Research article Special Issues

Qualitative results for a relativistic wave equation with multiplicative noise and damping terms

  • Received: 27 December 2022 Revised: 17 March 2023 Accepted: 03 April 2023 Published: 25 April 2023
  • MSC : 35A01, 35B44, 35Q40, 60H15

  • Wave equations describing a wide variety of wave phenomena are commonly seen in mathematical physics. The inclusion of a noise term in a deterministic wave equation allows neglected degrees of freedom or fluctuations of external fields describing the environment to be considered in the equation. Moreover, adding a noise term to the deterministic equation reveals remarkable new features in the qualitative behavior of the solution. For example, noise can lead to singularities in some equations and prevent singularities in others. Taking into account the effects of the fluctuations along with a space-time white noise, we consider a relativistic wave equation with weak and strong damping terms and investigate the effect of multiplicative noise on the behavior of solutions. The existence of local and global solutions is provided, and some qualitative properties of solutions, such as continuous dependence of solutions on initial data, and blow up of solutions, are given. Moreover, an upper bound is provided for the blow up time.

    Citation: Hatice Taskesen. Qualitative results for a relativistic wave equation with multiplicative noise and damping terms[J]. AIMS Mathematics, 2023, 8(7): 15232-15254. doi: 10.3934/math.2023778

    Related Papers:

  • Wave equations describing a wide variety of wave phenomena are commonly seen in mathematical physics. The inclusion of a noise term in a deterministic wave equation allows neglected degrees of freedom or fluctuations of external fields describing the environment to be considered in the equation. Moreover, adding a noise term to the deterministic equation reveals remarkable new features in the qualitative behavior of the solution. For example, noise can lead to singularities in some equations and prevent singularities in others. Taking into account the effects of the fluctuations along with a space-time white noise, we consider a relativistic wave equation with weak and strong damping terms and investigate the effect of multiplicative noise on the behavior of solutions. The existence of local and global solutions is provided, and some qualitative properties of solutions, such as continuous dependence of solutions on initial data, and blow up of solutions, are given. Moreover, an upper bound is provided for the blow up time.



    加载中


    [1] J. M. Sancho, M. San Miguel, S. Katz, J. D. Gunton, Multiplicative noise in stochastic differential equations: A numerical study, Sixth international conference on noise in physical systems, 1981, 26–29.
    [2] V. Pata, S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495. http://dx.doi.org/10.1088/0951-7715/19/7/001 doi: 10.1088/0951-7715/19/7/001
    [3] W. J. Lehr, J. L. Park, A stochastic derivation of the Klein-Gordon equation, J. Math. Phys., 18 (1977), 1235–1240. http://dx.doi.org/10.1063/1.523396 doi: 10.1063/1.523396
    [4] A. I. Arbab, Stochastic model related to the Klein-Gordon equation revisited, EPL, 96 (2011), 20002. http://dx.doi.org/10.1209/0295-5075/96/20002 doi: 10.1209/0295-5075/96/20002
    [5] S. Gur, M. E. Uysal, Continuous dependence of solutions to the strongly damped nonlinear Klein-Gordon equation, Turk. J. Math., 42 (2018), 904–910. http://dx.doi.org/10.3906/mat-1706-30 doi: 10.3906/mat-1706-30
    [6] A. I. Komech, E. A. Kopylova, Weighted energy decay for 3D Klein-Gordon equation, J. Differ. Equations, 248 (2010), 501–520. http://dx.doi.org/10.1016/j.jde.2009.06.011 doi: 10.1016/j.jde.2009.06.011
    [7] W. Y. Huang, W. L. Chen, Global existence and blow up of solutions for nonlinear Klein-Gordon equation with damping term and nonnegative potentials, Abstr. Appl. Anal., 2014 (2014), 142892. http://dx.doi.org/10.1155/2014/142892 doi: 10.1155/2014/142892
    [8] Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477–3482. http://dx.doi.org/10.1090/s0002-9939-08-09514-2 doi: 10.1090/s0002-9939-08-09514-2
    [9] N. Burq, G. Raugel, W. Schlag, Long time dynamics for damped Klein-Gordon equations, 2017, arXiv: 1505.05981.
    [10] T. Cazenave, Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Anal., 60 (1985), 36–55. http://dx.doi.org/10.1016/0022-1236(85)90057-6 doi: 10.1016/0022-1236(85)90057-6
    [11] T. G. Ha, J. Y. Park, Global existence and uniform decay of a damped Klein-Gordon equation in a noncylindrical domain, Nonlinear Anal. Theor., 74 (2011), 577–584. http://dx.doi.org/10.1016/j.na.2010.09.011 doi: 10.1016/j.na.2010.09.011
    [12] R. Xu, Global existence, blow up and asymptotic behaviour of solutions for nonlinear Klein-Gordon equation with dissipative term, Math. Method. Appl. Sci., 33 (2010), 831–844. http://dx.doi.org/10.1002/mma.1196 doi: 10.1002/mma.1196
    [13] P. L. Chow, Stochastic wave equations with polynomial nonlinearity, Ann. Appl. Probab., 12 (2002), 361–381. http://dx.doi.org/10.1214/aoap/1015961168 doi: 10.1214/aoap/1015961168
    [14] V. Barb, G. D. Prato, The stochastic nonlinear damped wave equation, Appl. Math. Optim., 46 (2002), 125–141. http://dx.doi.org/10.1007/s00245-002-0744-4 doi: 10.1007/s00245-002-0744-4
    [15] P. L. Chow, Asymptotics of solutions to semilinear stochastic wave equations, Ann. Appl. Probab., 16 (2006), 757–789. http://dx.doi.org/10.1214/105051606000000141 doi: 10.1214/105051606000000141
    [16] P. L. Chow, Nonlinear stochastic wave equations: Blow up of second moments in L 2-norm, Ann. Appl. Probab., 19 (2009), 2039–2046. http://dx.doi.org/10.1214/09-AAP602 doi: 10.1214/09-AAP602
    [17] J. U. Kim, On the stochastic wave equation with nonlinear damping, Appl. Math. Optim., 58 (2008), 29–67. http://dx.doi.org/10.1007/s00245-007-9029-2 doi: 10.1007/s00245-007-9029-2
    [18] M. Ondrejat, Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15 (2010), 1041–1091. http://dx.doi.org/10.1214/EJP.v15-789 doi: 10.1214/EJP.v15-789
    [19] R. D. Parshad, M. Beauregard, A. Kasimov, B. Said-Houari, Global existence and finite time blow up in a class of stochastic nonlinear wave equations, COSA, 8 (2014), 7. http://dx.doi.org/10.31390/cosa.8.3.07 doi: 10.31390/cosa.8.3.07
    [20] Z. Brzezniak, M. Ondrejat, J. Seidler, Invariant measures for stochastic nonlinear beam and wave equations, J. Differ. Equations, 260 (2016), 4157–4179. http://dx.doi.org/10.1016/j.jde.2015.11.007 doi: 10.1016/j.jde.2015.11.007
    [21] F. Liang, Explosive solutions of stochastic nonlinear beam equations with damping, J. Math. Anal. Appl., 419 (2014), 849–869. http://dx.doi.org/10.1016/j.jmaa.2014.04.065 doi: 10.1016/j.jmaa.2014.04.065
    [22] L. Bo, D. Tang, Y. Wang, Explosive solutions of stochastic wave equations with damping on $R^d$, J. Differ. Equations, 244 (2008), 170–187. http://dx.doi.org/10.1016/j.jde.2007.10.016 doi: 10.1016/j.jde.2007.10.016
    [23] G. G. Xu, L. B. Wang, G. G. Lin, Global random attractor for the strongly damped stochastic wave equation with white noise and nonlinear term, Theor. Math. Appl., 3 (2013), 111–122.
    [24] P. L. Chow, Nonexistence of global solutions to nonlinear stochastic wave equations in mean $L^p$-norm, Stoch. Anal. Appl., 30 (2012), 543–551. http://dx.doi.org/10.1080/07362994.2012.668448 doi: 10.1080/07362994.2012.668448
    [25] Z. Wang, S. Zhou, Asymptotic behavior of stochastic strongly wave equation on unbounded domains, J. Appl. Math. Phys., 3 (2015), 55167. http://dx.doi.org/10.4236/jamp.2015.33046 doi: 10.4236/jamp.2015.33046
    [26] Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363–387. http://dx.doi.org/10.11948/2015031 doi: 10.11948/2015031
    [27] Z. Wang, S. Zhou, A. Gu, Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci., 17 (2012), 1649–1658. http://dx.doi.org/10.1016/j.cnsns.2011.09.001 doi: 10.1016/j.cnsns.2011.09.001
    [28] R. Jones, B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real, 14 (2013), 1308–1322. http://dx.doi.org/10.1016/j.nonrwa.2012.09.019 doi: 10.1016/j.nonrwa.2012.09.019
    [29] T. Caraballo, B. Guo, N. H. Tuan, R. Wang, Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains, P. Roy. Soc. Edinb. A, 151 (2021), 1700–1730. http://dx.doi.org/10.1017/prm.2020.77 doi: 10.1017/prm.2020.77
    [30] R. Wang, B. Wang, Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise, Discrete Cont. Dyn. B, 25 (2020), 2461–2493. http://dx.doi.org/10.3934/dcdsb.2020019 doi: 10.3934/dcdsb.2020019
    [31] R. Wang, Y. Li, Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients, Discrete Cont. Dyn. B, 24 (2019), 4145–4167. http://dx.doi.org/10.3934/dcdsb.2019054 doi: 10.3934/dcdsb.2019054
    [32] P. Groisman, J. D. Rossi, Explosion time in stochastic differential equations with small diffusion, Electron. J. Differ. Eq., 2007 (2007), 1–9.
    [33] G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimensions, London: Cambridge University Press, 2014. http://dx.doi.org/10.1017/CBO9781107295513
    [34] D. Bahuguna, Strongly damped semilinear equations, J. Appl. Math. Stoch. Anal., 8 (1995), 397–404.
    [35] H. Engler, F. Neubrander, J. Sandefur, Strongly damped semilinear second order equations, In: Nonlinear semigroups, partial dfferential equations and attractors, 1987. http://dx.doi.org/10.1007/BFb0077415
    [36] R. A. Adams, J. J. R. Fournier, Sobolev spaces, Netherlands: Academic Press, 2003.
    [37] H. Yang, Y. Z. Han, Initial boundary value problem for a strongly damped wave equation with a general nonlinearity, Evol. Equ. Control The., 11 (2022), 635–648. http://dx.doi.org/10.3934/eect.2021019 doi: 10.3934/eect.2021019
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1237) PDF downloads(66) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog