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Abstract: Fractal is a common feature of many deterministic complex networks. The complex 

networks with fractal features have interesting structure and good performance. The network based 

on hypergraph is named hypernetwork. In this paper, we construct a hypernetwork model with fractal 

properties, and obtain its topological properties. Moreover, according to the exact controllability 

theory, we obtain the node controllability and the hyperedge controllability of the fractal 

hypernetwork. The simulation results show that the measure of hyperedge controllability is smaller 

than that of node in the fractal hypernetwork. In addition, We compare the controllability of three 

types of hypernetwork, which are easier to control by their hyperedges. It is shown the fractal 

hypernetwork constructed in this paper has the best controllability. Because of the good 

controllability of our fractal hypernetwork model, it is suitable for the topology structure of many 

real systems. 
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1. Introduction 

Since the term “fractal” was proposed by Mandelbrot [1], many researchers have been observed 

the fractal features in natural systems, such as crystals, plants, chemical molecules, rivers, and more [1]. 

Researchers model the real systems with fractal characteristics as fractal networks based on the graph 

theory [2–9]. And they have been found many interesting structural properties and dynamic 

behaviors in fractal networks [2–9]. Moreover, many researchers focus on how the fractal structure 

affects the performance of network, and have been obtained many important results [9–11,34].  
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In the field of complex networks, more and more researchers found that many real systems 

cannot be represented by networks based on the graph theory [12–21]. Hypergraph theory provide a 

powerful tool to solve such problems [22]. Many researchers have tended to represent more complex 

systems by hypergraphs [12–21,23–28]. They construct many hypernetwork models to describe the 

real complex systems. There are many real systems with fractal features in nature, which are more 

suitable modeled by fractal hypernetworks. Such as, the fractal plant systems and the fractal power 

systems. Because of the random structure of irregular hypernetworks, it is difficult to obtain the 

relationship between the structure and the performances in the hypernetworks, such as scale-free 

hypernetwork [12,14,27] and random hypernetwork [26]. However, in fractal hypernetworks, it is 

easier to obtain the exact results of properties, such as the node number, the hyperedge number, the 

hyperdegree distribution, and so on. 

Controlling is one of the hot issues in complex systems [10,29–34]. The controllability is 

closely related to the dynamic behavior of the network [31–33]. For example, in the spread of rumors, 

if a few spreaders are controlled, the rumors will be controlled. A machine can run automatically 

only by controlling one switch. A complex system is controllable if imposing appropriate external 

signals on some elements, the system can be driven from any initial state to any final state in finite 

time [29,30]. It is important to control a hypernetwork system. For instance, the node represents the 

Wechat user and the hyperedge represents the Wechat group in Wechat user hypernetwork. The 

information is spread quickly in Wechat group. If we can control a few Wechat groups, we can 

control the spread of the information. Yuan studied the controllability of fractal networks based on 

graph and obtained some important results [10]. The controllability of fractal hypernetworks has not 

been studied yet. By analysis the controllability of the fractal hypernetworks, we will obtain how the 

fractal structure affects the controllability of the fractal hypernetworks. 

In this paper, we construct a fractal hypernetwork model, which is named 2k uniform (1,3) 

flower hypernetwork. In Section 2, the algorithm is proposed to construct the fractal hypernetwork 

model, and its topological properties are analyzed. In Section 3, we analyze the node controllability 

and the hyperedge controllability of the fractal (1,3) flower hypernetwork by the exact controllability 

theory [29]. In Section 4, we compare the controllability of three hypernetworks. The last section 

concludes this paper. 

2. The fractal (1,3) flower hypernetwork model and its topological properties 

In this section, the algorithm for constructing the fractal (1,3) flower hypernetwork is proposed. 

Moreover, we analyze some topological properties of the fractal hypernetwork. 

2.1. A hypernetwork model with fractal features 

In ref. [5], researchers proposed a (1,3) flower network model with fractal features based on 

graph. The fractal (1,3) flower network has small-world characteristics, and its node degree 

distribution obey power law distribution. Inspired by the fractal (1,3) flower network, we construct a 

2k uniform (1,3) flower hypernetwork model with fractal features.  

Let HF2k(t) be the fractal 2k uniform (1,3) flower hypernetwork after t time steps. The existing 

hyperedges at time t-1 are named as old hyperedges, and the hyperedges generated at time t are 

named as new hyperedges. Let N2k(t) and E2k(t) be the node number and the hyperedge number of 
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HF2k(t), respectively. An iterative algorithm for constructing 2k uniform (1,3) flower hypernetwork is 

as follows:  

Step 1: at the initial time t = 1, the hypernetwork HF2k(1) has one hyperedge with 2k nodes, 

where N2k(1) = 2k, E2k(1) = 1. 

Step 2: at time t = 2, the hypernetwork HF2k(2) is an evolution hypernetwork from HF2k(1) by 

adding 2k new nodes and 3 new hyperedges. One hyperedge contains 2k new nodes, other two 

hyperedges are consisted of k new nodes and k old nodes, respectively, where N2k(2) = 4k, E2k(2) = 4. 

In other words, each old hyperedge generates three new hyperedges. 

Step 3: at time t (t > 2), the fractal hypernetwork HF2k(t) is an evolution hypernetwork from 

HF2k(t-1) by adding 2kE2k(t-1) new nodes and 3E2k(t-1) new hyperedges according to Step 2, then  

N2k(t)=2kE2k(t-1)+N2k(t-1), E2k(t)=4E2k(t-1).  

Figure 1 shows the iterative processes of 2k uniform (1,3) flower hypernetwork with fractal 

features from time 1 to time 3. 

 

Figure 1. The 2k uniform (1,3) flower hypernetwork with fractal features HF2k(t) (k=2, t=1, 2, 3). 

The 2k uniform (1,3) flower hypernetwork is a fractal hypernetwork. According to the 

construction process, we obtain some topological properties of 2k uniform (1,3) flower 

hypernetwork. 

2.2. Some topological properties of 2k uniform (1,3) flower hypernetwork 

2.2.1. The number of nodes and hyperedges 

According to the iteration algorithm and Mathematical Induction method, after t iterations, it is 

easy to get (1) and (2).  
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According to (2), the hyperedge number of 2k uniform (1,3) flower hypernetwork is just related 
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to iteration time t. Table 1 shows the node number and the hyperedge number of the HF2k(t). For k = 

2, the node number of 4-uniform (1,3) flower hypernetwork is ( )
3

84

3

24
4

1

4

+
=

+
=

− tt

tN , and the 

hyperedge number is ( ) 1
4 4 −= ttE   

Table 1. The node number and the hyperedge number of HF2k(t) (t=1, 2, 3, …, s). 

time 1 2 3 …… s 

node number 2k 4k 12k …… 2𝑘
4𝑠−1 + 2

3
 

hyperedge number 1 4 16 …… 4𝑠−1 

2.2.2. Hyperdegree and hyperdegree distribution of 2k uniform (1,3) flower hypernetwork 

Let ( )id tk
1

2
−  be the hyperdegree of node i at time t-1 of 2k uniform (1,3) flower hypernetwork 

and ( )id tk2  be the hyperdegree increment of node i from time t-1 to time t. Obviously, ( ) 11
2 =id k , 

Based on the iteration algorithm, if the node i is contained in ( )id tk
1

2
−  old hyperedges at time t-1, 

then the hyperdegree of the node i will be increase ( )id tk
1

2
−  at time t, which means that 

( ) )(122 idid t
k

t
k

−= . Furthermore, each old hyperedge will generate 3 new hyperedges and 2k new 

nodes at time t. The hyperdegree of new nodes is 2 at time t > 1, namely ( ) 22 =jd tk , where j is a 

new node which is generated at time t. The hyperdegree of the old node i at time t is 
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The hyperdegrees of nodes in 2k uniform (1,3) flower hypernetwork are related with the time of 

nodes being generated. The hyperdegrees of 2k nodes which are generated at time 1 are 

( ) ( ) ( ) ( ) .2,...,2,1,2222...2 11
2
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The number of nodes joined to HF2k(t) at time s is ( ) ( ) 2
22 421 −=−− s
kk ksNsN . And the 

hyperdegrees of these nodes are 

( ) ( ) ( ) ( ) 21
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Let ( )tkdP 2  be the hyperdegree distribution of 2k uniform (1,3) flower hypernetwork, ( )tkdN 2  

be the number of nodes with hyperdegree t
kd 2  at time t, then ( ) ( )
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By (4), we have t
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k ktN . So, the hyperdegree distribution of 2k uniform (1,3) flower hypernetwork is 

represented by (5). 
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Figure 2 shows the hyperdegree distribution of 4-uniform (1,3) flower hypernetwork at time 7, 

which follows the power law distribution. 

 

Figure 2. The hyperdegree distribution of 4-uniform (1,3) flower hypernetwork (t = 7). 

3. The controllability of 2k uniform (1,3) flower hypernetwork 

According to the exact controllability theory [29] we analyze the node controllability and the 

hyperedge controllability of 2k uniform (1,3) flower hypernetwork with fractal features in this 

section. 

3.1. The exact controllability theory 

The following expression describes the controllability of network with N nodes, 

BuAxX +=           (6) 

In (6), the states of N nodes are represented by the vector x=(x1, x2, …, xN)T, and A is the 

N-order coupling square matrix of network. The vector u=(µ1, µ2, …, µm)T represents the m 

controllers, and B is the input matrix of size 𝑁 ×𝑚. To completely control the network, we need to 

choose suitable B and u. For minimizing the number of signals added to driver nodes, a proper 

matrix B should be designed. The matrix B corresponds to the minimum number of input signals 

imposed on a minimum set of driver nodes. The controllability of complex network systems is 

defined by the fraction of driver nodes. A complex network system is controllable if the fraction of 

driver nodes is less than 1 [29,30]. 

Let ND be the minimum driver node set (MDS) [29,30]. According to the results of Yuan [29] 

and Liu [30], ND is the key to measure the controllability of complex network system, it is clearly 

that 
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( ) BrankN D min .        (7) 

Yuan et.al [29] proved that for an arbitrary network, the minimum number of ND is determined 

by the maximum geometric multiplicity 𝜇(𝜆𝑖) of the eigenvalue 𝜆𝑖 of A: 

( ) iDN max ,         (8) 

where ),...,2,1( lii ==  are the distinct eigenvalues of A. If the coupling matrix A is symmetric, 

then the geometric multiplicity and the algebraic multiplicity of A are equal. In an undirected 

network, ND is determined by the maximum algebraic multiplicity of ( )i of i : 

( ) iDN max .         (9) 

According to (8) and (9), we can calculate ND of all networks. 

In ref. [30], nD denotes the measure of controllability, which is defined as follow:  

N

N
n D
D = .          (10) 

According (10), a network is more controllable if it has smaller nD, which means that the 

network is controllable if nD < 1. 

3.2. Node controllability and hyperedge controllability of the hypernetwork 

In this subsection, we put forward the methods to analyze the node controllability and the 

hyperedge controllability of hypernetwork, respectively. 

3.2.1. The method of analyzing the node controllability of hypernetwork 

The node controllability in hypernetwork is similar to common network. 

For a hypernetwork system with N nodes, if inputted suitable signals on a proper subset of 

nodes, the hypernetwork system can be driven from initial state to final state in finite time, then the 

hypernetwork system can be controlled by nodes. The minimal set of the proper node subset is called 

the minimum driven node set of hypernetwork (MDHS). Let 𝐻𝑁𝐷
be the number of the minimum 

driven node set of a hypernetwork, and 𝐻𝑛𝐷be the node controllability measure of the hypernetwork, 

where 
N

H
H D

D

N

n = . 

We propose a method to analyzing the node controllability of hypernetwork based on the 2- 

section graph of the hypergraph [22]. 

Let H = (V, E) be a hypergraph with N nodes, its 2-section graph is a common graph, written as 

[H]2. The vertex set of [H]2 is the vertex set of H. If two nodes are contained in the same hyperedge 

then they are connected by an edge in 2-section graph [22]. Figure 3 shows a hypergraph and its 

2-section graph.  

Let [HF2k(t)]2 be the 2-section graph of HF2k(t). Figure 4 shows [HF4(t)]2 of HF4(t) at time t 
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(t=1, 2, 3). 

 

Figure 3. A hypergraph and its 2-section graph. 

 

Figure 4. The [HF4(t)]2 of HF4(t) (t=1, 2, 3). 

Inspired by [18], we can obtain the node controllability of 2k uniform (1,3) flower hypernetwork 

by analyzing the node controllability in its 2-section graph network. 

According the exact controllability theory [29], we give the analytical process of node 

controllability of 2k uniform (1,3) flower hypernetwork as follows. 

Let AHF(t) be the adjacency matrix of [HF2k(t)]2. And let 
DN

H  be the number of minimum 

driven node set at time t. The node controllability measure of HF2k(t) at time t is written as ( )tH
Dn

. 

Moreover, let ( )( )ti be the maximum algebraic multiplicity of the eigenvalue i  for AHF(t).  

By (9) and (10), we have ( ) ( )( ) ttH iN D
max= , and ( )

( )
( )tN

tH
tH

k

N
n

D

D

2

= .  

Figure 5 shows the curve of 
DN

H  as a function of evolution time t, which shows that the 

minimum number of driven nodes 
DN

H  increases with the nodes increasing. Figure 6 shows the 

curve of 
Dn
H  over time t, which shows that the measure of node controllability 1

Dn
H  at all 

times. Therefore, the fractal 2k uniform (1,3) flower hypernetwork is a node controllable 

hypernetwork. 
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Figure 5. The number of minimum driven node of 4-uniform (1,3) flower hypernetwork at time t. 

 

Figure 6. The node controllability measure of 4-uniform (1,3) flower hypernetwork at time t. 

3.2.2. The method of analyzing the hyperedge controllability of hypernetwork 

For a hypernetwork system with E hyperedges, if the hypernetwork system, which is imposed 

suitable external signals on the proper hyperedge subset, can be driven from any initial state to any 

final state, then the hypernetwork system can be controlled by hyperedges. The minimal set of the 

proper hyperedge subset is called the minimum driven hyperedge set of hypernetwork (MDHES). In 

a hypernetwork, let 
DE

H be minimum number of the driven hyperedges and 
De
H denote the measure 

of hyperedge controllability, then 
E

H
H D

D

E
e = . 

We give a method to analyze the hyperedge controllability based on the line graph of 

hypergraph [22]. Let H = (V,E) be a hypergraph with N nodes and E hyperedges. The line graph of H 

is a graph, written as L(H), where the vertex set of L(H) is the hyperedge set E of H. If the 

intersection of two hyperedges in H is not empty, then their corresponding vertices are connected by 

an edge in L(H) [22]. Let 𝐿(𝐻𝐹2𝑘(𝑡)) be the line graph of HF2k(t). 

Figure 7 shows a hypergraph and its line graph. Figure 8 shows 𝐿(𝐻𝐹4(𝑡)) of HF4(t) at time t 

(t=1, 2, 3). 
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Figure 7. A hypergraph and its line graph. 

 

Figure 8. 𝐿(𝐻𝐹4(𝑡)) of HF4(t) (t=1, 2, 3). 

We can obtain the hyperedge controllability of a hypernetwork by analyzing the node 

controllability of its line graph. We give the analytical process of the hyperedge controllability for 

HF4(t) based on the exact controllability theory [29] as follows. 

Let ( )tA
HFL

 be the adjacency matrix of ( )( )tHFL k2 , ( )tH
DE

 be the number of minimum driven 

hyperedge set at time t. The hyperedge controllability measure of HF2k(t) at time t is written as 

( )tH
De

. Moreover, let ( )( )ti  be the maximum algebraic multiplicity of the eigenvalue i  for 

( )tA
HFL

. 

By (9) and (10), we have ( ) ( )( ) ttH iED
max= , and ( )

( )
( )tE
tH

tH
k

E
e

D

D

2

= . 

Figure 9 shows the curve of 
DE

H  as a function of evolution time t. The result shows that the 

minimum number of driven hyperedges 
DE

H  increases with the number of hyperedges increasing. 

Figure 10 shows the curve of the measure of hyperedge controllability 𝐻𝑒𝐷  as a function of 

evolution time t. The result shows that the measure of hyperedge controllability 1
De
H in 

4-uniform (1,3) flower hypernetwork. The fractal 4-uniform (1,3)-flower hypernetwork is a 

hyperedge controllable hypernetwork. 
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Figure 9. The number of minmum driven hyperedge 
DE

H  of 4-uniform (1,3) flower 

hypernetwork at time t. 

 

Figure 10. The hyperedge controllability measure of 4-uniform (1,3) flower 

hypernetwork at time t. 

We compare the measures of the node controllability and the hyperedge controllability of 

4-uniform (1,3) flower hypernetwork with fractal feasures, which is drawn in Figure 11. As a result, 

the measure of hyperedge controllability is smaller than that of node controllability. It indicates that 

4-uniform (1,3) flower hypernetwork can be better controlled by its hyperedges. 

 

Figure 11. A comparison of two controllability measures of 4-uniform (1,3) flower 

hypernetwork. 
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4. Comparisons for controllability of three hypernetworks 

We design the simulation experiment to compare the controllability of 4-uniform (1,3) flower 

hypernetwork with two hypernetworks which are 4-uniform linear hypertree network [35] and 

4-uniform BA hypernetwork [12].  

4.1. The 4-uniform linear hypertree network 

In ref. [35], the authors give a hypernetwork model with fractal features based on hypergraph. It 

is named k-uniform linear hypertree network. The 4-uniform linear hypertree network can be 

construct in an iterative way [35]. Figure 12 shows the iterative processes of 4-uniform linear 

hypertree network from time 1 to time 3. 

 

Figure 12. An iterative process of 4-uniform linear hypertree network from time 1 to time 3. 

4.2. Comparisons for node controllability of two fractal hypernetworks 

Figure 13 shows that the difference of node controllability measures between 4-uniform (1,3) 

flower hypernetwork and 4-uniform linear hypertree network. These hypernetworks are both fractal 

hypernetworks. The results of Figure 13 indicate that 4-uniform (1,3) flower hypernetwork has better 

node controllability than 4-uniform linear hypertree network. 

 

Figure13. The comparisons for node controllability measures of two fractal hypernetworks. 
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4.3. Comparisons for the hyperedge controllability measure of two fractal hypernetworks 

Figure 14 shows that the hyperedge controllability measure of 4-uniform (1,3) flower 

hypernetwork is smaller than 4-uniform linear hypertree network from time 2 to 7. Therefore, 

4-uniform (1,3) flower hypernetwork has better hyperedge controllability than 4-uniform linear 

hypertree network. 

 

Figure 14. The comparisons for hyperedge controllability measures of two fractal 

hypernetworks. 

4.4. Comparisons for node controllability of (1,3) flower hypernetwork and BA hypernetwork 

Figure 15 shows the node controllability measures of 4-uniform (1,3) flower hypernetwork and 

4-uniform BA hypernetwork. The results indicates that 4-uniform (1,3) flower hypernetwork has 

better node controllability than 4-uniform BA hypernetwork.  

 

Figure 15. The comparisons for the node controllability measure of (1, 3) flower 

hypernetwork and BA hyper network. 
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4.5. Comparisons for hyperedge controllability of (1,3) flower hypernetwork and BA hypernetwork 

Figure 16 shows the hyperedge controllability measures of 4-uniform (1,3) flower hypernetwork 

and 4 uniform BA hypernetwork. The results indicate that 4-uniform (1,3) flower hypernetwork has 

smaller measure of the hyperedge controllability than 4-uniform BA hypernetwork. In other words, 

the fractal 4-uniform (1,3) flower has better hyperedge controllability. 

 

Figure 16. The comparisons for the hyperedge controllability measures of (1, 3) flower 

hypernetwork and BA hypernetwork. 

4.6. Comparisons for the controllability of three hypernetworks 

In Figure 17, we compare the node controllability and the hyperedge controllability of three 

hypernetworks. We see that the node controllability measure of fractal 4-uniform (1,3) flower 

hypernetwork is the smallest, so is the hyperedge controllability measure. It indicates that the fractal 

4-uniform (1,3) flower hypernetwork has better controllability than other two hypernetworks. 

 

Figure 17. The comparisons for controllability of three hypernetworks. 
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Figure 17 shows that the hyperedge controllability measures of three hypernetworks are smaller 

than their node controllability measures. It indicates that three hypernetworks are easier to control by 

their hyperedges. 

5. Conclusions 

In this paper, we construct a fractal (1,3) flower hypernetwork model. We obtain the 

mathematical expressions of its topological properties, including the node number, the hyperedge 

number, the node hyperdegree and the node hyperdegree distribution. In particular, we analyze the 

node controllability and the hyperedge controllability of the fractal (1,3) flower hypernetwork. The 

simulation results show that the controllability measures of node and hyperedge are both less than 1. 

It indicates that the fractal (1,3) flower hypernetwork is controllable by nodes or hyperedges. 

Moreover, the fractal (1,3) flower hypernetwork has better controllability than fractal linear hypertree 

network and BA hypernetwork. We compare the node controllability and the hyperedge 

controllability of three hypernetworks. The results show that three hypernetworks can be controlled 

easily by hyperedges. Because of the good controllability of fractal (1,3) flower hypernetwork model, 

it suitable as the topology structure for some real systems with fractal features, such as, transmission 

system, communications system, power system, LAN, and so on.  
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