Research article Special Issues

Optimized Schwarz waveform relaxation for heterogeneous Cattaneo-Vernotte non-Fourier heat transfer

  • The non-Fourier heat transfer in heterogeneous media is crucial for material science and biomedical engineering. The optimized Schwarz waveform relaxation (OSWR) method is an efficient approach for solving such problems due to its divide-and-conquer strategy. Despite the wave-type nature of non-Fourier heat transfer, the short phase-lag time leads to more parabolic-like behavior. To address this, in the OSWR method, we employed Robin boundary conditions to transmit information along the interface. Using Fourier analysis, we derived and rigorously optimized the convergence factors of the OSWR algorithm with scaled Robin and Robin-Robin transmission conditions. The resulting optimized transmission parameters were provided in explicit form for direct application in the OSWR algorithm, along with corresponding convergence factor estimates. Interestingly, the results show that a larger heterogeneity contrast actually accelerates the convergence, rather than deteriorating it. Furthermore, the OSWR algorithm with the Robin-Robin condition exhibits mesh-independent convergence asymptotically. However, the presence of the phase-lag time is found to slow down the convergence of the OSWR algorithm. These theoretical findings were validated through numerical experiments.

    Citation: Feng Hu, Yingxiang Xu. Optimized Schwarz waveform relaxation for heterogeneous Cattaneo-Vernotte non-Fourier heat transfer[J]. AIMS Mathematics, 2025, 10(3): 7370-7395. doi: 10.3934/math.2025338

    Related Papers:

    [1] Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996
    [2] Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416
    [3] Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373
    [4] Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085
    [5] Oğuzhan Bahadır . On lightlike geometry of indefinite Sasakian statistical manifolds. AIMS Mathematics, 2021, 6(11): 12845-12862. doi: 10.3934/math.2021741
    [6] Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144
    [7] Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah . Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376
    [8] Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
    [9] Mehmet Atçeken, Tuğba Mert . Characterizations for totally geodesic submanifolds of a K-paracontact manifold. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430
    [10] Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603
  • The non-Fourier heat transfer in heterogeneous media is crucial for material science and biomedical engineering. The optimized Schwarz waveform relaxation (OSWR) method is an efficient approach for solving such problems due to its divide-and-conquer strategy. Despite the wave-type nature of non-Fourier heat transfer, the short phase-lag time leads to more parabolic-like behavior. To address this, in the OSWR method, we employed Robin boundary conditions to transmit information along the interface. Using Fourier analysis, we derived and rigorously optimized the convergence factors of the OSWR algorithm with scaled Robin and Robin-Robin transmission conditions. The resulting optimized transmission parameters were provided in explicit form for direct application in the OSWR algorithm, along with corresponding convergence factor estimates. Interestingly, the results show that a larger heterogeneity contrast actually accelerates the convergence, rather than deteriorating it. Furthermore, the OSWR algorithm with the Robin-Robin condition exhibits mesh-independent convergence asymptotically. However, the presence of the phase-lag time is found to slow down the convergence of the OSWR algorithm. These theoretical findings were validated through numerical experiments.



    The concept of lightlike submanifolds in geometry was initially established and expounded upon in a work produced by Duggal and Bejancu [1]. A nondegenerate screen distribution was employed in order to produce a nonintersecting lightlike transversal vector bundle of the tangent bundle. They defined the CR-lightlike submanifold as a generalization of lightlike real hypersurfaces of indefinite Kaehler manifolds and showed that CR-lightlike submanifolds do not contain invariant and totally real lightlike submanifolds. Further, they defined and studied GCR-lightlike submanifolds of Kaehler manifolds as an umbrella of invariant submanifolds, screen real submanifolds, and CR-lightlike and SCR-lightlike submanifolds in [2,3], respectively. Subsequently, B. Sahin and R. Gunes investigated geodesic property of CR-lightlike submanifolds [4] and the integrability of distributions in CR-lightlike submanifolds [5]. In the year 2010, Duggal and Sahin published a book [6]pertaining to the field of differential geometry, specifically focusing on the study of lightlike submanifolds. This book provides a comprehensive examination of recent advancements in lightlike geometry, encompassing novel geometric findings, accompanied by rigorous proofs, and exploring their practical implications in the field of mathematical physics. The investigation of the geometric properties of lightlike hypersurfaces and lightlike submanifolds has been the subject of research in several studies (see [7,8,9,10,11,12,13,14]).

    Crasmareanu and Hretcanu[15] created a special example of polynomial structure [16] on a differentiable manifold, and it is known as the golden structure (¯M,g). Hretcanu C. E. [17] explored Riemannian submanifolds with the golden structure. M. Ahmad and M. A. Qayyoom studied geometrical properties of Riemannian submanifolds with golden structure [18,19,20,21] and metallic structure [22,23]. The integrability of golden structures was examined by A. Gizer et al. [24]. Lightlike hypersurfaces of a golden semi-Riemannian manifold was investigated by N. Poyraz and E. Yasar [25]. The golden structure was also explored in the studies [26,27,28,29].

    In this research, we investigate the CR-lightlike submanifolds of a golden semi-Riemannian manifold, drawing inspiration from the aforementioned studies. This paper has the following outlines: Some preliminaries of CR-lightlike submanifolds are defined in Section 2. We establish a number of properties of CR-lightlike submanifolds on golden semi-Riemannian manifolds in Section 3. In Section 4, we look into several CR-lightlike submanifolds characteristics that are totally umbilical. We provide a complex illustration of CR-lightlike submanifolds of a golden semi-Riemannian manifold in the final section.

    Assume that (¯,g) is a semi-Riemannian manifold with (k+j)-dimension, k,j1, and g as a semi-Riemannian metric on ¯. We suppose that ¯ is not a Riemannian manifold and the symbol q stands for the constant index of g.

    [15] Let ¯ be endowed with a tensor field ψ of type (1,1) such that

    ψ2=ψ+I, (2.1)

    where I represents the identity transformation on Γ(Υ¯). The structure ψ is referred to as a golden structure. A metric g is considered ψ-compatible if

    g(ψγ,ζ)=g(γ,ψζ) (2.2)

    for all γ, ζ vector fields on Γ(Υ¯), then (¯,g,ψ) is called a golden Riemannian manifold. If we substitute ψγ into γ in (2.2), then from (2.1) we have

    g(ψγ,ψζ)=g(ψγ,ζ)+g(γ,ζ). (2.3)

    for any γ,ζΓ(Υ¯).

    If (¯,g,ψ) is a golden Riemannian manifold and ψ is parallel with regard to the Levi-Civita connection ¯ on ¯:

    ¯ψ=0, (2.4)

    then (¯,g,ψ) is referred to as a semi-Riemannian manifold with locally golden properties.

    The golden structure is the particular case of metallic structure [22,23] with p=1, q=1 defined by

    ψ2=pψ+qI,

    where p and q are positive integers.

    [1] Consider the case where is a lightlike submanifold of k of ¯. There is the radical distribution, or Rad(Υ), on that applies to this situation such that Rad(Υ)=ΥΥ, p. Since RadΥ has rank r0, is referred to as an r-lightlike submanifold of ¯. Assume that is a submanifold of that is r-lightlike. A screen distribution is what we refer to as the complementary distribution of a Rad distribution on Υ, then

    Υ=RadΥS(Υ).

    As S(Υ) is a nondegenerate vector sub-bundle of Υ¯|, we have

    Υ¯|=S(Υ)S(Υ),

    where S(Υ) consists of the orthogonal vector sub-bundle that is complementary to S(Υ) in Υ¯|. S(Υ),S(Υ) is an orthogonal direct decomposition, and they are nondegenerate.

    S(Υ)=S(Υ)S(Υ).

    Let the vector bundle

    tr(Υ)=ltr(Υ)S(Υ).

    Thus,

    Υ¯=Υtr(Υ)=S(Υ)S(Υ)(Rad(Υ)ltr(Υ).

    Assume that the Levi-Civita connection is ¯ on ¯. We have

    ¯γζ=γζ+h(γ,ζ),γ,ζΓ(Υ) (2.5)

    and

    ¯γζ=Ahζ+γh,γΓ(Υ)andhΓ(tr(Υ)), (2.6)

    where {γζ,Ahγ} and {h(γ,ζ),γh} belongs to Γ(Υ) and Γ(tr(Υ)), respectively.

    Using projection L:tr(Υ)ltr(Υ), and S:tr(Υ)S(Υ), we have

    ¯γζ=γζ+hl(γ,ζ)+hs(γ,ζ), (2.7)
    ¯γ=Aγ+lγ+λs(γ,), (2.8)

    and

    ¯γχ=Aχγ+sγ+λl(γ,χ) (2.9)

    for any γ,ζΓ(Υ),Γ(ltr(Υ)), and χΓ(S(Υ)), where hl(γ,ζ)=Lh(γ,ζ),hs(γ,ζ)=Sh(γ,ζ),lγ,λl(γ,χ)Γ(ltr(T)),sγλs(γ,)Γ(S(Υ)), and γζ,Aγ,AχγΓ(Υ).

    The projection morphism of Υ on the screen is represented by P, and we take the distribution into consideration.

    γPζ=γPζ+h(γ,Pζ),γξ=Aξγ+tγξ, (2.10)

    where γ,ζΓ(Υ),ξΓ(Rad(Υ)).

    Thus, we have the subsequent equation.

    g(h(γ,Pζ),)=g(Aγ,Pζ), (2.11)

    Consider that ¯ is a metric connection. We get

    (γg)(ζ,η)=g(hl(γ,ζ),η)+g(hl(γ,ζη),ζ). (2.12)

    Using the characteristics of a linear connection, we can obtain

    (γhl)(ζ,η)=lγ(hl(ζ,η))hl(¯γζ,η)hl(ζ,¯γη), (2.13)
    (γhs)(ζ,η)=sγ(hs(ζ,η))hs(¯γζ,η)hs(ζ,¯γη). (2.14)

    Based on the description of a CR-lightlike submanifold in [4], we have

    Υ=λλ,

    where λ=Rad(Υ)ψRad(Υ)λ0.

    S and Q stand for the projection on λ and λ, respectively, then

    ψγ=fγ+wγ

    for γ,ζΓ(Υ), where fγ=ψSγ and wγ=ψQγ.

    On the other hand, we have

    ψζ=Bζ+Cζ

    for any ζΓ(tr(Υ)), BζΓ(Υ) and CζΓ(tr(Υ)), unless 1 and 2 are denoted as ψL1 and ψL2, respectively.

    Lemma 2.1. Assume that the screen distribution is totally geodesic and that is a CR-lightlike submanifold of the golden semi-Riemannian manifold, then γζΓ(S(ΥN)), where γ,ζΓ(S(Υ)).

    Proof. For γ,ζΓ(S(Υ)),

    g(γζ,)=g(¯γζh(γ,ζ),)=g(ζ,¯γ).

    Using (2.8),

    g(γζ,)=g(ζ,Aγ+γ)=g(ζ,Aγ).

    Using (2.11),

    g(γζ,)=g(h(γ,ζ),).

    Since screen distribution is totally geodesic, h(γ,ζ)=0,

    g(¯γζ,)=0.

    Using Lemma 1.2 in [1] p.g. 142, we have

    γζΓ(S(Υ)),

    where γ,ζΓ(S(Υ)).

    Theorem 2.2. Assume that is a locally golden semi-Riemannian manifold ¯ with CR-lightlike properties, then γψγ=ψγγ for γΓ(λ0).

    Proof. Assume that γ,ζΓ(λ0). Using (2.5), we have

    g(γψγ,ζ)=g(¯γψγh(γ,ψγ),ζ)g(γψγ,ζ)=g(ψ(¯γγ),ζ)g(γψγ,ζ)=g(ψ(γγ),ζ),g(γψγψ(γγ),ζ)=0.

    Nondegeneracy of λ0 implies

    γψγ=ψ(γγ),

    where γΓ(λ0).

    Definition 3.1. [4] A CR-lightlike submanifold of a golden semi-Riemannian manifold is mixed geodesic if h satisfies

    h(γ,α)=0,

    where h stands for second fundamental form, γΓ(λ), and αΓ(λ).

    For γ,ζΓ(λ) and α,βΓ(λ) if

    h(γ,ζ)=0

    and

    h(α,β)=0,

    then it is known as λ-geodesic and λ-geodesic, respectively.

    Theorem 3.2. Assume is a CR-lightlike submanifold of ¯, which is a golden semi-Riemannian manifold. is totally geodesic if

    (Lg)(γ,ζ)=0

    and

    (Lχg)(γ,ζ)=0

    for α,βΓ(Υ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. Since is totally geodesic, then

    h(γ,ζ)=0

    for γ,ζΓ(Υ).

    We know that h(γ,ζ)=0 if

    g(h(γ,ζ),ξ)=0

    and

    g(h(γ,ζ),χ)=0.
    g(h(γ,ζ),ξ)=g(¯γζγζ,ξ)=g(ζ,[γ,ξ]+¯ξγ=g(ζ,[γ,ξ])+g(γ,[ξ,ζ])+g(¯ζξ,γ)=(Lξg)(γ,ζ)+g(¯ζξ,γ)=(Lξg)(γ,ζ)g(ξ,h(γ,ζ)))2g(h(γ,ζ)=(Lξg)(γ,ζ).

    Since g(h(γ,ζ),ξ)=0, we have

    (Lξg)(γ,ζ)=0.

    Similarly,

     g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,[γ,χ])+g(γ,[χ,ζ])+g(¯ζχ,γ)=(Lχg)(γ,ζ)+g(¯ζχ,γ)2g(h(γ,ζ),χ)=(Lχg)(γ,ζ).

    Since g(h(γ,ζ),χ)=0, we get

    (Lχg)(γ,ζ)=0

    for χΓ(S(Υ)).

    Lemma 3.3. Assume that ¯ is a golden semi-Riemannian manifold whose submanifold is CR-lightlike, then

    g(h(γ,ζ),χ)=g(Aχγ,ζ)

    for γΓ(λ),ζΓ(λ) and χΓ(S(Υ)).

    Proof. Using (2.5), we get

    g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,¯γχ).

    From (2.9), it follows that

    g(h(γ,ζ),χ)=g(ζ,Aχγ+sγχ+λs(γ,χ))=g(ζ,Aχγ)g(ζ,sγχ)g(ζ,λs(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ),

    where γΓ(λ),ζΓ(λ),χΓ(S(Υ)).

    Theorem 3.4. Assume that is a CR-lightlike submanifold of the golden semi-Riemannian manifold and ¯ is mixed geodesic if

    AξγΓ(λ0ψL1)

    and

    AχγΓ(λ0Rad(Υ)ψL1)

    for γΓ(λ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. For γΓ(λ),ζΓ(λ), and χΓ(S(Υ)), we get

    Using (2.5),

    g(h(γ,ζ),ξ)=g(¯γζγζ,ξ)=g(ζ,¯γξ).

    Again using (2.5), we obtain

    g(h(γ,ζ),ξ)=g(ζ,γξ+h(γ,ξ))=g(ζ,γξ).

    Using (2.10), we have

    g(h(γ,ζ),ξ)=g(ζ,Aξγ+tγξ)g(ζ,Aξγ)=0.

    Since the CR-lightlike submanifold is mixed geodesic, we have

    g(h(γ,ζ),ξ)=0
    g(ζ,Aξγ)=0
    AξγΓ(λ0ψL1),

    where γΓ(λ),ζΓ(λ).

    From (2.5), we get

    g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,¯γχ).

    From (2.9), we get

    g(h(γ,ζ),χ)=g(ζ,Aχγ+sγχ+λl(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ).

    Since, is mixed geodesic, then g(h(γ,ζ),χ)=0

    g(ζ,Aχγ)=0.
    AχγΓ(λ0Rad(Υ)ψ1).

    Theorem 3.5. Suppose that is a CR-lightlike submanifold of a golden semi-Riemannian manifold ¯, then is λ-geodesic if Aχη and Aξη have no component in 2ψRad(Υ) for ηΓ(λ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. From (2.5), we obtain

    g(h(η,β),χ)=g(¯ηβγζ,χ)=¯g(γζ,χ),

    where χ,βΓ(λ).

    Using (2.9), we have

    g(h(η,β),χ)=g(β,Aχη+sη+λl(η,χ))g(h(η,β),χ)=g(β,Aχη). (3.1)

    Since is λ-geodesic, then g(h(η,β),χ)=0.

    From (3.1), we get

    g(β,Aχη)=0.

    Now,

    g(h(η,β),ξ)=g(¯ηβηβ,ξ)=g(¯ηβ,ξ)=g(β,¯ηξ).

    From (2.10), we get

    g(h(η,β),ξ)=g(η,Aξη+tηξ)g(h(η,β),ξ)=g(Aξβ,η).

    Since is λ- geodesic, then

    g(h(η,β),ξ)=0
    g(Aξβ,η)=0.

    Thus, Aχη and Aξη have no component in M2ψRad(Υ).

    Lemma 3.6. Assume that ¯ is a golden semi-Riemannian manifold that has a CR-lightlike submanifold . Due to the distribution's integrability, the following criteria hold.

    (ⅰ) ψg(λl(ψγ,χ),ζ)g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)g(Aχγ,ψζ),

    (ⅱ) g(λl(ψγ),ξ)=g(Aχγ,ψξ),

    (ⅲ) g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ),

    where γ,ζΓ(Υ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. From Eq (2.9), we obtain

    g(λl(ψγ,χ),ζ)=g(¯ψγχ+Aχψγsψγχ,ζ)=g(χ,¯ψγζ)+g(Aχψγ,ζ).

    Using (2.5), we get

    g(λl(ψγ,χ),ζ)=g(χ,ψγζ+h(ψγ,ζ))+g(Aχψγ,ζ)=g(χ,h(γ,ψζ))+g(Aχψγ,ζ).

    Again, using (2.5), we get

    g(λl(ψγ,χ),ζ)=g(χ,¯γψζγψζ)+g(Aχψγ,ζ)=g(¯γχ,ψζ)+g(Aχψγ,ζ).

    Using (2.9), we have

    g(λl(ψγ,χ),ζ)=g(Aχγ+sγχ+λl(γ,χ),ψζ)+g(λl(ψγ,χ),ζ)g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)g(Aχγ,ψζ).

    (ⅱ) Using (2.9), we have

    g(λl(ψγ,χ),ξ)=g(Aχψγsψγχ+ψγχ,ξ)=g(Aχψγ,ξ)g(χ,¯ψγξ).

    Using (2.10), we get

    g(λl(ψγ,χ),ξ)=g(Aχψγ,ξ)+g(χ,Aξψγ)g(χ,tψγ,ξ)g(λl(ψγ),ξ)=g(Aχγ,ψξ).

    (ⅲ) Replacing ζ by ψξ in (ⅰ), we have

    ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),ψ2ξ)=g(Aχψγ,ψξ)g(Aχγ,ψ2ξ).

    Using Definition 2.1 in [18] p.g. 9, we get

    ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),(ψ+I)ξ)=g(Aχψγ,ψξ)g(Aχγ,(ψ+I)ξ)ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),ψξ)g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ)g(Aχγ,ξ).g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ).

    Definition 4.1. [12] A CR-lightlike submanifold of a golden semi-Riemannian manifold is totally umbilical if there is a smooth transversal vector field Htr Γ(Υ) that satisfies

    h(χ,η)=Hg(χ,η),

    where h is stands for second fundamental form and χ, η Γ(Υ).

    Theorem 4.2. Assume that the screen distribution is totally geodesic and that is a totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯, then

    Aψηχ=Aψχη,χ,ηΓλ.

    Proof. Given that ¯ is a golden semi-Riemannian manifold,

    ψ¯ηχ=¯ηψχ.

    Using (2.5) and (2.6), we have

    ψ(ηχ)+ψ(h(η,χ))=Aψχη+tηψχ. (4.1)

    Interchanging η and χ, we obtain

    ψ(χη)+ψ(h(χ,η))=Aψηχ+tχψη. (4.2)

    Subtracting Eqs (4.1) and (4.2), we get

    ψ(ηχχη)tηψχ+tχψη=AψηχAψχη. (4.3)

    Taking the inner product with γΓ(λ0) in (4.3), we have

    g(ψ(χη,γ)g(ψ(χη,γ)=g(Aψηχ,γ)g(Aψχη,γ).g(AψηχAψχη,γ)=g(χη,ψγ)g(χη,ψγ). (4.4)

    Now,

    g(χη,ψγ)=g(¯χηh(χ,η),ψγ)g(χη,ψγ)=g(η,(¯χψ)γψ(¯χγ)).

    Since ψ is parallel to ¯, i.e., ¯γψ=0,

    g(χη,ψγ)=ψ(¯χγ)).

    Using (2.7), we have

    g(χη,ψγ)=g(ψη,χγ+hs(χ,γ)+hl(χ,γ))g(χη,ψγ)=g(ψη,χγ)g(ψη,hs(χ,γ))g(ψη,hl(χ,γ)). (4.5)

    Since is a totally umbilical CR-lightlike submanifold and the screen distribution is totally geodesic,

    hs(χ,γ)=Hsg(χ,γ)=0

    and

    hl(χ,γ)=Hlg(χ,γ)=0,

    where χΓ(λ) and γΓ(λ0).

    From (4.5), we have

    g(χη,ψγ)=g(ψη,χγ).

    From Lemma 2.1, we get

    g(χη,ψγ)=0.

    Similarly,

    g(ηχ,ψγ)=0

    Using (4.4), we have

    g(AψηχAψχη,γ)=0.

    Since λ0 is nondegenerate,

    AψηχAψχη=0
    Aψηχ=Aψχη.

    Theorem 4.3. Let be the totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯. Consequently, 's sectional curvature, which is CR-lightlike, vanishes, resulting in ¯K(π)=0, for the entire CR-lightlike section π.

    Proof. We know that is a totally umbilical CR-lightlike submanifold of ¯, then from (2.13) and (2.14),

    (γhl)(ζ,ω)=g(ζ,ω)lγHlHl{(γg)(ζ,ω)}, (4.6)
    (γhs)(ζ,ω)=g(ζ,ω)sγHsHs{(γg)(ζ,ω)} (4.7)

    for a CR-lightlike section π=γω,γΓ(λ0),ωΓ(λ).

    From (2.12), we have (Ug)(ζ,ω)=0. Therefore, from (4.6) and (4.7), we get

    (γhl)(ζ,ω)=g(ζ,ω)lγHl, (4.8)
    (γhs)(ζ,ω)=g(ζ,ω)sγHs. (4.9)

    Now, from (4.8) and (4.9), we get

    {¯R(γ,ζ)ω}tr=g(ζ,ω)lγHlg(γ,ω)lζHl+g(ζ,ω)λl(γ,Hs)g(γ,ω)λl(ζ,Hs)+g(ζ,ω)sγHsg(γ,ω)sζHs+g(ζ,ω)λs(γ,Hl)g(γ,ω)λs(ζ,Hl). (4.10)

    For any βΓ(tr(Υ)), from Equation (4.10), we get

    ¯R(γ,ζ,ω,β)=g(ζ,ω)g(lγHl,β)g(γ,ω)g(lζHl,β)+g(ζ,ω)g(λl(γ,Hs),ζ)g(γ,ω)g(λl(ζ,Hs),β)+g(ζ,ω)g(sγHs,β)g(γ,ω)g(sζHs,β)+g(ζ,ω)g(λs(γ,Hl),β)g(γ,ω)g(λs(ζ,Hl,β).
    R(γ,ω,ψγ,ψω)=g(ω,ψγ)g(lγHl,ψω)g(γ,ψγ)g(lωHl,ψω)+g(ω,ψγ)g(λl(γ,Hs),ψω)g(γ,ψγ)g(λl(ω,Hs),ψω)+g(ω,ψγ)g(sγHs,ψω)g(γ,ψγ)g(sωHs,ψω)+g(ω,ψγ)g(λs(γ,Hl),ψω)g(γ,ψγ)g(λs(ω,Hl,ψU).

    For any unit vectors γΓ(λ) and ωΓ(λ), we have

    ¯R(γ,ω,ψγ,ψω)=¯R(γ,ω,γ,ω)=0.

    We have

    K(γ)=KN(γζ)=g(¯R(γ,ζ)ζ,γ),

    where

    ¯R(γ,ω,γ,ω)=g(¯R(γ,ω)γ,ω)

    or

    ¯R(γ,ω,ψγ,ψω)=g(¯R(γ,ω)ψγ,ψω)

    i.e.,

    ¯K(π)=0

    for all CR-sections π.

    Example 5.1. We consider a semi-Riemannian manifold R62 and a submanifold of co-dimension 2 in R62, given by equations

    υ5=υ1cosαυ2sinαυ3z4tanα,
    υ6=υ1sinαυ2cosαυ3υ4,

    where αR{π2+kπ; kz}. The structure on R62 is defined by

    ψ(υ1,υ2,υ3,υ4,υ5,υ6)=(¯ϕ υ1,¯ϕυ2,ϕυ3,ϕυ4,ϕυ5,ϕυ6).

    Now,

    ψ2(υ1,υ2,υ3,υ4,υ5,υ6)=((¯ϕ+1) υ1,(¯ϕ+1)υ2,(ϕ+1)υ3,(ϕ+1)υ4,
    (ϕ+1)υ5,(ϕ+1)υ6)
    ψ2=ψ+I.

    It follows that (R62,ψ) is a golden semi-Reimannian manifold.

    The tangent bundle Υ is spanned by

    Z0=sinα υ5cosα υ6ϕ υ2,
    Z1=ϕ sinα υ5ϕ cosα υ6+ υ2,
    Z2=υ5¯ϕ sinα υ2+υ1,
    Z3=¯ϕ cosα υ2+υ4+iυ6.

    Thus, is a 1-lightlike submanifold of R62 with RadΥ=Span{X0}. Using golden structure of R62, we obtain that X1=ψ(X0). Thus, ψ(RadΥ) is a distribution on . Hence, the is a CR-lightlike submanifold.

    In general relativity, particularly in the context of the black hole theory, lightlike geometry finds its uses. An investigation is made into the geometry of the golden semi-Riemannian manifolds that are CR-lightlike in nature. There are many intriguing findings on completely umbilical and completely geodesic CR-lightlike submanifolds that are examined. We present a required condition for a CR-lightlike submanifold to be completely geodesic. Moreover, it is demonstrated that the sectional curvature K of an entirely umbilical CR-lightlike submanifold of a golden semi-Riemannian manifold ¯ disappears.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The present work (manuscript number IU/R&D/2022-MCN0001708) received financial assistance from Integral University in Lucknow, India as a part of the seed money project IUL/IIRC/SMP/2021/010. All of the authors would like to express their gratitude to the university for this support. The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper. The present manuscript represents the corrected version of preprint 10.48550/arXiv.2210.10445. The revised version incorporates the identities of all those who have made contributions, taking into account their respective skills and understanding.

    Authors have no conflict of interests.



    [1] A. Narasimhan, S. Sadasivam, Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation, Int. J. Heat Mass Tran., 60 (2013), 591–597. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.010 doi: 10.1016/j.ijheatmasstransfer.2013.01.010
    [2] J. Zhou, Y. Zhang, J. Chen, Non-Fourier heat conduction effect on laser-induced thermal damage in biological tissues, Numer. Heat Tr. A-Appl., 54 (2008), 1–19. https://doi.org/10.1080/10407780802025911 doi: 10.1080/10407780802025911
    [3] T. Xue, X. Zhang, K. K. Tamma, Investigation of thermal interfacial problems involving non-locality in space and time, Int. Commun. Heat Mass, 99 (2018), 37–42. https://doi.org/10.1016/j.icheatmasstransfer.2018.10.008 doi: 10.1016/j.icheatmasstransfer.2018.10.008
    [4] Z. Y. Guo, Y. S. Xu, Non-Fourier heat conduction in IC chip, J. Electron. Packag. Sep., 117 (1995), 174–177. https://doi.org/10.1115/1.2792088 doi: 10.1115/1.2792088
    [5] H. D. Wang, B. Y. Cao, Z. Y. Guo, Non-Fourier heat conduction in carbon nanotubes, J. Heat Transfer, 134 (2012), 051004. https://doi.org/10.1115/1.4005634 doi: 10.1115/1.4005634
    [6] C. Cattaneo, A form of heat-conduction equations which eliminates the paradox of instantaneous propagation, Comptes Rendus, 247 (1958), 431.
    [7] P. Vernotte, Some possible complications in the phenomena of thermal conduction, Compte Rendus, 252 (1961), 2190–2191.
    [8] M. Ozisik, D. Y. Tzou, On the wave theory in heat conduction, J. Heat Transfer, 116 (1994), 526–535. https://doi.org/10.1115/1.2910903 doi: 10.1115/1.2910903
    [9] J. Ordonez-Miranda, J. Alvarado-Gil, Thermal wave oscillations and thermal relaxation time determination in a hyperbolic heat transport model, Int. J. Therm. Sci., 48 (2009), 2053–2062. https://doi.org/10.1016/j.ijthermalsci.2009.03.008 doi: 10.1016/j.ijthermalsci.2009.03.008
    [10] A. Vedavarz, S. Kumar, M. K. Moallemi, Significance of non-Fourier heat waves in conduction, J. Heat Transfer, 116 (1994), 221–224. https://doi.org/10.1115/1.2910859 doi: 10.1115/1.2910859
    [11] D. Y. Tzou, J. C. Dowell, Computational techniques for microscale heat transfer, In: Handbook of Numerical Heat Transfer, 2000. https://doi.org/10.1002/9780470172599.ch20
    [12] K. C. Liu, P. J. Cheng, Finite propagation of heat transfer in a multilayer tissue, J. Thermophys. Heat Tr., 22 (2008), 775–782. https://doi.org/10.2514/1.37267 doi: 10.2514/1.37267
    [13] C. Barman, P. Rath, A. Bhattacharya, A non-Fourier bioheat transfer model for cryosurgery of tumor tissue with minimum collateral damage, Comput. Meth. Prog. Bio., 200 (2021), 105857. https://doi.org/10.1016/j.cmpb.2020.105857 doi: 10.1016/j.cmpb.2020.105857
    [14] P. Namakshenas, A. Mojra, Microstructure-based non-Fourier heat transfer modeling of HIFU treatment for thyroid cancer, Comput. Meth. Prog. Bio., 197 (2020), 105698. https://doi.org/10.1016/j.cmpb.2020.105698 doi: 10.1016/j.cmpb.2020.105698
    [15] Z. S. Deng, J. Liu, Non-Fourier heat conduction effect on prediction of temperature transients and thermal stress in skin cryopreservation, J. Therm. Stresses, 26 (2003), 779–798. https://doi.org/10.1080/01495730390219377 doi: 10.1080/01495730390219377
    [16] A. K. Kheibari, M. Jafari, M. B. Nazari, Propagation of heat wave in composite cylinder using Cattaneo-Vernotte theory, Int. J. Heat Mass Transfer, 160 (2020), 120208. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120208 doi: 10.1016/j.ijheatmasstransfer.2020.120208
    [17] A. Fehér, R. Kovacs, Novel evaluation method for non-Fourier effects in heat pulse experiments, 2021. https://doi.org/10.48550/arXiv.2101.01123
    [18] A. Fehér, D. Markovics, T. Fodor, R. Kovacs, Size effects and non-Fourier thermal behaviour in rocks, ISRM EUROCK, 2020.
    [19] P. Duhamel, A new finite integral transform pair for hyperbolic conduction problems in heterogeneous media, Int. J. Heat Mass Transfer, 44 (2001), 3307-3320. https://doi.org/10.1016/S0017-9310(00)00360-4 doi: 10.1016/S0017-9310(00)00360-4
    [20] S. Singh, Z. Li, A high order compact scheme for a thermal wave model of bio-heat transfer with an interface, Numer. Math. Theory Me., 11 (2018), 321–337. https://doi.org/10.4208/nmtma.OA-2017-0048 doi: 10.4208/nmtma.OA-2017-0048
    [21] M. Asif, F. Bilal, R. Bilal, N. Haider, S. A. M. Abdelmohsenc, S. M. Eldind, An efficient algorithm for the numerical solution of telegraph interface model with discontinuous coefficients via Haar wavelets, Alex. Eng. J., 72 (2023), 275–285. https://doi.org/10.1016/j.aej.2023.03.074 doi: 10.1016/j.aej.2023.03.074
    [22] T. Ahmod, J. Dutta, Finite element method for hyperbolic heat conduction model with discontinuous coefficients in one dimension, Proc. Math. Sci., 132 (2022), 6. https://doi.org/10.1007/s12044-021-00646-3 doi: 10.1007/s12044-021-00646-3
    [23] B. Deka, J. Dutta, Finite element methods for non-Fourier thermal wave model of bio heat transfer with an interface, J. Appl. Math. Comput., 62 (2020), 701–724. https://doi.org/10.1007/s12190-019-01304-8 doi: 10.1007/s12190-019-01304-8
    [24] B. Deka, J. Dutta, Convergence of finite element methods for hyperbolic heat conduction model with an interface, Comput. Math. Appl., 79 (2020), 3139–3159. https://doi.org/10.1016/j.camwa.2020.01.013 doi: 10.1016/j.camwa.2020.01.013
    [25] J. Dutta, B. Deka, Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium, J. Sci. Comput., 87 (2021), 58. https://doi.org/10.1007/s10915-021-01460-9 doi: 10.1007/s10915-021-01460-9
    [26] S. Han, Finite volume solution of 2-D hyperbolic conduction in a heterogeneous medium, Numer. Heat Tr. A-Appl., 70 (2016), 723–737. https://doi.org/10.1080/10407782.2016.1193347 doi: 10.1080/10407782.2016.1193347
    [27] H. Sauerland, T. P. Fries, The stable XFEM for two-phase flows, Comput. Fluids, 87 (2013), 41–49. https://doi.org/10.1016/j.compfluid.2012.10.017 doi: 10.1016/j.compfluid.2012.10.017
    [28] B. Ayuso de Dios, M. Holst, Y. Zhu, L. Zikatanov, Multilevel preconditioners for discontinuous Galerkin approximations of elliptic problems with jump coefficients, Math. Comp., 83 (2014), 1083–1120. https://doi.org/10.1090/S0025-5718-2013-02760-3 doi: 10.1090/S0025-5718-2013-02760-3
    [29] M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), 699–731. https://doi.org/10.1137/S0036142903425409 doi: 10.1137/S0036142903425409
    [30] Y. Maday, F. Magoules, Optimized Schwarz methods without overlap for highly heterogeneous media, Comput. Method. Appl. M., 196 (2007), 1541–1553. https://doi.org/10.1016/j.cma.2005.05.059 doi: 10.1016/j.cma.2005.05.059
    [31] M. J. Gander, O. Dnbois, Optimized Schwarz methods for a diffusion problem with discontinuous coefficient, Numer. Algor., 69 (2015), 109–144. https://doi.org/10.1007/s11075-014-9884-2 doi: 10.1007/s11075-014-9884-2
    [32] M. J. Gander, T. Vanzan, Heterogeneous optimized Schwarz methods for second order elliptic PDEs, SIAM J. Sci. Comput., 41 (2019), A2329–A2354. https://doi.org/10.1137/18M122114X doi: 10.1137/18M122114X
    [33] M. J. Gander, S. B. Lunowa, Ch. Rohde, Non-overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations, SIAM J. Sci. Comput., 45 (2023), A49–A73. https://doi.org/10.1137/21M1415005 doi: 10.1137/21M1415005
    [34] M. J. Gander, L. Halpern, M. Kern, A Schwarz waveform relaxation method for advection-diffusion-reaction problems with discontinuous coefficients and non-matching grids, In: Domain Decomposition Methods in Science and Engineering, Berlin: Springer, 2007,283–290. https://doi.org/10.1007/978-3-540-34469-8_33
    [35] L. Halpern, C. Japhet, Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation for heterogeneous problems, In: Domain Decomposition Methods in Science and Engineering XVII, Berlin: Springer, 2008,211–219. https://doi.org/10.1007/978-3-540-75199-1_23
    [36] L. Halpern, C. Japhet, J. Szeftel, Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems, SIAM J. Numer. Anal., 50 (2012), 2588–2611. https://doi.org/10.1137/120865033 doi: 10.1137/120865033
    [37] M. D. Al-Khaleel, M. J. Gander, and P. M. Kumbhar, Optimized Schwarz waveform relaxation methods for the telegrapher equation, SIAM J. Sci. Comput., 46 (2024), A3528–A3551. https://doi.org/10.1137/24M1642962 doi: 10.1137/24M1642962
    [38] M. J. Gander, J. Lin, S. L. Wu, X. Yue, T. Zhou, Parareal: parallel-in-time algorithms based on the diagonalization technique, 2020. https://doi.org/10.48550/arXiv.2005.09158
    [39] M. J. Gander, S. Vandewalle, Analysis of the Parareal time-parallel time integration method, SIAM J. Sci. Comput., 29 (2007), 556–578. https://doi.org/10.1137/05064607X doi: 10.1137/05064607X
    [40] G. Ciaramella, M. J. Gander, I. Mazzieri, Unmapped tent pitching schemes by waveform relaxation, In: Decomposition Methods in Science and Engineering XXVII, Cham: Springer, 2024,455–462. https://doi.org/10.1007/978-3-031-50769-4_54
    [41] M. J. Gander, L. Halpern, Optimized Schwarz waveform relaxation methods for advection-reaction-diffusion problems, SIAM J. Numer. Anal., 45 (2007), 666–697. https://doi.org/10.1137/050642137 doi: 10.1137/050642137
    [42] D. Bennequin, M. J. Gander, L. Gouarin, L. Halpern, Optimized Schwarz waveform relaxation for advection-reaction-diffusion equations in two dimensions, Numer. Math., 134 (2016), 513–567. https://doi.org/10.1007/s00211-015-0784-8 doi: 10.1007/s00211-015-0784-8
    [43] V. Martin, An optimized Schwarz waveform relaxation method for the unsteady convection-diffusion equation in two dimensions, Appl. Numer. Math., 52 (2005), 401–428. https://doi.org/10.1016/j.apnum.2004.08.022 doi: 10.1016/j.apnum.2004.08.022
    [44] Y. Xu, The influence of domain truncation on the performance of optimized Schwarz methods, Electron. T. Numer. Ana., 49 (2018), 182–209. https://doi.org/10.1553/etna_vol49s182 doi: 10.1553/etna_vol49s182
    [45] W. B. Dong, H. S. Tang, Convergence analysis of Schwarz waveform relaxation method to compute coupled advection-diffusion-reaction equations, Math. Comput. Simul., 218 (2024), 462–481. https://doi.org/10.1016/j.matcom.2023.11.026 doi: 10.1016/j.matcom.2023.11.026
    [46] M. J. Gander, V. Martin, Why Fourier mode analysis in time is different when studying Schwarz waveform relaxation, J. Comput. Phys., 491 (2023), 112316. https://doi.org/10.1016/j.jcp.2023.112316 doi: 10.1016/j.jcp.2023.112316
  • This article has been cited by:

    1. Bang-Yen Chen, Majid Ali Choudhary, Afshan Perween, A Comprehensive Review of Golden Riemannian Manifolds, 2024, 13, 2075-1680, 724, 10.3390/axioms13100724
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(93) PDF downloads(11) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog