Research article

Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities

  • Received: 06 August 2024 Revised: 30 August 2024 Accepted: 03 September 2024 Published: 14 September 2024
  • MSC : 35L15, 35L70

  • This work was concerned with the weakly coupled system of semi-linear wave equations with time dependent speeds of propagation, damping terms, and derivative nonlinear terms in generalized Einstein-de Sitter space-time on $ \mathbb{R}^n $. Under certain assumptions about the indexes $ k_1, \, k_2 $, coefficients $ \mu_1, \, \mu_2 $, and nonlinearity exponents $ p, \, q $, applying the iteration technique, finite time blow-up of local solutions to the small initial value problem of the coupled system was investigated. Blow-up region and upper bound lifespan estimate of solutions to the problem were established. Compared with blow-up results in the previous literature, the new ingredient relied on that the blow-up region of solutions obtained in this work varies due to the influence of coefficients $ k_1, \, k_2 $.

    Citation: Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu. Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities[J]. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307

    Related Papers:

  • This work was concerned with the weakly coupled system of semi-linear wave equations with time dependent speeds of propagation, damping terms, and derivative nonlinear terms in generalized Einstein-de Sitter space-time on $ \mathbb{R}^n $. Under certain assumptions about the indexes $ k_1, \, k_2 $, coefficients $ \mu_1, \, \mu_2 $, and nonlinearity exponents $ p, \, q $, applying the iteration technique, finite time blow-up of local solutions to the small initial value problem of the coupled system was investigated. Blow-up region and upper bound lifespan estimate of solutions to the problem were established. Compared with blow-up results in the previous literature, the new ingredient relied on that the blow-up region of solutions obtained in this work varies due to the influence of coefficients $ k_1, \, k_2 $.



    加载中


    [1] F. John, Blow-up for quasilinear wave equations in three space dimensions, Commun. Pur. Appl. Math., 34 (1981), 29–51. https://doi.org/10.1002/cpa.3160340103 doi: 10.1002/cpa.3160340103
    [2] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110–133. https://doi.org/10.1016/0022-1236(81)90063-X doi: 10.1016/0022-1236(81)90063-X
    [3] T. C. Siders, Global behavior of solutions to nonlinear wave equations in three space dimensions, Commun. Part. Diff. Eq., 8 (1983), 1291–1323. https://doi.org/10.1080/03605308308820304 doi: 10.1080/03605308308820304
    [4] W. Han, Concerning the Strauss conjecture for the sub-critical and critical cases on the exterior domain in two space dimensions, Nonlinear Anal.-Theor., 84 (2013), 136–145. https://doi.org/10.1016/j.na.2013.02.013 doi: 10.1016/j.na.2013.02.013
    [5] K. Hidano, C. B. Wang, K. Yokoyama, The Glassey conjecture with radially symmetric data, J. Math. Pure. Appl., 98 (2012), 518–541. https://doi.org/10.1016/j.matpur.2012.01.007 doi: 10.1016/j.matpur.2012.01.007
    [6] Y. Zhou, Blow up of solutions to the Cauchy problem for nonlinear wave equations, Chinese Ann. Math. B, 22 (2001), 275–280. https://doi.org/10.1142/S0252959901000280 doi: 10.1142/S0252959901000280
    [7] Y. Zhou, W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary, J. Math. Anal. Appl., 374 (2011), 585–601. https://doi.org/10.1016/j.jmaa.2010.08.052 doi: 10.1016/j.jmaa.2010.08.052
    [8] W. Han, Y. Zhou, Blow up for some semilinear wave equations in multispace dimensions, Comm. Part. Diff. Eq., 39 (2014), 651–665. https://doi.org/10.1080/03605302.2013.863916 doi: 10.1080/03605302.2013.863916
    [9] K. Hidano, C. B. Wang, K. Yokoyama, Combined effects of two nonlinearities in lifespan of small solutions to semilinear wave equations, Math. Ann., 366 (2016), 667–694. https://doi.org/10.1007/s00208-015-1346-1 doi: 10.1007/s00208-015-1346-1
    [10] K. Hidano, K. Tsutaya, Global existence and asymptotic behavior of solutions for nonlinear wave equations, Indiana Univ. Math. J., 44 (1995), 1273–1306. https://doi.org/10.1512/iumj.1995.44.2028 doi: 10.1512/iumj.1995.44.2028
    [11] N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equation with small data, Tsukuba J. Math., 22 (1998), 193–211. https://doi.org/10.21099/tkbjm/1496163480 doi: 10.21099/tkbjm/1496163480
    [12] D. B. Zha, Global stability of solutions to two dimension and one-dimension systems of semilinear wave equations, J. Funct. Anal., 282 (2022), 109219. https://doi.org/10.1016/j.jfa.2021.109219 doi: 10.1016/j.jfa.2021.109219
    [13] S. Kitamura, K. Morisawa, H. Takamura, The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension, J. Differ. Equations, 307 (2022), 486–516. https://doi.org/10.1016/j.jde.2021.10.062 doi: 10.1016/j.jde.2021.10.062
    [14] N. A. Lai, M. Y. Liu, K. Wakasa, C. B. Wang, Lifespan estimates for 2-dimensional semilinear wave equations in asymptotically Euclidean exterior domains, J. Funct. Anal., 281 (2021), 109253. https://doi.org/10.1016/j.jfa.2021.109253 doi: 10.1016/j.jfa.2021.109253
    [15] N. A. Lai, Y. Zhou, An elementary proof of Strauss conjecture, J. Funct. Anal., 267 (2014), 1364–1381. https://doi.org/10.1016/j.jfa.2014.05.020 doi: 10.1016/j.jfa.2014.05.020
    [16] Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Part. Diff. Eq., 8 (1995), 135–144.
    [17] B. T. Yordanov, Q. S. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361–374. https://doi.org/10.1016/j.jfa.2005.03.012 doi: 10.1016/j.jfa.2005.03.012
    [18] Y. Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B, 28 (2007), 205–212. https://doi.org/10.1007/s11401-005-0205-x doi: 10.1007/s11401-005-0205-x
    [19] Y. Zhou, W. Han, Life-span of solutions to critical semilinear wave equations, Comm. Part. Diff. Eq., 39 (2014), 439–451. https://doi.org/10.1080/03605302.2013.863914 doi: 10.1080/03605302.2013.863914
    [20] S. Ming, H. Yang, X. M. Fan, J. Y. Yao, Blow-up and lifespan estimates of solutions to semilinear Moore-Gibson-Thompson equations, Nonlinear Anal.-Real, 62 (2021), 103360. https://doi.org/10.1016/j.nonrwa.2021.103360 doi: 10.1016/j.nonrwa.2021.103360
    [21] S. Shen, Z. J. Yang, X. L. Li, S. M. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005
    [22] S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrodinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755
    [23] L. M. Song, Z. J. Yang, X. L. Li, S. M. Zhang, Coherent superposition propagation of Laguerre-Gaussian and Hermite-Gaussian solitons, Appl. Math. Lett., 102 (2020), 106114. https://doi.org/10.1016/j.aml.2019.106114 doi: 10.1016/j.aml.2019.106114
    [24] Z. Y. Sun, D. Deng, Z. G. Pang, Z. J. Yang, Nonlinear transmission dynamics of mutual transformation between array modes and hollow modes in elliptical sine-Gaussian cross-phase beams, Chaos Soliton. Fract., 178 (2024), 114398. https://doi.org/10.1016/j.chaos.2023.114398 doi: 10.1016/j.chaos.2023.114398
    [25] K. Deng, Blow-up of solutions of some nonlinear hyperbolic systems, Rocky Mountain J. Math., 29 (1999), 807–820. https://doi.org/10.1216/rmjm/1181071610 doi: 10.1216/rmjm/1181071610
    [26] W. Xu, Blow-up for systems of semilinear wave equations with small initial data, J. Part. Diff. Eq., 17 (2004), 198–206.
    [27] M. Ikeda, M. Sobajima, K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differ. Equations, 267 (2019), 5165–5201. https://doi.org/10.1016/j.jde.2019.05.029 doi: 10.1016/j.jde.2019.05.029
    [28] H. Kubo, K. Kubota, H. Sunagawa, Large time behavior of solutions to semilinear systems of wave equations, Math. Ann., 335 (2006), 435–478. https://doi.org/10.1007/s00208-006-0763-6 doi: 10.1007/s00208-006-0763-6
    [29] J. Y. Lin, Z. H. Tu, Lifespan of semilinear generalized Tricomi equation with Strauss type exponent, 2019 arXiv: 1903.11351v2.
    [30] N. A. Lai, N. M. Schiavone, Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture, Math. Z., 301 (2022), 3369–3393. https://doi.org/10.1007/s00209-022-03017-4 doi: 10.1007/s00209-022-03017-4
    [31] W. H. Chen, S. Lucente, A. Palmieri, Non-existence of global solutions for generalized Tricomi equations with combined nonlinearity, Nonlinear Anal.-Real, 61 (2021), 103354. https://doi.org/10.1016/j.nonrwa.2021.103354 doi: 10.1016/j.nonrwa.2021.103354
    [32] M. Hamouda, M. A. Hamza, Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities, Adv. Pure Appl. Math., 12 (2021), 54–70. https://doi.org/10.21494/iste.op.2021.0698 doi: 10.21494/iste.op.2021.0698
    [33] S. Lucente, A. Palmieri, A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type, Milan J. Math., 89 (2021), 45–57. https://doi.org/10.1007/s00032-021-00326-x doi: 10.1007/s00032-021-00326-x
    [34] A. Palmieri, Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime, Z. Angew. Math. Phys., 72 (2021), 64. https://doi.org/10.1007/s00033-021-01494-x doi: 10.1007/s00033-021-01494-x
    [35] M. Ikeda, Z. H. Tu, K. Wakasa, Small data blow-up of semilinear wave equation with scattering dissipation and time dependent mass, Evol. Equ. Control The., 11 (2022), 515–536. https://doi.org/10.3934/eect.2021011 doi: 10.3934/eect.2021011
    [36] N. A. Lai, M. Y. Liu, Z. H. Tu, C. B. Wang, Lifespan estimates for semilinear wave equations with space dependent damping and potential, Calc. Var., 62 (2023), 44. https://doi.org/10.1007/s00526-022-02388-0 doi: 10.1007/s00526-022-02388-0
    [37] S. Ming, S. Y. Lai, X. M. Fan, Lifespan estimates of solutions to quasilinear wave equations with scattering damping, J. Math. Anal. Appl., 492 (2020), 124441. https://doi.org/10.1016/j.jmaa.2020.124441 doi: 10.1016/j.jmaa.2020.124441
    [38] M. Hamouda, M. A. Hamza, A. Palmieri, A note on the non-existence of global solutions to the semilinear wave equation with nonlinearity of derivative type in the generalized Einstein-de Sitter spacetime, Commun. Pur. Appl. Anal., 20 (2021), 3703–3721. https://doi.org/10.3934/cpaa.2021127 doi: 10.3934/cpaa.2021127
    [39] M. Hamouda, M. A. Hamza, A. Palmieri, Blow-up and lifespan estimates for a damped wave equation in the Einstein-de Sitter spacetime with nonlinearity of derivative type, Nonlinear Differ. Equ. Appl., 29 (2022), 19. https://doi.org/10.1007/s00030-022-00754-7 doi: 10.1007/s00030-022-00754-7
    [40] A. Palmieri, On the the critical exponent for the semilinear Euler-Poisson-Darboux-Tricomi equation with power nonlinearity, 2021, arXiv: 2105.09879.
    [41] M. Hamouda, M. A. Hamza, B. Yousfi, Blow-up and lifespan estimate for the generalized Tricomi equation with scale invariant damping and time derivative nonlinearity on exterior domain, 2023, arXiv: 2308.01272.
    [42] M. F. B. Hassen, M. Hamouda, M. A. Hamza, H. K. Teka, Non-existence result for the generalized Tricomi equation with the scale invariant damping, mass term and time derivative nonlinearity, Asymptotic Anal., 128 (2022), 495–515. https://doi.org/10.3233/asy-211714 doi: 10.3233/asy-211714
    [43] B. B. Ding, Y. Lu, H. C. Yin, On the critical exponent $p_c$ of the 3D quasilinear wave equation $-(1 + (\partial _t\phi)^ p) \partial_t^2 \phi+ \Delta \phi = 0$ with short pulse initial data. Ⅰ, global existence, J. Differ. Equations, 385 (2024), 183–253. https://doi.org/10.1016/j.jde.2023.12.010 doi: 10.1016/j.jde.2023.12.010
    [44] F. Q. Du, J. H. Hao, Energy decay for wave equation of variable coefficients with dynamic boundary conditions and time-varying delay, J. Geom. Anal., 33 (2023), 119. https://doi.org/10.1007/s12220-022-01161-1 doi: 10.1007/s12220-022-01161-1
    [45] Q. Lei, H. Yang, Global existence and blow-up for semilinear wave equations with variable coefficients, Chin. Ann. Math. Ser. B, 39 (2018), 643–664. https://doi.org/10.1007/s11401-018-0087-3 doi: 10.1007/s11401-018-0087-3
    [46] R. Z. Xu, W. Lian, X. K. Kong, Y. B. Yang, Fourth order wave equation with nonlinear strain and logarithmic nonlinearity, Appl. Numer. Math., 141 (2019), 185–205. https://doi.org/10.1016/j.apnum.2018.06.004 doi: 10.1016/j.apnum.2018.06.004
    [47] K. Fujiwara, V. Georgiev, Lifespan estimates for 1d damped wave equation with zero moment initial data, J. Math. Anal. Appl., 535 (2024), 128107. https://doi.org/10.1016/j.jmaa.2024.128107 doi: 10.1016/j.jmaa.2024.128107
    [48] M. Ikeda, T. Tanaka, K. Wakasa, Critical exponent for the wave equation with a time-dependent scale invariant damping and a cubic convolution, J. Differ. Eq., 270 (2021), 916–946. https://doi.org/10.1016/j.jde.2020.08.047 doi: 10.1016/j.jde.2020.08.047
    [49] N. A. Lai, Y. Zhou, Blow-up and lifespan estimate to a nonlinear wave equation in Schwarzschild spacetime, J. Math. Pure. Appl., 173 (2023), 172–194. https://doi.org/10.1016/j.matpur.2023.02.009 doi: 10.1016/j.matpur.2023.02.009
    [50] M. Y. Liu, C. B. Wang, Blow-up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds, J. Differ. Equations, 269 (2020), 8573–8596. https://doi.org/10.1016/j.jde.2020.06.032 doi: 10.1016/j.jde.2020.06.032
    [51] S. Ming, J. Y. Du, J. Xie, Blow-up of solutions to the wave equations with memory terms in Schwarzschild spacetime, J. Math. Anal. Appl., 540 (2024), 128637. https://doi.org/10.1016/j.jmaa.2024.128637 doi: 10.1016/j.jmaa.2024.128637
    [52] M. T. Fan, J. B. Geng, N. A. Lai, J. Y. Lin, Finite time blow-up for a semilinear generalized Tricomi system with mixed nonlinearity, Nonlinear Anal.-Real, 67 (2022), 103613. https://doi.org/10.1016/j.nonrwa.2022.103613 doi: 10.1016/j.nonrwa.2022.103613
    [53] M. Ikeda, J. Y. Lin, Z. H. Tu, Small data blow-up for the weakly coupled system of the generalized Tricomi equations with multiple propagation speeds, J. Evol. Equ., 21 (2021), 3765–3796. https://doi.org/10.1007/s00028-021-00703-4 doi: 10.1007/s00028-021-00703-4
    [54] M. F. B. Hassen, M. Hamouda, M. A. Hamza, Blow-up result for a weakly coupled system of wave equations with a scale invariant damping, mass term and time derivative nonlinearity, 2023, arXiv: 2306.14768.
    [55] W. H. Chen, A. Palmieri, Weakly coupled system of semilinear wave equations with distinct scale invariant terms in the linear part, Z. Angew. Math. Phys., 70 (2019), 67. https://doi.org/10.1007/s00033-019-1112-4 doi: 10.1007/s00033-019-1112-4
    [56] M. Hamouda, M. A. Hamza, New blow-up result for the weakly coupled wave equations with a scale invariant damping and time derivative nonlinearity, 2020, arXiv: 2008.06569.
    [57] A. Palmieri, Z. H. Tu, A blow-up result for a semilinear wave equation with scale-invariant damping and mass and nonlinearity of derivative type, Calc. Var., 60 (2021), 72. https://doi.org/10.1007/s00526-021-01948-0 doi: 10.1007/s00526-021-01948-0
    [58] A. Palmieri, H. Takamura, Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case, Mediterr. J. Math., 17 (2020), 13. https://doi.org/10.1007/s00009-019-1445-4 doi: 10.1007/s00009-019-1445-4
    [59] T. A. Dao, M. Reissig, The interplay of critical regularity of nonlinearities in a weakly coupled system of semi-linear damped wave equations, J. Differ. Equations, 299 (2021), 1–32. https://doi.org/10.1016/j.jde.2021.06.039 doi: 10.1016/j.jde.2021.06.039
    [60] A. Palmieri, A note on a conjecture for the critical curve of a weakly coupled system of semilinear wave equations with scale invariant lower order terms, Math. Method. Appl. Sci., 43 (2020), 6702–6731. https://doi.org/10.1002/mma.6412 doi: 10.1002/mma.6412
    [61] A. Palmieri, H. Takamura, Non-existence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms, Nonlinear Differ. Equ. Appl., 27 (2020), 58. https://doi.org/10.1007/s00030-020-00662-8 doi: 10.1007/s00030-020-00662-8
    [62] M. Hamouda, M. A. Hamza, Improvement on the blow-up for a weakly coupled wave equations with scale-invariant damping and mass and time derivative nonlinearity, 2022, arXiv: 2203.14403.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(458) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog