The non-Fourier heat transfer in heterogeneous media is crucial for material science and biomedical engineering. The optimized Schwarz waveform relaxation (OSWR) method is an efficient approach for solving such problems due to its divide-and-conquer strategy. Despite the wave-type nature of non-Fourier heat transfer, the short phase-lag time leads to more parabolic-like behavior. To address this, in the OSWR method, we employed Robin boundary conditions to transmit information along the interface. Using Fourier analysis, we derived and rigorously optimized the convergence factors of the OSWR algorithm with scaled Robin and Robin-Robin transmission conditions. The resulting optimized transmission parameters were provided in explicit form for direct application in the OSWR algorithm, along with corresponding convergence factor estimates. Interestingly, the results show that a larger heterogeneity contrast actually accelerates the convergence, rather than deteriorating it. Furthermore, the OSWR algorithm with the Robin-Robin condition exhibits mesh-independent convergence asymptotically. However, the presence of the phase-lag time is found to slow down the convergence of the OSWR algorithm. These theoretical findings were validated through numerical experiments.
Citation: Feng Hu, Yingxiang Xu. Optimized Schwarz waveform relaxation for heterogeneous Cattaneo-Vernotte non-Fourier heat transfer[J]. AIMS Mathematics, 2025, 10(3): 7370-7395. doi: 10.3934/math.2025338
[1] | Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996 |
[2] | Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416 |
[3] | Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373 |
[4] | Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085 |
[5] | Oğuzhan Bahadır . On lightlike geometry of indefinite Sasakian statistical manifolds. AIMS Mathematics, 2021, 6(11): 12845-12862. doi: 10.3934/math.2021741 |
[6] | Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144 |
[7] | Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah . Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376 |
[8] | Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069 |
[9] | Mehmet Atçeken, Tuğba Mert . Characterizations for totally geodesic submanifolds of a K-paracontact manifold. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430 |
[10] | Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603 |
The non-Fourier heat transfer in heterogeneous media is crucial for material science and biomedical engineering. The optimized Schwarz waveform relaxation (OSWR) method is an efficient approach for solving such problems due to its divide-and-conquer strategy. Despite the wave-type nature of non-Fourier heat transfer, the short phase-lag time leads to more parabolic-like behavior. To address this, in the OSWR method, we employed Robin boundary conditions to transmit information along the interface. Using Fourier analysis, we derived and rigorously optimized the convergence factors of the OSWR algorithm with scaled Robin and Robin-Robin transmission conditions. The resulting optimized transmission parameters were provided in explicit form for direct application in the OSWR algorithm, along with corresponding convergence factor estimates. Interestingly, the results show that a larger heterogeneity contrast actually accelerates the convergence, rather than deteriorating it. Furthermore, the OSWR algorithm with the Robin-Robin condition exhibits mesh-independent convergence asymptotically. However, the presence of the phase-lag time is found to slow down the convergence of the OSWR algorithm. These theoretical findings were validated through numerical experiments.
The concept of lightlike submanifolds in geometry was initially established and expounded upon in a work produced by Duggal and Bejancu [1]. A nondegenerate screen distribution was employed in order to produce a nonintersecting lightlike transversal vector bundle of the tangent bundle. They defined the CR-lightlike submanifold as a generalization of lightlike real hypersurfaces of indefinite Kaehler manifolds and showed that CR-lightlike submanifolds do not contain invariant and totally real lightlike submanifolds. Further, they defined and studied GCR-lightlike submanifolds of Kaehler manifolds as an umbrella of invariant submanifolds, screen real submanifolds, and CR-lightlike and SCR-lightlike submanifolds in [2,3], respectively. Subsequently, B. Sahin and R. Gunes investigated geodesic property of CR-lightlike submanifolds [4] and the integrability of distributions in CR-lightlike submanifolds [5]. In the year 2010, Duggal and Sahin published a book [6]pertaining to the field of differential geometry, specifically focusing on the study of lightlike submanifolds. This book provides a comprehensive examination of recent advancements in lightlike geometry, encompassing novel geometric findings, accompanied by rigorous proofs, and exploring their practical implications in the field of mathematical physics. The investigation of the geometric properties of lightlike hypersurfaces and lightlike submanifolds has been the subject of research in several studies (see [7,8,9,10,11,12,13,14]).
Crasmareanu and Hretcanu[15] created a special example of polynomial structure [16] on a differentiable manifold, and it is known as the golden structure (¯M,g). Hretcanu C. E. [17] explored Riemannian submanifolds with the golden structure. M. Ahmad and M. A. Qayyoom studied geometrical properties of Riemannian submanifolds with golden structure [18,19,20,21] and metallic structure [22,23]. The integrability of golden structures was examined by A. Gizer et al. [24]. Lightlike hypersurfaces of a golden semi-Riemannian manifold was investigated by N. Poyraz and E. Yasar [25]. The golden structure was also explored in the studies [26,27,28,29].
In this research, we investigate the CR-lightlike submanifolds of a golden semi-Riemannian manifold, drawing inspiration from the aforementioned studies. This paper has the following outlines: Some preliminaries of CR-lightlike submanifolds are defined in Section 2. We establish a number of properties of CR-lightlike submanifolds on golden semi-Riemannian manifolds in Section 3. In Section 4, we look into several CR-lightlike submanifolds characteristics that are totally umbilical. We provide a complex illustration of CR-lightlike submanifolds of a golden semi-Riemannian manifold in the final section.
Assume that (¯ℵ,g) is a semi-Riemannian manifold with (k+j)-dimension, k,j≥1, and g as a semi-Riemannian metric on ¯ℵ. We suppose that ¯ℵ is not a Riemannian manifold and the symbol q stands for the constant index of g.
[15] Let ¯ℵ be endowed with a tensor field ψ of type (1,1) such that
ψ2=ψ+I, | (2.1) |
where I represents the identity transformation on Γ(Υ¯ℵ). The structure ψ is referred to as a golden structure. A metric g is considered ψ-compatible if
g(ψγ,ζ)=g(γ,ψζ) | (2.2) |
for all γ, ζ vector fields on Γ(Υ¯ℵ), then (¯ℵ,g,ψ) is called a golden Riemannian manifold. If we substitute ψγ into γ in (2.2), then from (2.1) we have
g(ψγ,ψζ)=g(ψγ,ζ)+g(γ,ζ). | (2.3) |
for any γ,ζ∈Γ(Υ¯ℵ).
If (¯ℵ,g,ψ) is a golden Riemannian manifold and ψ is parallel with regard to the Levi-Civita connection ¯∇ on ¯ℵ:
¯∇ψ=0, | (2.4) |
then (¯ℵ,g,ψ) is referred to as a semi-Riemannian manifold with locally golden properties.
The golden structure is the particular case of metallic structure [22,23] with p=1, q=1 defined by
ψ2=pψ+qI, |
where p and q are positive integers.
[1] Consider the case where ℵ is a lightlike submanifold of k of ¯ℵ. There is the radical distribution, or Rad(Υℵ), on ℵ that applies to this situation such that Rad(Υℵ)=Υℵ∩Υℵ⊥, ∀ p∈ℵ. Since RadΥℵ has rank r≥0, ℵ is referred to as an r-lightlike submanifold of ¯ℵ. Assume that ℵ is a submanifold of ℵ that is r-lightlike. A screen distribution is what we refer to as the complementary distribution of a Rad distribution on Υℵ, then
Υℵ=RadΥℵ⊥S(Υℵ). |
As S(Υℵ) is a nondegenerate vector sub-bundle of Υ¯ℵ|ℵ, we have
Υ¯ℵ|ℵ=S(Υℵ)⊥S(Υℵ)⊥, |
where S(Υℵ)⊥ consists of the orthogonal vector sub-bundle that is complementary to S(Υℵ) in Υ¯ℵ|ℵ. S(Υℵ),S(Υℵ⊥) is an orthogonal direct decomposition, and they are nondegenerate.
S(Υℵ)⊥=S(Υℵ⊥)⊥S(Υℵ⊥)⊥. |
Let the vector bundle
tr(Υℵ)=ltr(Υℵ)⊥S(Υℵ⊥). |
Thus,
Υ¯ℵ=Υℵ⊕tr(Υℵ)=S(Υℵ)⊥S(Υℵ⊥)⊥(Rad(Υℵ)⊕ltr(Υℵ). |
Assume that the Levi-Civita connection is ¯∇ on ¯ℵ. We have
¯∇γζ=∇γζ+h(γ,ζ),∀γ,ζ∈Γ(Υℵ) | (2.5) |
and
¯∇γζ=−Ahζ+∇⊥γh,∀γ∈Γ(Υℵ)andh∈Γ(tr(Υℵ)), | (2.6) |
where {∇γζ,Ahγ} and {h(γ,ζ),∇⊥γh} belongs to Γ(Υℵ) and Γ(tr(Υℵ)), respectively.
Using projection L:tr(Υℵ)→ltr(Υℵ), and S:tr(Υℵ)→S(Υℵ⊥), we have
¯∇γζ=∇γζ+hl(γ,ζ)+hs(γ,ζ), | (2.7) |
¯∇γℵ=−Aℵγ+∇lγℵ+λs(γ,ℵ), | (2.8) |
and
¯∇γχ=−Aχγ+∇sγ+λl(γ,χ) | (2.9) |
for any γ,ζ∈Γ(Υℵ),ℵ∈Γ(ltr(Υℵ)), and χ∈Γ(S(Υℵ⊥)), where hl(γ,ζ)=Lh(γ,ζ),hs(γ,ζ)=Sh(γ,ζ),∇lγℵ,λl(γ,χ)∈Γ(ltr(Tℵ)),∇sγλs(γ,ℵ)∈Γ(S(Υℵ⊥)), and ∇γζ,Aℵγ,Aχγ∈Γ(Υℵ).
The projection morphism of Υℵ on the screen is represented by P, and we take the distribution into consideration.
∇γPζ=∇∗γPζ+h∗(γ,Pζ),∇γξ=−A∗ξγ+∇∗tγξ, | (2.10) |
where γ,ζ∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)).
Thus, we have the subsequent equation.
g(h∗(γ,Pζ),ℵ)=g(Aℵγ,Pζ), | (2.11) |
Consider that ¯∇ is a metric connection. We get
(∇γg)(ζ,η)=g(hl(γ,ζ),η)+g(hl(γ,ζη),ζ). | (2.12) |
Using the characteristics of a linear connection, we can obtain
(∇γhl)(ζ,η)=∇lγ(hl(ζ,η))−hl(¯∇γζ,η)−hl(ζ,¯∇γη), | (2.13) |
(∇γhs)(ζ,η)=∇sγ(hs(ζ,η))−hs(¯∇γζ,η)−hs(ζ,¯∇γη). | (2.14) |
Based on the description of a CR-lightlike submanifold in [4], we have
Υℵ=λ⊕λ′, |
where λ=Rad(Υℵ)⊥ψRad(Υℵ)⊥λ0.
S and Q stand for the projection on λ and λ′, respectively, then
ψγ=fγ+wγ |
for γ,ζ∈Γ(Υℵ), where fγ=ψSγ and wγ=ψQγ.
On the other hand, we have
ψζ=Bζ+Cζ |
for any ζ∈Γ(tr(Υℵ)), Bζ∈Γ(Υℵ) and Cζ∈Γ(tr(Υℵ)), unless ℵ1 and ℵ2 are denoted as ψL1 and ψL2, respectively.
Lemma 2.1. Assume that the screen distribution is totally geodesic and that ℵ is a CR-lightlike submanifold of the golden semi-Riemannian manifold, then ∇γζ∈Γ(S(ΥN)), where γ,ζ∈Γ(S(Υℵ)).
Proof. For γ,ζ∈Γ(S(Υℵ)),
g(∇γζ,ℵ)=g(¯∇γζ−h(γ,ζ),ℵ)=−g(ζ,¯∇γℵ). |
Using (2.8),
g(∇γζ,ℵ)=−g(ζ,−Aℵγ+∇⊥γℵ)=g(ζ,Aℵγ). |
Using (2.11),
g(∇γζ,ℵ)=g(h∗(γ,ζ),ℵ). |
Since screen distribution is totally geodesic, h∗(γ,ζ)=0,
g(¯∇γζ,ℵ)=0. |
Using Lemma 1.2 in [1] p.g. 142, we have
∇γζ∈Γ(S(Υℵ)), |
where γ,ζ∈Γ(S(Υℵ)).
Theorem 2.2. Assume that ℵ is a locally golden semi-Riemannian manifold ¯ℵ with CR-lightlike properties, then ∇γψγ=ψ∇γγ for γ∈Γ(λ0).
Proof. Assume that γ,ζ∈Γ(λ0). Using (2.5), we have
g(∇γψγ,ζ)=g(¯∇γψγ−h(γ,ψγ),ζ)g(∇γψγ,ζ)=g(ψ(¯∇γγ),ζ)g(∇γψγ,ζ)=g(ψ(∇γγ),ζ),g(∇γψγ−ψ(∇γγ),ζ)=0. |
Nondegeneracy of λ0 implies
∇γψγ=ψ(∇γγ), |
where γ∈Γ(λ0).
Definition 3.1. [4] A CR-lightlike submanifold of a golden semi-Riemannian manifold is mixed geodesic if h satisfies
h(γ,α)=0, |
where h stands for second fundamental form, γ∈Γ(λ), and α∈Γ(λ′).
For γ,ζ∈Γ(λ) and α,β∈Γ(λ′) if
h(γ,ζ)=0 |
and
h(α,β)=0, |
then it is known as λ-geodesic and λ′-geodesic, respectively.
Theorem 3.2. Assume ℵ is a CR-lightlike submanifold of ¯ℵ, which is a golden semi-Riemannian manifold. ℵ is totally geodesic if
(Lg)(γ,ζ)=0 |
and
(Lχg)(γ,ζ)=0 |
for α,β∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. Since ℵ is totally geodesic, then
h(γ,ζ)=0 |
for γ,ζ∈Γ(Υℵ).
We know that h(γ,ζ)=0 if
g(h(γ,ζ),ξ)=0 |
and
g(h(γ,ζ),χ)=0. |
g(h(γ,ζ),ξ)=g(¯∇γζ−∇γζ,ξ)=−g(ζ,[γ,ξ]+¯∇ξγ=−g(ζ,[γ,ξ])+g(γ,[ξ,ζ])+g(¯∇ζξ,γ)=−(Lξg)(γ,ζ)+g(¯∇ζξ,γ)=−(Lξg)(γ,ζ)−g(ξ,h(γ,ζ)))2g(h(γ,ζ)=−(Lξg)(γ,ζ). |
Since g(h(γ,ζ),ξ)=0, we have
(Lξg)(γ,ζ)=0. |
Similarly,
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=−g(ζ,[γ,χ])+g(γ,[χ,ζ])+g(¯∇ζχ,γ)=−(Lχg)(γ,ζ)+g(¯∇ζχ,γ)2g(h(γ,ζ),χ)=−(Lχg)(γ,ζ). |
Since g(h(γ,ζ),χ)=0, we get
(Lχg)(γ,ζ)=0 |
for χ∈Γ(S(Υℵ⊥)).
Lemma 3.3. Assume that ¯ℵ is a golden semi-Riemannian manifold whose submanifold ℵ is CR-lightlike, then
g(h(γ,ζ),χ)=g(Aχγ,ζ) |
for γ∈Γ(λ),ζ∈Γ(λ′) and χ∈Γ(S(Υℵ⊥)).
Proof. Using (2.5), we get
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=g(ζ,¯∇γχ). |
From (2.9), it follows that
g(h(γ,ζ),χ)=−g(ζ,−Aχγ+∇sγχ+λs(γ,χ))=g(ζ,Aχγ)−g(ζ,∇sγχ)−g(ζ,λs(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ), |
where γ∈Γ(λ),ζ∈Γ(λ′),χ∈Γ(S(Υℵ⊥)).
Theorem 3.4. Assume that ℵ is a CR-lightlike submanifold of the golden semi-Riemannian manifold and ¯ℵ is mixed geodesic if
A∗ξγ∈Γ(λ0⊥ψL1) |
and
Aχγ∈Γ(λ0⊥Rad(Υℵ)⊥ψL1) |
for γ∈Γ(λ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. For γ∈Γ(λ),ζ∈Γ(λ′), and χ∈Γ(S(Υℵ⊥)), we get
Using (2.5),
g(h(γ,ζ),ξ)=g(¯∇γζ−∇γζ,ξ)=−g(ζ,¯∇γξ). |
Again using (2.5), we obtain
g(h(γ,ζ),ξ)=−g(ζ,∇γξ+h(γ,ξ))=−g(ζ,∇γξ). |
Using (2.10), we have
g(h(γ,ζ),ξ)=−g(ζ,−A∗ξγ+∇∗tγξ)g(ζ,A∗ξγ)=0. |
Since the CR-lightlike submanifold ℵ is mixed geodesic, we have
g(h(γ,ζ),ξ)=0 |
⇒g(ζ,A∗ξγ)=0 |
⇒A∗ξγ∈Γ(λ0⊥ψL1), |
where γ∈Γ(λ),ζ∈Γ(λ′).
From (2.5), we get
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=−g(ζ,¯∇γχ). |
From (2.9), we get
g(h(γ,ζ),χ)=−g(ζ,−Aχγ+∇sγχ+λl(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ). |
Since, ℵ is mixed geodesic, then g(h(γ,ζ),χ)=0
⇒g(ζ,Aχγ)=0. |
Aχγ∈Γ(λ0⊥Rad(Υℵ)⊥ψ1). |
Theorem 3.5. Suppose that ℵ is a CR-lightlike submanifold of a golden semi-Riemannian manifold ¯ℵ, then ℵ is λ′-geodesic if Aχη and A∗ξη have no component in ℵ2⊥ψRad(Υℵ) for η∈Γ(λ′),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. From (2.5), we obtain
g(h(η,β),χ)=g(¯∇ηβ−∇γζ,χ)=−¯g(∇γζ,χ), |
where χ,β∈Γ(λ′).
Using (2.9), we have
g(h(η,β),χ)=−g(β,−Aχη+∇sη+λl(η,χ))g(h(η,β),χ)=g(β,Aχη). | (3.1) |
Since ℵ is λ′-geodesic, then g(h(η,β),χ)=0.
From (3.1), we get
g(β,Aχη)=0. |
Now,
g(h(η,β),ξ)=g(¯∇ηβ−∇ηβ,ξ)=g(¯∇ηβ,ξ)=−g(β,¯∇ηξ). |
From (2.10), we get
g(h(η,β),ξ)=−g(η,−A∗ξη+∇∗tηξ)g(h(η,β),ξ)=g(A∗ξβ,η). |
Since ℵ is λ′- geodesic, then
g(h(η,β),ξ)=0 |
⇒g(A∗ξβ,η)=0. |
Thus, Aχη and A∗ξη have no component in M2⊥ψRad(Υℵ).
Lemma 3.6. Assume that ¯ℵ is a golden semi-Riemannian manifold that has a CR-lightlike submanifold ℵ. Due to the distribution's integrability, the following criteria hold.
(ⅰ) ψg(λl(ψγ,χ),ζ)−g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)−g(Aχγ,ψζ),
(ⅱ) g(λl(ψγ),ξ)=g(Aχγ,ψξ),
(ⅲ) g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ),
where γ,ζ∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. From Eq (2.9), we obtain
g(λl(ψγ,χ),ζ)=g(¯∇ψγχ+Aχψγ−∇sψγχ,ζ)=−g(χ,¯∇ψγζ)+g(Aχψγ,ζ). |
Using (2.5), we get
g(λl(ψγ,χ),ζ)=−g(χ,∇ψγζ+h(ψγ,ζ))+g(Aχψγ,ζ)=−g(χ,h(γ,ψζ))+g(Aχψγ,ζ). |
Again, using (2.5), we get
g(λl(ψγ,χ),ζ)=−g(χ,¯∇γψζ−∇γψζ)+g(Aχψγ,ζ)=g(¯∇γχ,ψζ)+g(Aχψγ,ζ). |
Using (2.9), we have
g(λl(ψγ,χ),ζ)=g(−Aχγ+∇sγχ+λl(γ,χ),ψζ)+g(λl(ψγ,χ),ζ)−g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)−g(Aχγ,ψζ). |
(ⅱ) Using (2.9), we have
g(λl(ψγ,χ),ξ)=g(Aχψγ−∇sψγχ+∇ψγχ,ξ)=g(Aχψγ,ξ)−g(χ,¯∇ψγξ). |
Using (2.10), we get
g(λl(ψγ,χ),ξ)=g(Aχψγ,ξ)+g(χ,A∗ξψγ)−g(χ,∇∗tψγ,ξ)g(λl(ψγ),ξ)=g(Aχγ,ψξ). |
(ⅲ) Replacing ζ by ψξ in (ⅰ), we have
ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),ψ2ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψ2ξ). |
Using Definition 2.1 in [18] p.g. 9, we get
ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),(ψ+I)ξ)=g(Aχψγ,ψξ)−g(Aχγ,(ψ+I)ξ)ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),ψξ)−g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ)−g(Aχγ,ξ).g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ). |
Definition 4.1. [12] A CR-lightlike submanifold of a golden semi-Riemannian manifold is totally umbilical if there is a smooth transversal vector field H∈tr Γ(Υℵ) that satisfies
h(χ,η)=Hg(χ,η), |
where h is stands for second fundamental form and χ, η∈ Γ(Υℵ).
Theorem 4.2. Assume that the screen distribution is totally geodesic and that ℵ is a totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯ℵ, then
Aψηχ=Aψχη,∀χ,η∈Γλ′. |
Proof. Given that ¯ℵ is a golden semi-Riemannian manifold,
ψ¯∇ηχ=¯∇ηψχ. |
Using (2.5) and (2.6), we have
ψ(∇ηχ)+ψ(h(η,χ))=−Aψχη+∇tηψχ. | (4.1) |
Interchanging η and χ, we obtain
ψ(∇χη)+ψ(h(χ,η))=−Aψηχ+∇tχψη. | (4.2) |
Subtracting Eqs (4.1) and (4.2), we get
ψ(∇ηχ−∇χη)−∇tηψχ+∇tχψη=Aψηχ−Aψχη. | (4.3) |
Taking the inner product with γ∈Γ(λ0) in (4.3), we have
g(ψ(∇χη,γ)−g(ψ(∇χη,γ)=g(Aψηχ,γ)−g(Aψχη,γ).g(Aψηχ−Aψχη,γ)=g(∇χη,−ψγ)g(∇χη,ψγ). | (4.4) |
Now,
g(∇χη,ψγ)=g(¯∇χη−h(χ,η),ψγ)g(∇χη,ψγ)=−g(η,(¯∇χψ)γ−ψ(¯∇χγ)). |
Since ψ is parallel to ¯∇, i.e., ¯∇γψ=0,
g(∇χη,ψγ)=−ψ(¯∇χγ)). |
Using (2.7), we have
g(∇χη,ψγ)=−g(ψη,∇χγ+hs(χ,γ)+hl(χ,γ))g(∇χη,ψγ)=−g(ψη,∇χγ)−g(ψη,hs(χ,γ))−g(ψη,hl(χ,γ)). | (4.5) |
Since ℵ is a totally umbilical CR-lightlike submanifold and the screen distribution is totally geodesic,
hs(χ,γ)=Hsg(χ,γ)=0 |
and
hl(χ,γ)=Hlg(χ,γ)=0, |
where χ∈Γ(λ′) and γ∈Γ(λ0).
From (4.5), we have
g(∇χη,ψγ)=−g(ψη,∇χγ). |
From Lemma 2.1, we get
g(∇χη,ψγ)=0. |
Similarly,
g(∇ηχ,ψγ)=0 |
Using (4.4), we have
g(Aψηχ−Aψχη,γ)=0. |
Since λ0 is nondegenerate,
Aψηχ−Aψχη=0 |
⇒Aψηχ=Aψχη. |
Theorem 4.3. Let ℵ be the totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯ℵ. Consequently, ℵ's sectional curvature, which is CR-lightlike, vanishes, resulting in ¯K(π)=0, for the entire CR-lightlike section π.
Proof. We know that ℵ is a totally umbilical CR-lightlike submanifold of ¯ℵ, then from (2.13) and (2.14),
(∇γhl)(ζ,ω)=g(ζ,ω)∇lγHl−Hl{(∇γg)(ζ,ω)}, | (4.6) |
(∇γhs)(ζ,ω)=g(ζ,ω)∇sγHs−Hs{(∇γg)(ζ,ω)} | (4.7) |
for a CR-lightlike section π=γ∧ω,γ∈Γ(λ0),ω∈Γ(λ′).
From (2.12), we have (∇Ug)(ζ,ω)=0. Therefore, from (4.6) and (4.7), we get
(∇γhl)(ζ,ω)=g(ζ,ω)∇lγHl, | (4.8) |
(∇γhs)(ζ,ω)=g(ζ,ω)∇sγHs. | (4.9) |
Now, from (4.8) and (4.9), we get
{¯R(γ,ζ)ω}tr=g(ζ,ω)∇lγHl−g(γ,ω)∇lζHl+g(ζ,ω)λl(γ,Hs)−g(γ,ω)λl(ζ,Hs)+g(ζ,ω)∇sγHs−g(γ,ω)∇sζHs+g(ζ,ω)λs(γ,Hl)−g(γ,ω)λs(ζ,Hl). | (4.10) |
For any β∈Γ(tr(Υℵ)), from Equation (4.10), we get
¯R(γ,ζ,ω,β)=g(ζ,ω)g(∇lγHl,β)−g(γ,ω)g(∇lζHl,β)+g(ζ,ω)g(λl(γ,Hs),ζ)−g(γ,ω)g(λl(ζ,Hs),β)+g(ζ,ω)g(∇sγHs,β)−g(γ,ω)g(∇sζHs,β)+g(ζ,ω)g(λs(γ,Hl),β)−g(γ,ω)g(λs(ζ,Hl,β). |
R(γ,ω,ψγ,ψω)=g(ω,ψγ)g(∇lγHl,ψω)−g(γ,ψγ)g(∇lωHl,ψω)+g(ω,ψγ)g(λl(γ,Hs),ψω)−g(γ,ψγ)g(λl(ω,Hs),ψω)+g(ω,ψγ)g(∇sγHs,ψω)−g(γ,ψγ)g(∇sωHs,ψω)+g(ω,ψγ)g(λs(γ,Hl),ψω)−g(γ,ψγ)g(λs(ω,Hl,ψU). |
For any unit vectors γ∈Γ(λ) and ω∈Γ(λ′), we have
¯R(γ,ω,ψγ,ψω)=¯R(γ,ω,γ,ω)=0. |
We have
K(γ)=KN(γ∧ζ)=g(¯R(γ,ζ)ζ,γ), |
where
¯R(γ,ω,γ,ω)=g(¯R(γ,ω)γ,ω) |
or
¯R(γ,ω,ψγ,ψω)=g(¯R(γ,ω)ψγ,ψω) |
i.e.,
¯K(π)=0 |
for all CR-sections π.
Example 5.1. We consider a semi-Riemannian manifold R62 and a submanifold ℵ of co-dimension 2 in R62, given by equations
υ5=υ1cosα−υ2sinα−υ3z4tanα, |
υ6=υ1sinα−υ2cosα−υ3υ4, |
where α∈R−{π2+kπ; k∈z}. The structure on R62 is defined by
ψ(∂∂υ1,∂∂υ2,∂∂υ3,∂∂υ4,∂∂υ5,∂∂υ6)=(¯ϕ ∂∂υ1,¯ϕ∂∂υ2,ϕ∂∂υ3,ϕ∂∂υ4,ϕ∂∂υ5,ϕ∂∂υ6). |
Now,
ψ2(∂∂υ1,∂∂υ2,∂∂υ3,∂∂υ4,∂∂υ5,∂∂υ6)=((¯ϕ+1) ∂∂υ1,(¯ϕ+1)∂∂υ2,(ϕ+1)∂∂υ3,(ϕ+1)∂∂υ4, |
(ϕ+1)∂∂υ5,(ϕ+1)∂∂υ6) |
ψ2=ψ+I. |
It follows that (R62,ψ) is a golden semi-Reimannian manifold.
The tangent bundle Υℵ is spanned by
Z0=−sinα ∂∂υ5−cosα ∂∂υ6−ϕ ∂∂υ2, |
Z1=−ϕ sinα ∂∂υ5−ϕ cosα ∂∂υ6+ ∂∂υ2, |
Z2=∂∂υ5−¯ϕ sinα ∂∂υ2+∂∂υ1, |
Z3=−¯ϕ cosα ∂∂υ2+∂∂υ4+i∂∂υ6. |
Thus, ℵ is a 1-lightlike submanifold of R62 with RadΥℵ=Span{X0}. Using golden structure of R62, we obtain that X1=ψ(X0). Thus, ψ(RadΥℵ) is a distribution on ℵ. Hence, the ℵ is a CR-lightlike submanifold.
In general relativity, particularly in the context of the black hole theory, lightlike geometry finds its uses. An investigation is made into the geometry of the ℵ golden semi-Riemannian manifolds that are CR-lightlike in nature. There are many intriguing findings on completely umbilical and completely geodesic CR-lightlike submanifolds that are examined. We present a required condition for a CR-lightlike submanifold to be completely geodesic. Moreover, it is demonstrated that the sectional curvature K of an entirely umbilical CR-lightlike submanifold ℵ of a golden semi-Riemannian manifold ¯ℵ disappears.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The present work (manuscript number IU/R&D/2022-MCN0001708) received financial assistance from Integral University in Lucknow, India as a part of the seed money project IUL/IIRC/SMP/2021/010. All of the authors would like to express their gratitude to the university for this support. The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper. The present manuscript represents the corrected version of preprint 10.48550/arXiv.2210.10445. The revised version incorporates the identities of all those who have made contributions, taking into account their respective skills and understanding.
Authors have no conflict of interests.
[1] |
A. Narasimhan, S. Sadasivam, Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation, Int. J. Heat Mass Tran., 60 (2013), 591–597. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.010 doi: 10.1016/j.ijheatmasstransfer.2013.01.010
![]() |
[2] |
J. Zhou, Y. Zhang, J. Chen, Non-Fourier heat conduction effect on laser-induced thermal damage in biological tissues, Numer. Heat Tr. A-Appl., 54 (2008), 1–19. https://doi.org/10.1080/10407780802025911 doi: 10.1080/10407780802025911
![]() |
[3] |
T. Xue, X. Zhang, K. K. Tamma, Investigation of thermal interfacial problems involving non-locality in space and time, Int. Commun. Heat Mass, 99 (2018), 37–42. https://doi.org/10.1016/j.icheatmasstransfer.2018.10.008 doi: 10.1016/j.icheatmasstransfer.2018.10.008
![]() |
[4] |
Z. Y. Guo, Y. S. Xu, Non-Fourier heat conduction in IC chip, J. Electron. Packag. Sep., 117 (1995), 174–177. https://doi.org/10.1115/1.2792088 doi: 10.1115/1.2792088
![]() |
[5] |
H. D. Wang, B. Y. Cao, Z. Y. Guo, Non-Fourier heat conduction in carbon nanotubes, J. Heat Transfer, 134 (2012), 051004. https://doi.org/10.1115/1.4005634 doi: 10.1115/1.4005634
![]() |
[6] | C. Cattaneo, A form of heat-conduction equations which eliminates the paradox of instantaneous propagation, Comptes Rendus, 247 (1958), 431. |
[7] | P. Vernotte, Some possible complications in the phenomena of thermal conduction, Compte Rendus, 252 (1961), 2190–2191. |
[8] |
M. Ozisik, D. Y. Tzou, On the wave theory in heat conduction, J. Heat Transfer, 116 (1994), 526–535. https://doi.org/10.1115/1.2910903 doi: 10.1115/1.2910903
![]() |
[9] |
J. Ordonez-Miranda, J. Alvarado-Gil, Thermal wave oscillations and thermal relaxation time determination in a hyperbolic heat transport model, Int. J. Therm. Sci., 48 (2009), 2053–2062. https://doi.org/10.1016/j.ijthermalsci.2009.03.008 doi: 10.1016/j.ijthermalsci.2009.03.008
![]() |
[10] |
A. Vedavarz, S. Kumar, M. K. Moallemi, Significance of non-Fourier heat waves in conduction, J. Heat Transfer, 116 (1994), 221–224. https://doi.org/10.1115/1.2910859 doi: 10.1115/1.2910859
![]() |
[11] | D. Y. Tzou, J. C. Dowell, Computational techniques for microscale heat transfer, In: Handbook of Numerical Heat Transfer, 2000. https://doi.org/10.1002/9780470172599.ch20 |
[12] |
K. C. Liu, P. J. Cheng, Finite propagation of heat transfer in a multilayer tissue, J. Thermophys. Heat Tr., 22 (2008), 775–782. https://doi.org/10.2514/1.37267 doi: 10.2514/1.37267
![]() |
[13] |
C. Barman, P. Rath, A. Bhattacharya, A non-Fourier bioheat transfer model for cryosurgery of tumor tissue with minimum collateral damage, Comput. Meth. Prog. Bio., 200 (2021), 105857. https://doi.org/10.1016/j.cmpb.2020.105857 doi: 10.1016/j.cmpb.2020.105857
![]() |
[14] |
P. Namakshenas, A. Mojra, Microstructure-based non-Fourier heat transfer modeling of HIFU treatment for thyroid cancer, Comput. Meth. Prog. Bio., 197 (2020), 105698. https://doi.org/10.1016/j.cmpb.2020.105698 doi: 10.1016/j.cmpb.2020.105698
![]() |
[15] |
Z. S. Deng, J. Liu, Non-Fourier heat conduction effect on prediction of temperature transients and thermal stress in skin cryopreservation, J. Therm. Stresses, 26 (2003), 779–798. https://doi.org/10.1080/01495730390219377 doi: 10.1080/01495730390219377
![]() |
[16] |
A. K. Kheibari, M. Jafari, M. B. Nazari, Propagation of heat wave in composite cylinder using Cattaneo-Vernotte theory, Int. J. Heat Mass Transfer, 160 (2020), 120208. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120208 doi: 10.1016/j.ijheatmasstransfer.2020.120208
![]() |
[17] | A. Fehér, R. Kovacs, Novel evaluation method for non-Fourier effects in heat pulse experiments, 2021. https://doi.org/10.48550/arXiv.2101.01123 |
[18] | A. Fehér, D. Markovics, T. Fodor, R. Kovacs, Size effects and non-Fourier thermal behaviour in rocks, ISRM EUROCK, 2020. |
[19] |
P. Duhamel, A new finite integral transform pair for hyperbolic conduction problems in heterogeneous media, Int. J. Heat Mass Transfer, 44 (2001), 3307-3320. https://doi.org/10.1016/S0017-9310(00)00360-4 doi: 10.1016/S0017-9310(00)00360-4
![]() |
[20] |
S. Singh, Z. Li, A high order compact scheme for a thermal wave model of bio-heat transfer with an interface, Numer. Math. Theory Me., 11 (2018), 321–337. https://doi.org/10.4208/nmtma.OA-2017-0048 doi: 10.4208/nmtma.OA-2017-0048
![]() |
[21] |
M. Asif, F. Bilal, R. Bilal, N. Haider, S. A. M. Abdelmohsenc, S. M. Eldind, An efficient algorithm for the numerical solution of telegraph interface model with discontinuous coefficients via Haar wavelets, Alex. Eng. J., 72 (2023), 275–285. https://doi.org/10.1016/j.aej.2023.03.074 doi: 10.1016/j.aej.2023.03.074
![]() |
[22] |
T. Ahmod, J. Dutta, Finite element method for hyperbolic heat conduction model with discontinuous coefficients in one dimension, Proc. Math. Sci., 132 (2022), 6. https://doi.org/10.1007/s12044-021-00646-3 doi: 10.1007/s12044-021-00646-3
![]() |
[23] |
B. Deka, J. Dutta, Finite element methods for non-Fourier thermal wave model of bio heat transfer with an interface, J. Appl. Math. Comput., 62 (2020), 701–724. https://doi.org/10.1007/s12190-019-01304-8 doi: 10.1007/s12190-019-01304-8
![]() |
[24] |
B. Deka, J. Dutta, Convergence of finite element methods for hyperbolic heat conduction model with an interface, Comput. Math. Appl., 79 (2020), 3139–3159. https://doi.org/10.1016/j.camwa.2020.01.013 doi: 10.1016/j.camwa.2020.01.013
![]() |
[25] |
J. Dutta, B. Deka, Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium, J. Sci. Comput., 87 (2021), 58. https://doi.org/10.1007/s10915-021-01460-9 doi: 10.1007/s10915-021-01460-9
![]() |
[26] |
S. Han, Finite volume solution of 2-D hyperbolic conduction in a heterogeneous medium, Numer. Heat Tr. A-Appl., 70 (2016), 723–737. https://doi.org/10.1080/10407782.2016.1193347 doi: 10.1080/10407782.2016.1193347
![]() |
[27] |
H. Sauerland, T. P. Fries, The stable XFEM for two-phase flows, Comput. Fluids, 87 (2013), 41–49. https://doi.org/10.1016/j.compfluid.2012.10.017 doi: 10.1016/j.compfluid.2012.10.017
![]() |
[28] |
B. Ayuso de Dios, M. Holst, Y. Zhu, L. Zikatanov, Multilevel preconditioners for discontinuous Galerkin approximations of elliptic problems with jump coefficients, Math. Comp., 83 (2014), 1083–1120. https://doi.org/10.1090/S0025-5718-2013-02760-3 doi: 10.1090/S0025-5718-2013-02760-3
![]() |
[29] |
M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), 699–731. https://doi.org/10.1137/S0036142903425409 doi: 10.1137/S0036142903425409
![]() |
[30] |
Y. Maday, F. Magoules, Optimized Schwarz methods without overlap for highly heterogeneous media, Comput. Method. Appl. M., 196 (2007), 1541–1553. https://doi.org/10.1016/j.cma.2005.05.059 doi: 10.1016/j.cma.2005.05.059
![]() |
[31] |
M. J. Gander, O. Dnbois, Optimized Schwarz methods for a diffusion problem with discontinuous coefficient, Numer. Algor., 69 (2015), 109–144. https://doi.org/10.1007/s11075-014-9884-2 doi: 10.1007/s11075-014-9884-2
![]() |
[32] |
M. J. Gander, T. Vanzan, Heterogeneous optimized Schwarz methods for second order elliptic PDEs, SIAM J. Sci. Comput., 41 (2019), A2329–A2354. https://doi.org/10.1137/18M122114X doi: 10.1137/18M122114X
![]() |
[33] |
M. J. Gander, S. B. Lunowa, Ch. Rohde, Non-overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations, SIAM J. Sci. Comput., 45 (2023), A49–A73. https://doi.org/10.1137/21M1415005 doi: 10.1137/21M1415005
![]() |
[34] | M. J. Gander, L. Halpern, M. Kern, A Schwarz waveform relaxation method for advection-diffusion-reaction problems with discontinuous coefficients and non-matching grids, In: Domain Decomposition Methods in Science and Engineering, Berlin: Springer, 2007,283–290. https://doi.org/10.1007/978-3-540-34469-8_33 |
[35] | L. Halpern, C. Japhet, Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation for heterogeneous problems, In: Domain Decomposition Methods in Science and Engineering XVII, Berlin: Springer, 2008,211–219. https://doi.org/10.1007/978-3-540-75199-1_23 |
[36] |
L. Halpern, C. Japhet, J. Szeftel, Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems, SIAM J. Numer. Anal., 50 (2012), 2588–2611. https://doi.org/10.1137/120865033 doi: 10.1137/120865033
![]() |
[37] |
M. D. Al-Khaleel, M. J. Gander, and P. M. Kumbhar, Optimized Schwarz waveform relaxation methods for the telegrapher equation, SIAM J. Sci. Comput., 46 (2024), A3528–A3551. https://doi.org/10.1137/24M1642962 doi: 10.1137/24M1642962
![]() |
[38] | M. J. Gander, J. Lin, S. L. Wu, X. Yue, T. Zhou, Parareal: parallel-in-time algorithms based on the diagonalization technique, 2020. https://doi.org/10.48550/arXiv.2005.09158 |
[39] |
M. J. Gander, S. Vandewalle, Analysis of the Parareal time-parallel time integration method, SIAM J. Sci. Comput., 29 (2007), 556–578. https://doi.org/10.1137/05064607X doi: 10.1137/05064607X
![]() |
[40] | G. Ciaramella, M. J. Gander, I. Mazzieri, Unmapped tent pitching schemes by waveform relaxation, In: Decomposition Methods in Science and Engineering XXVII, Cham: Springer, 2024,455–462. https://doi.org/10.1007/978-3-031-50769-4_54 |
[41] |
M. J. Gander, L. Halpern, Optimized Schwarz waveform relaxation methods for advection-reaction-diffusion problems, SIAM J. Numer. Anal., 45 (2007), 666–697. https://doi.org/10.1137/050642137 doi: 10.1137/050642137
![]() |
[42] |
D. Bennequin, M. J. Gander, L. Gouarin, L. Halpern, Optimized Schwarz waveform relaxation for advection-reaction-diffusion equations in two dimensions, Numer. Math., 134 (2016), 513–567. https://doi.org/10.1007/s00211-015-0784-8 doi: 10.1007/s00211-015-0784-8
![]() |
[43] |
V. Martin, An optimized Schwarz waveform relaxation method for the unsteady convection-diffusion equation in two dimensions, Appl. Numer. Math., 52 (2005), 401–428. https://doi.org/10.1016/j.apnum.2004.08.022 doi: 10.1016/j.apnum.2004.08.022
![]() |
[44] |
Y. Xu, The influence of domain truncation on the performance of optimized Schwarz methods, Electron. T. Numer. Ana., 49 (2018), 182–209. https://doi.org/10.1553/etna_vol49s182 doi: 10.1553/etna_vol49s182
![]() |
[45] |
W. B. Dong, H. S. Tang, Convergence analysis of Schwarz waveform relaxation method to compute coupled advection-diffusion-reaction equations, Math. Comput. Simul., 218 (2024), 462–481. https://doi.org/10.1016/j.matcom.2023.11.026 doi: 10.1016/j.matcom.2023.11.026
![]() |
[46] |
M. J. Gander, V. Martin, Why Fourier mode analysis in time is different when studying Schwarz waveform relaxation, J. Comput. Phys., 491 (2023), 112316. https://doi.org/10.1016/j.jcp.2023.112316 doi: 10.1016/j.jcp.2023.112316
![]() |
1. | Bang-Yen Chen, Majid Ali Choudhary, Afshan Perween, A Comprehensive Review of Golden Riemannian Manifolds, 2024, 13, 2075-1680, 724, 10.3390/axioms13100724 |