and compared the uniform mesh solution with
hx = hy = 0.01 as the best solution.) At a certain time, t = 30, we guess the amounts based on how
the finger was made. They are calculated for a number of PMA meshes (designated by “PMA” in
Table 1) with different values for M and N. We contrast the PMA solution with the equivalent values
obtained using two uniform solutions (designated as “uniform” in Table 1). M = 2000 and N = 200
(hx = hy = 102) are used to calculate the error as compared to the uniform solution. We use linear
interpolation to figure out the error while we interpolate the solution on this uniform grid. It is noted
that for PMA moving mesh solutions using between (15− 41)× 1063 elements, the relative inaccuracy
to the uniform solution produced with M = 2000 and N = 200 is within 4.6% accuracy to that of the
uniform solution using 4.1 × 105 mesh points. The relative error, on the other hand, is about 6.5% for
the numerical solution using an insensitive uniform mesh (M = 400 and N = 40) with the same number
of mesh points as the PMA meshes. The PMA mesh makes an adjustment in this region in the spatial
directions x and y (see Figure 7) to reduce the inaccuracy, which is primarily caused by the finger.
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Table 1. Metrics based on essential characteristics of the solution achieved at t=30 to decide
the accuracy of the PMA mesh results against the uniform mesh solutions.

Mesh M N % L2 (Relative Error) Finger-Length Finger-Width CPU
400 40 6.5 0.4730 1.995 1hrs

Uniform 2000 200 −− 0.4930 1.20 4days
400 40 1.90 0.4941 1.05 1.5hrs
400 50 2.20 0.4918 1.03 1.5hrs

PMA 400 80 3.55 0.4892 1.011 6hrs
400 100 4.35 0.4891 1.011 12hrs

4. Conclusions

I have successfully used the PMA moving mesh method to achieve the numerical solutions for the
two-dimensional fourth-order parabolic thin film equations. These solutions are confirmed with
numerical results obtained using the uniform mesh scheme with N = 200 and M = 2000. The main
highlights of the solutions are presented in Figures 5, 7, 8 and Table 1, which permits a direct
comparison of the uniform mesh solution obtained with N = 200, M = 2000, and the numerical
solutions obtained using the PMA moving mesh method with various mesh numbers in x and y
directions.

Through these, the numerical results obtained using PMA adaptive method are similar to a
considerable extent. The mean error goes to zero whenever hx, hy → 0. The numerical schemes for
both uniform and PMA adaptive moving mesh are always stable for setting the parameter values
β = 0.001, D(θ) = 0, α = 0.001, a = 0, b = 20, c = −1, d = 1.

This study effectively addressed a prototype two-dimensional thin film flow problem with surface
tension and a moving contact line using the PMA moving mesh method based on mesh density
functions. In order to align with the propagating finger with local refinement along the finger width,
our results demonstrate how the mesh adapts in both coordinate directions (see Figure 7). It is
demonstrated that, while having a significantly less number of mesh points, the PMA moving mesh
method is 4.5% more accurate than one that uses a fixed uniform grid. As the non-uniform mesh is
improved, we notice the convergence to a more accurate solution than a fixed uniform mesh solution
by observing critical aspects of the solution behavior. The PMA moving mesh solution may be made
more accurate by increasing the starting mesh points, but doing so would require more CPU
processing time because extra mesh PDEs would need to be solved in addition to the underlying PDE.
If the required inaccuracy is not very small, the CPU time difference could be better, and it is also
significantly faster than using a fixed uniform mesh. When the initial number of points in the y
direction is increased from 80 to 100, for instance (initial y = 0.025 and 0.02, respectively), Table 1
indicates a doubling of CPU time even if the solution appears to have converged. In this instance, the
solution corresponding to the adaptive mesh with M = 400 and N = 80 may be reasonable in
accuracy and computing time. Moreover, the locally revised mesh structure is similar to results
previously reported for the identical test problem utilizing h or hp-adaptive mesh refinement
algorithms for unstructured meshes [29, 30]. While we have not conducted quantitative comparisons
with these studies on the accuracy of the solution, a visual examination of their solution and the
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meshes produced reveals very similar qualitative traits as ours. The PMA employed here offers a
straightforward foundation for dynamic mesh adjustment and improvement. This contrasts with the
approaches employed by Li et al. [30] and Sun et al. [29], which construct a hierarchy of multigrid
meshes based on the gradient of the solution and mesh refinement based on minimizing an a posteriori
error estimate and an estimate of the mesh refinement error, respectively. Using conventional methods
for solving a system of parabolic partial differential equations by either the finite difference method or
the finite element method, the MMPDEs may be easily implemented and solved concurrently with the
thin film problem rather effectively. The thin film flow research community would significantly
benefit from the PMA moving mesh approach shown here in this regard. As a result of the need to
solve two additional equations for the mesh, the CPU time required by this method may be higher
than that of the two studies mentioned above. This can be avoided by using mesh generation
techniques inside the PMA moving mesh framework, including the r-adaptive moving mesh
(MMPDEs) equations (see Budd et al. [38, 39]), in which there is just one equation for the mesh.
Future reports on these are currently being investigated.

The efficiency of PMA moving adaptive mesh approaches (compared to fixed uniform mesh
schemes and maybe with h or hp-adaptive methods) and their ease of implementation are both very
promising, according to our data, and they can be used often in thin-film flow problems. In this test
scenario, the PMA moving mesh was not used and thus prevented mesh tangling and loss of
regularity. However, this does not sound confident that other thin film flow issues generally will not
also exhibit these harmful properties. We would need to investigate different mesh generation
techniques inside the PMA framework, such as the so-called optimal transport equations, such as the
Monge-Ampère and Parabolic Monge-Ampere (PMA) equations (Budd et al. [38,39]), which produce
regular meshes without mesh tangling. Before their viability can be assured, these must be tested on
more difficult two-dimensional thin film issues prone to more dramatic dendritic fingering
instabilities, such as the fingering instabilities seen when a drop or sheet laden with surfactant spreads
on a horizontal or inclined plane [16, 17, 35].

In addition to being realistic, the choice of these parameters, especially α, β ≪ 1, makes the
problem stiff and difficult to resolve numerically for the interior layers linked to the capillary ridge
region. Hence, the PMA moving mesh approach, based on moving mesh PDEs, has been effectively
used to solve the two-dimensional thin film equations under consideration in this study. Our findings
show that this method holds tremendous promise for frequent application to thin film equations
because of its ease of use and effectiveness. Before its success can be guaranteed, there are complex
challenges in the thin film literature where this technology needs to be further tested.
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