Research article

A fractal hypernetwork model with good controllability

  • Received: 21 May 2021 Accepted: 07 September 2021 Published: 26 September 2021
  • MSC : 05C65, 93B05, 28A80

  • Fractal is a common feature of many deterministic complex networks. The complex networks with fractal features have interesting structure and good performance. The network based on hypergraph is named hypernetwork. In this paper, we construct a hypernetwork model with fractal properties, and obtain its topological properties. Moreover, according to the exact controllability theory, we obtain the node controllability and the hyperedge controllability of the fractal hypernetwork. The simulation results show that the measure of hyperedge controllability is smaller than that of node in the fractal hypernetwork. In addition, We compare the controllability of three types of hypernetwork, which are easier to control by their hyperedges. It is shown the fractal hypernetwork constructed in this paper has the best controllability. Because of the good controllability of our fractal hypernetwork model, it is suitable for the topology structure of many real systems.

    Citation: Xiujuan Ma, Fuxiang Ma, Jun Yin. A fractal hypernetwork model with good controllability[J]. AIMS Mathematics, 2021, 6(12): 13758-13773. doi: 10.3934/math.2021799

    Related Papers:

  • Fractal is a common feature of many deterministic complex networks. The complex networks with fractal features have interesting structure and good performance. The network based on hypergraph is named hypernetwork. In this paper, we construct a hypernetwork model with fractal properties, and obtain its topological properties. Moreover, according to the exact controllability theory, we obtain the node controllability and the hyperedge controllability of the fractal hypernetwork. The simulation results show that the measure of hyperedge controllability is smaller than that of node in the fractal hypernetwork. In addition, We compare the controllability of three types of hypernetwork, which are easier to control by their hyperedges. It is shown the fractal hypernetwork constructed in this paper has the best controllability. Because of the good controllability of our fractal hypernetwork model, it is suitable for the topology structure of many real systems.



    加载中


    [1] B. B. Mandelbrot, The fractal geometry of nature, Am. J. Phys., 51 (1983), 286-286. doi: 10.1119/1.13295
    [2] T. Vicsek, Fractal models for diffusion controlled aggregation, J. Phys. A. Math. Gen., 16 (1983), L647.
    [3] A. Lakhtakia, V. K. Varadanet, R Messier, V. V. Varadan, Generalisations and randomisation of the plane Koch curve, J. Phys. A: Phys. Gen., 20 (1987), 3537-3541. doi: 10.1088/0305-4470/20/11/052
    [4] S. Klavžar, U. Milutinović, Graphs s(n, k) and a variant of the tower of hanoi problem, Czech. Math. J., 47 (1997), 95-104.
    [5] H. D. Rozenfeld, S. Havlin, D. Ben-Avraham, Fractal and transfractal recursive scale-free nets, New J. Phys., 9 (2006), 1-15.
    [6] Z. Z. Zhang, B. Wu, H. J. Zhang, S. G. Zhou, Determining global mean-first-passage time of random walks on vicsek fractals using eigenvalues of laplacian matrices, Phys. Rev. E, 81 (2010), 031118. doi: 10.1103/PhysRevE.81.031118
    [7] C. Song, S. Havlin, H. A. Makse, Self-similarity of complex networks, Nature, 433 (2005), 392-395. doi: 10.1038/nature03248
    [8] C. Song, S. Havlin, H. A. Makse, Origins of fractality in the growth of complex networks, Nat. Phys., 2 (2006), 275-281. doi: 10.1038/nphys266
    [9] J. Aguirre, R. L. Viana, M. A. F. Sanjuán, Fractal structures in nonlinear dynamics, Rev. Mod. Phys., 81 (2009), 333-386.
    [10] J. W. Li, Z. Z. Yuan, Y. Fan, W. X. Wang, Z. R. Di, Controllability of fractal networks: An analytical approach, EPL, 105 (2014), 58001-58006. doi: 10.1209/0295-5075/105/58001
    [11] Z. Zhang, S. Zhou, T. Zou, L. Chen, J. Guan, Different thresholds of bond percolation in scale-free networks with identical degree sequence, Phys. Rev. E., 79 (2009), 03110-03117.
    [12] J. W. Wang, L. L. Rong, Q. H. Deng, J. Y. Zhang, Evolving hypernetwork model, Eur. Phys. J. B, 77 (2010), 493-498.
    [13] Z. K. Zhang, C. Liu, A hypergraph model of social tagging networks, J. Stat. Mech., 10 (2010), P10005-P1007.
    [14] F. Hu, H. X. Zhao, X. J. Ma, An evolving hypernetwork model and its properties, Sci. Sini. Phys., 1 (2013), 16-22.
    [15] F. H. Wang, J. L. Guo, A. Z. Shen, Q. Suo, Evolving hypernetwork model based on WeChat user relations, Comput. Sci., 11 (2015), 1-14.
    [16] J. G. Liu, G. Y. Yang, Z. L. Hu, A Knowledge Generation model via the hypernetwork, PLoS One, 9 (2014), e89746-e89748.
    [17] J. Huang, C. Chen, F. Ye, W. Hu, Z. Zheng, Nonuniform hyper-network embedding with dual mechanism, ACM Trans. Inf. Syst., 38 (2020), 1-18.
    [18] X. J. Ma, H. X. Zhao, F. Hu, Cascading failure analysis in hyper-network based on the hypergraph, Acta Phys. Sin., 65 (2016), 370-379.
    [19] X. J. Ma, F. X. Ma, J. Yin, H. X. Zhao, Cascading failures of k uniform hyper-network based on the hyper adjacent matrix, Physica A, 510 (2018), 281-289. doi: 10.1016/j.physa.2018.06.122
    [20] Z. Wu, J. Duan, X. Fu, Synchronization of an evolving complex hyper-network, Appl. Math. Model., 38 (2014), 2961-2968. doi: 10.1016/j.apm.2013.11.009
    [21] G. Y. Yang, Z. L. Hu, J. G. Liu, Knowledge diffusion in the collaboration hypernetwork, Physica A, 419 (2015), 429-436. doi: 10.1016/j.physa.2014.10.012
    [22] A. Bretto, Hypergraph Theory: An Introduction, Berlin: Springer Science Business Media, 2013.
    [23] S. G. Aksoy, C. Joslyn, C. Ortizmarrero, B. Praggastis, E. Purvine, Hypernetworks science via high-order hypergraph walk, EPJ Data Sci., 9 (2020), 2-34. doi: 10.1140/epjds/s13688-019-0214-8
    [24] Z. Zhou, Z. Jin, J. Jin, H. Song, Emergence of scaling in evolving hypernetworks, Physica A, 546 (2020), 123765. doi: 10.1016/j.physa.2019.123765
    [25] H. Yin, X. Jiang, Z. Wang, Exploring the dynamic growth mechanism of social networks using evolutionary hypergraph, Physica A, 544 (2020), 122545. doi: 10.1016/j.physa.2019.122545
    [26] F. Hu, J. L. Guo, F. X. Li, X. H. Zhao, Hypernetwork models based on random hypergraphs, Int. J. Mod. Phys. C, 30 (2019), 122545.
    [27] A. Z. Shen, J. L. Guo, Q. Suo, Study of the variable growth hypernetworks influence on the scaling law, Chaos Soliton. Fractal., 97 (2017), 84-89. doi: 10.1016/j.chaos.2017.02.009
    [28] F. Hu, L. Ma, X. X. Zhan, Y. Zhou, Z. K. Zhang, The aging effect in evolving scientific citation networks, Scientometrics, 126 (2021), 4297-4309. doi: 10.1007/s11192-021-03929-8
    [29] Z. Z. Yuan, C. Zhao, Z. Di, W. X. Wang, Y. C. Lai, Exact controllability of complex networks, Nat. Commun., 4 (2013), 1-9.
    [30] Y. Y. Liu, J. J. Slotine, A. L. Barabási, Controllability of complex networks, Nature, 473 (2011), 167-173.
    [31] T. Jia, Y. Y. Liu, E. Csoka, M. Pósfai, J. J. Slotine, A. L. Barabási, Emergence of bimodality in controlling complex networks, Nat. Commun., 4 (2013), 1-6.
    [32] M. Pósfai, Y. Y. Liu, J. J. Slotine, A. L. Barabási, Effect of correlations on network controllability, Sci. Rep., 3 (2013), 1-7.
    [33] S. Nie, X. Wang, H. Zhang, Q. Li, B. Wang, Robustness of Controllability for Networks Based on Edge-Attack, PLoS One, 9 (2014), e89066.
    [34] X. Ma, H. Zhao, B. Wang, Controllability of deterministic networks with the identical degree sequence, PloS One, 10 (2015), e0127545.
    [35] W. H. Wang, Y. S. Xue, On the r-uniform linear hypertrees with extremal Estrada indices, Appl. Math. Com., 377 (2020), 125144. doi: 10.1016/j.amc.2020.125144
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1885) PDF downloads(76) Cited by(1)

Article outline

Figures and Tables

Figures(17)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog