This paper is mainly concerned with the initial boundary value problems of semilinear wave equations with damping term and mass term as well as Neumann boundary conditions on exterior domain in three dimensions. Blow-up and upper bound lifespan estimates of solutions to the problem with damping term and mass term are derived by applying test function technique and iterative method, where nonlinear terms are power nonlinearity |u|p, derivative nonlinearity |ut|p, combined nonlinearities |ut|p+|u|q, respectively. Moreover, upper bound lifespan estimate of solution to the problem with scale invariant damping term, non-negative mass term and combined nonlinearities |ut|p+|u|q is obtained. The proofs are based on the test function method and iterative approach. The main new contribution is that upper bound lifespan estimates of solutions are associated with the Strauss exponent and Glassey exponent. In addition, the variation trend of wave is achieved by taking advantage of numerical simulation.
Citation: Xiongmei Fan, Sen Ming, Wei Han, Zikun Liang. Lifespan estimate of solution to the semilinear wave equation with damping term and mass term[J]. AIMS Mathematics, 2023, 8(8): 17860-17889. doi: 10.3934/math.2023910
[1] | Siting Yu, Jingjing Peng, Zengao Tang, Zhenyun Peng . Iterative methods to solve the constrained Sylvester equation. AIMS Mathematics, 2023, 8(9): 21531-21553. doi: 10.3934/math.20231097 |
[2] | Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492 |
[3] | Jin-Song Xiong . Generalized accelerated AOR splitting iterative method for generalized saddle point problems. AIMS Mathematics, 2022, 7(5): 7625-7641. doi: 10.3934/math.2022428 |
[4] | Jiaxin Lan, Jingpin Huang, Yun Wang . An E-extra iteration method for solving reduced biquaternion matrix equation AX+XB=C. AIMS Mathematics, 2024, 9(7): 17578-17589. doi: 10.3934/math.2024854 |
[5] | Kanjanaporn Tansri, Pattrawut Chansangiam . Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems. AIMS Mathematics, 2023, 8(5): 11781-11798. doi: 10.3934/math.2023596 |
[6] | Yinlan Chen, Min Zeng, Ranran Fan, Yongxin Yuan . The solutions of two classes of dual matrix equations. AIMS Mathematics, 2023, 8(10): 23016-23031. doi: 10.3934/math.20231171 |
[7] | Wenxiu Guo, Xiaoping Lu, Hua Zheng . A two-step iteration method for solving vertical nonlinear complementarity problems. AIMS Mathematics, 2024, 9(6): 14358-14375. doi: 10.3934/math.2024698 |
[8] | Wen-Ning Sun, Mei Qin . On maximum residual block Kaczmarz method for solving large consistent linear systems. AIMS Mathematics, 2024, 9(12): 33843-33860. doi: 10.3934/math.20241614 |
[9] | Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299 |
[10] | Yang Cao, Quan Shi, Sen-Lai Zhu . A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Mathematics, 2021, 6(2): 1258-1275. doi: 10.3934/math.2021078 |
This paper is mainly concerned with the initial boundary value problems of semilinear wave equations with damping term and mass term as well as Neumann boundary conditions on exterior domain in three dimensions. Blow-up and upper bound lifespan estimates of solutions to the problem with damping term and mass term are derived by applying test function technique and iterative method, where nonlinear terms are power nonlinearity |u|p, derivative nonlinearity |ut|p, combined nonlinearities |ut|p+|u|q, respectively. Moreover, upper bound lifespan estimate of solution to the problem with scale invariant damping term, non-negative mass term and combined nonlinearities |ut|p+|u|q is obtained. The proofs are based on the test function method and iterative approach. The main new contribution is that upper bound lifespan estimates of solutions are associated with the Strauss exponent and Glassey exponent. In addition, the variation trend of wave is achieved by taking advantage of numerical simulation.
Fractional calculus deals with the equations which involve integrals and derivatives of fractional orders. The history of fractional calculus begins from the history of calculus. The role of fractional integral operators is very vital in the applications of this subject in other fields. Several well known phenomenas and their solutions are presented in fractional calculus which can not be studied in ordinary calculus. Inequalities are useful tools in mathematical modelling of real world problems, they also appear as constraints to initial/boundary value problems. Fractional integral/derivative inequalities are of great importance in the study of fractional differential models and fractional dynamical systems. In recent years study of fractional integral/derivative inequalities accelerate very fastly. Many well known classical inequalities have been generalized by using classical and newly defined integral operators in fractional calculus. For some recent work on fractional integral inequalities we refer the readers to [1,2,3,4,5,6] and references therein.
Our goal in this paper is to apply generalize Riemann-Liouville fractional integrals using a monotonically increasing function. The Hadamard inequalities are proved for these integral operators using strongly (α,m)-convex functions. Also error bounds of well known Hadamard inequalities are obtained by using two fractional integral identities. In connection with the results of this paper, we give generalizations and refinements of some well known results added recently in the literature of mathematical inequalities.
Next, we like to give some definitions and established results which are necessary and directly associated with the findings of this paper.
Definition 1. [7] A function f:[0,+∞)→R is said to be strongly (α,m)-convex function with modulus c≥0, where (α,m)∈[0,1]2, if
f(xt+m(1−t)y)≤tαf(x)+m(1−tα)f(y)−cmtα(1−tα)|y−x|2, | (1.1) |
holds ∀x,y∈[0,+∞) and t∈[0,1].
The well-known Hadamard inequality is a very nice geometrical interpretation of convex functions defined on the real line, it is stated as follows:
Theorem 1. The following inequality holds:
f(x+y2)≤1y−x∫yxf(v)dv≤f(x)+f(y)2, | (1.2) |
for convex function f:I→R, where I is an interval and x,y∈I, x<y.
The definition of Riemann-Liouville fractional integrals is given as follows:
Definition 2. Let f∈L1[a,b]. Then left-sided and right-sided Riemann-Liouville fractional integrals of a function f of order μ where ℜ(μ)>0 are defined by
Iμa+f(x)=1Γ(μ)∫xa(x−t)μ−1f(t)dt,x>a, | (1.3) |
and
Iμb−f(x)=1Γ(μ)∫bx(t−x)μ−1f(t)dt,x<b. | (1.4) |
The following theorems provide two Riemann-Liouville fractional versions of the Hadamard inequality for convex functions.
Theorem 2. [8] Let f:[a,b]→R be a positive function with 0≤a<b and f∈L1[a,b]. If f is a convex function on [a,b], then the following fractional integral inequality holds:
f(a+b2)≤Γ(μ+1)2(b−a)μ[Iμa+f(b)+Iμb−f(a)]≤f(a)+f(b)2, | (1.5) |
with μ>0.
Theorem 3. [9] Under the assumption of Theorem 2, the following fractional integral inequality holds:
f(a+b2)≤2μ−1Γ(μ+1)(b−a)μ[Iμ(a+b2)+f(b)+Iμ(a+b2)−f(a)]≤f(a)+f(b)2, | (1.6) |
with μ>0.
Theorem 4. [8] Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If |f′| is convex on [a,b], then the following fractional integral inequality holds:
|f(a)+f(b)2−Γ(μ+1)2(b−a)μ[Iμa+f(b)+Iμb−f(a)]|≤b−a2(μ+1)(1−12μ)[|f′(a)|+|f′(b)|]. | (1.7) |
The k-analogue of Riemann-Liouville fractional integrals is defined as follows:
Definition 3. [10] Let f∈L1[a,b]. Then k-fractional Riemann-Liouville integrals of order μ where ℜ(μ)>0, k>0, are defined by
kIμa+f(x)=1kΓk(μ)∫xa(x−t)μk−1f(t)dt,x>a, | (1.8) |
and
kIμb−f(x)=1kΓk(μ)∫bx(t−x)μk−1f(t)dt,x<b, | (1.9) |
where Γk(.) is defined as [11]
Γk(μ)=∫∞0tμ−1e−tkkdt. |
The k-fractional versions of Hadamard type inequalities (1.5)–(1.7) are given in the following theorems.
Theorem 5. [12] Let f:[a,b]→R be a positive function with 0≤a<b. If f is a convex function on [a,b], then the following inequalities for k-fractional integrals hold:
f(a+b2)≤Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]≤f(a)+f(b)2. | (1.10) |
Theorem 6. [13] Under the assumption of Theorem 5, the following fractional integral inequality holds:
f(a+b2)≤2μk−1Γk(μ+k)(b−a)μk[kIμ(a+b2)+f(b)+kIμ(a+b2)−f(a)]≤f(a)+f(b)2. | (1.11) |
Theorem 7. [12] Let f:[a,b]→R be a differentiable mapping on (a,b) with 0≤a<b. If |f′| is convex on [a,b], then the following inequality for k-fractional integrals holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]|≤b−a2(μk+1)(1−12μk)[|f′(a)|+|f′(b)|]. | (1.12) |
In the following, we give the definition of generalized Riemann-Liouville fractional integrals by a monotonically increasing function.
Definition 4. [14] Let f∈L1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where ℜ(μ)>0 are defined by
Iμ,ψa+f(x)=1Γ(μ)∫xaψ′(t)(ψ(x)−ψ(t))μ−1f(t)dt,x>a, | (1.13) |
and
Iμ,ψb−f(x)=1Γ(μ)∫bxψ′(t)(ψ(t)−ψ(x))μ−1f(t)dt,x<b. | (1.14) |
The k-analogue of generalized Riemann-Liouville fractional integrals is defined as follows:
Definition 5 [4] Let f∈L1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where ℜ(μ)>0, k>0, are defined by
kIμ,ψa+f(x)=1kΓk(μ)∫xaψ′(t)(ψ(x)−ψ(t))μk−1f(t)dt,x>a, | (1.15) |
and
kIμ,ψb−f(x)=1kΓk(μ)∫bxψ′(t)(ψ(t)−ψ(x))μk−1f(t)dt,x<b. | (1.16) |
For more details of above defined fractional integrals, we refer the readers to see [15,16].
Rest of the paper is organized as follows: In Section 2, we find Hadamard type inequalities for generalized Riemann-Liouville fractional integrals with the help of strongly (α,m)-convex functions. The consequences of these inequalities are listed in remarks. Also some new fractional integral inequalities for convex functions, strongly convex functions and strongly m-convex functions are deduced in the form of corollaries. In Section 3, the error bounds of Hadamard type fractional inequalities are established via two fractional integral identities.
Theorem 8. Let f:[a,b]→R be a positive function with 0≤a<mb and f∈L1[a,b]. Also suppose that f is strongly (α,m)-convex function on [a,b] with modulus c≥0, ψ is positive strictly increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
f(a+mb2)+cm(2α−1)22α(μ+k)(μ+2k)[μ(μ+k)(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμk+1kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α−1)f(am2))2α(μ2+μαk)−cmkαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+αk)(μ+2αk), | (2.1) |
with μ>0.
Proof. Since f is strongly (α,m)-convex function, for x,y∈[a,b] we have
f(x+my2)≤f(x)+m(2α−1)f(y)2α−cm(2α−1)|y−x|222α. | (2.2) |
By setting x=at+m(1−t)b, y=am(1−t)+bt and integrating the resulting inequality after multiplying with tμk−1, we get
kμf(a+mb2)≤12α[∫10f(at+m(1−t)b)tμk−1dt+m(2α−1)∫10f(am(1−t)+bt)tμk−1dt]−cm(2α−1)22αμ(μ+k)(μ+2k)[μk(μ+k)(b−a)2+2k3(am−mb)2+2k2μ(b−a)(am−mb)]. | (2.3) |
Now, let u∈[a,b] such that ψ(u)=at+m(1−t)b, that is, t=mb−ψ(u)mb−a and let v∈[a,b] such that ψ(v)=am(1−t)+bt, that is, t=ψ(v)−amb−am in (2.3), then multiplying μk after applying Definition 5, we get the following inequality:
f(a+mb2)≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]−cm(2α−1)22α(μ+k)(μ+2k)[μ(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]. | (2.4) |
Hence by rearranging the terms, the first inequality is established. On the other hand, f is strongly (α,m)-convex function, for t∈[0,1], we have the following inequality:
f(at+m(1−t)b)+m(2α−1)f(am(1−t)+bt)≤tα[f(a)+m(2α−1)f(b)]+m(1−tα)[f(b)+m(2α−1)f(am2)]−cmtα(1−tα)[(b−a)2+m(2α−1)(b−am2)2]. | (2.5) |
Multiplying inequality (2.5) with tμk−1 on both sides and then integrating over the interval [0,1], we get
∫10tμk−1f(ta+m(1−t)b)dt+m(2α−1)∫10tμk−1f(am(1−t)+tb)dt≤(f(a)+m(2α−1)f(b))(kμ+kα)+m(f(b)+m(2α−1)f(am2))k2αμ2+μαk−cmαk2[(b−a)2+m(2α−1)(b−am2)2](μ+αk)(μ+2αk). | (2.6) |
Again taking ψ(u)=at+m(1−t)b that is t=mb−ψ(u)mb−a and ψ(v)=am(1−t)+bt that is t=ψ(v)−amb−am in (2.6), then by applying Definition 5, the second inequality can be obtained.
Remark 1. Under the assumption of Theorem 8, by fixing parameters one can achieve the following outcomes:
(i) If α=m=1 in (2.1), then the inequality stated in [17,Theorem 9] can be obtained.
(ii) If α=m=1, ψ=I and c=0 in (2.1), then Theorem 5 can be obtained.
(iii) If α=k=m=1, ψ=I and c=0 in (2.1), then Theorem 2 can be obtained.
(iv) If α=k=m=1 and ψ=I in (2.1), then the inequality stated in [18,Theorem 2.1] can be obtained.
(v) If α=μ=k=m=1, ψ=I and c=0 in (2.1), then the Hadamard inequality can be obtained.
(vi) If α=m=1 and c=0 in (2.1), then the inequality stated in [19,Theorem 1] can be obtained.
(vii) If α=m=k=1 and c=0 in (2.1), then the inequality stated in [20,Theorem 2.1] can be obtained.
(viii) If α=k=1 and ψ=I in (2.1), then the inequality stated in [21,Theorem 6] can be obtained.
(ix) If α=μ=m=k=1 and ψ=I in (2.1), then the inequality stated in [22,Theorem 6] can be obtained.
(x) If α=k=1, ψ=I and c=0 in (2.1), then the inequality stated in [23,Theorem 2.1] can be obtained.
(xi) If k=1 and ψ=I in (2.1), then the inequality stated in [24,Theorem 4] can be obtained.
Corollary 1. Under the assumption of Theorem 8 with c=0 in (2.1), the following fractional integral inequality holds:
f(a+mb2)≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμk+1kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mμαk(f(b)+m(2α−1)f(am2))2α(μ2+μαk). |
Corollary 2. Under the assumption of Theorem 8 with k=1 in (2.1), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22αμ(μ+1)(μ+2)[μ(μ+1)(b−a)2+2(am−mb)2+2μ(b−a)(am−mb)]≤Γ(μ+1)2α(mb−a)μ[Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμ+1Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+α)+m(f(b)+m(2α−1)f(am2))αμ2α(μ2+μα)−cmαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+α)(μ+2α). |
Corollary 3. Under the assumption of Theorem 8 with ψ=I in (2.1), the following fractional integral inequality holds:
f(a+mb2)+cm(2α−1)22α(μ+k)(μ+2k)[μ(μ+k)(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]≤Γk(μ+k)2α(mb−a)μk[kIμa+f(mb)+(2α−1)mμk+1kIμb−f(am)]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α−1)f(am2))2α(μ2+μαk)−cmkαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+αk)(μ+2αk). |
Theorem 9. Under the assumption of Theorem 8, the following k-fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(μ+3k)(b−a)×(am−mb)]≤2μk−αΓk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2))−cmμ[2α(μ+2αk)−(μ+αk)]23α(μ+αk)(μ+2αk)((b−a)2+m(b−am2)2), | (2.7) |
with μ>0.
Proof. Let x=at2+m(2−t2)b, y=am(2−t2)+bt2 in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tμk−1, we get
kμf(a+mb2)≤12α[∫10f(at2+m(2−t2)b)tμk−1dt+m(2α−1)∫10f(am(2−t2)+bt2)tμk−1dt]−cm(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2k+k(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(am−mb)(μ+3k)k]. | (2.8) |
Let u∈[a,b], so that ψ(u)=at2+m(2−t2)b, that is, t=2(mb−ψ(u))mb−a and v∈[a,b], so that ψ(v)=am(2−t2)+bt2, that is, t=2(ψ(v)−am)b−am in (2.8), then by applying Definition 5, we get
f(a+mb2)≤2μkΓk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−cmμ(2α−1)22α4(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(am−mb)(μ+3k)]. | (2.9) |
Hence by rearranging terms, the first inequality is established. Since f is strongly (α,m)-convex function with modulus c≥0, for t∈[0,1], we have following inequality
f(at2+m(2−t2)b)+m(2α−1)f(am(2−t2)+bt2)≤(t2)α[f(a)+m(2α−1)f(b)]+m(2α−tα2α)[f(b)+m(2α−1)f(am2)]−cmtα(2α−tα)[(b−a)2+m(b−am2)2]22α. | (2.10) |
Multiplying (2.10) with tμk−1 on both sides and integrating over [0,1], we get
∫10f(at2+m(2−t2)b)tμk−1dt+m(2α−1)∫10f(am(2−t2)+bt2)tμk−1dt≤k[f(a)+m(2α−1)f(b)]2α(αk+μ)+mk(2α(μ+αk)−μ)2αμ(μ+αk)(f(b)+m(2α−1)f(am2))−cmk(2α(μ+2αk)−(μ+αk))22α((b−a)2+m(b−am2)2). | (2.11) |
Again taking ψ(u)=at2+m(2−t2)b, that is, t=2(mb−ψ(v))mb−a and so that ψ(v)=am(2−t2)+bt2, that is, t=2(ψ(v)−am)b−am in (2.11), then by applying Definition 5, the second inequality can be obtained.
Remark 2. Under the assumption of Theorem 9, one can achieve the following outcomes:
(i) If α=m=1 in (2.7), then the inequality stated in [17,Theorem 10] can be obtained.
(ii) If α=m=k=1, ψ=I and c=0 in (2.7), then Theorem 3 can be obtained.
(iii) If α=μ=m=k=1, ψ=I and c=0 in (2.7), then Hadamard inequality can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (2.7), then the inequality stated in [13,Theorem 2.1] can be obtained.
(v) If α=m=1 and c=0 in (2.7), then the inequality stated in [17,corrollary 5] can be obtained.
(vi) If α=k=1 and ψ=I in (2.7), then the inequality stated in [21,Theorem 7] can be obtained.
(vii) If k=1 and ψ=I in (2.7), then the inequality stated in [24,Theorem 5] can be obtained.
(viii) If α=m=k=1 and c=0 in (2.7), then the inequality stated in [25,Lemma 1] can be obtained.
Corollary 4. Under the assumption of Theorem 9 with c=0 in (2.7), the following fractional integral inequality holds:
f(a+mb2)≤2μk−αΓk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2)). |
Corollary 5. Under the assumption of Theorem 9 with k=1 in (2.7), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+1)(μ+2)[μ(μ+1)(b−a)2+(am−mb)2(μ2+5μ+8)+2μ(μ+3)(b−a)(am−mb)]≤2μ−αΓ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1(2α−1)Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(α+μ)+m[2α(μ+α)−μ]22α(μ+α)(f(b)+m(2α−1)f(am2))−cmμ(2α(μ+2α)−(μ+α))23α(μ+α)(μ+2α)×[(b−a)2+m(b−am2)2]. |
Corollary 6. Under the assumption of Theorem 9 with ψ=I in (2.7), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(μ+3k)(am−mb)]≤2μk−αΓk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb))+mμk+1(2α−1)kIμ(a+mb2m)−f(am)]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2))−cmμ[2α(μ+2αk)−(μ+αk)]23α(μ+αk)(μ+2αk)((b−a)2+m(b−am2)2). |
In this section, we find the error estimations of Hadamard type fractional inequalities for strongly (α,m)-convex functions by using (1.15) and (1.16) that gives the refinements of already proved estimations. The following lemma is useful to prove the next results.
Lemma 1. Let a<b and f:[a,b]→R be a differentiable mapping on (a,b). Also, suppose that f′∈L[a,b], ψ is positive strictly increasing function, having a continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0, then the following identity holds for generalized fractional integral operators:
f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a)]=b−a2∫10[(1−t)μk−tμk]f′(ta+(1−t)b)dt. | (3.1) |
Proof. We cosider the right hand side of (3.1) as follows:
∫10((1−t)αk−tμk)f′(ta+(1−t)b)dt=∫10(1−t)μk−1f′(ta+(1−t)b)dt−∫10tμk−1f′(ta+(1−t)b)dt=I1−I2 | (3.2) |
Integrating by parts we get
I1=∫10(1−t)μk−1f′(ta+(1−t)b)dt=f(b)b−a−μk(b−a)∫10(1−t)μk−1f(ta+(1−t)b)dt |
We have v∈[a,b] such that ψ(v)=ta+(1−t)b, with this substitution one can have
I1=f(b)b−a−μk(b−a)∫ψ−1(b)ψ−1(a)(ψ(v)−ab−a)μk−1(f∘ψ(v))b−aψ′(v)dv=f(b)b−a−Γk(μ+k)(b−a)μk+1Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(a)). | (3.3) |
Similarly one can get after a little computation
I2=−f(a)b−a+Γk(μ+k)(b−a)μk+1Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(b)). | (3.4) |
Using (3.3) and (3.4) in (3.2), (3.1) can be obtained.
Remark 3. (i) If k=1 and ψ=I in (3.1), then the equality stated in [8,Lemma 2] can be obtained.
(ii) For μ=k=1 and ψ=I in (3.1), then the equality stated in [28,Lemma 2.1] can be obtained.
Theorem 10. Let f:[a,b]→R be a differentiable mapping on (a,b) with 0≤a<b. Also suppose that |f′| is strongly (α,m)-convex with modulus c≥0, ψ is positive strictly increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|×(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))−cm(bm−a)22(2B(12;α+1,μk+1)−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+1−(12)μk+αμk+1+α−B(α+1,μk+1)−1−(12)μk+2αμk+1+2α+B(2α+1,μk+1))], | (3.5) |
with μ>0 and 2˜F1(1+2α,−μk,2(1+α);12) is regularized hypergeometric function.
Proof. By Lemma 1, it follows that
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(b)]|≤b−a2∫10|(1−t)μk−tμk||f′(ta+(1−t)b|)dt. | (3.6) |
Since |f′| is strongly (α,m)-convex function on [a,b] and t∈[0,1], we have
|f′(ta+(1−t)b)|≤tα|f′(a)|+m(1−tα)|f′(bm)|−cmtα(1−tα)(bm−a)2. | (3.7) |
Therefore (3.6) implies the following inequality
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(b)]|≤b−a2∫10|(1−t)μk−tμk|(tα|f′(a)|+m(1−tα)|f′(bm)|−cmtα(1−tα)(bm−a)2]dt≤b−a2[|f′(a)|(∫120tα((1−t)μk−tμk)dt+∫112tα(tμk−(1−t)μk)dt)+m|f′(bm)|(∫120(1−tα)((1−t)μk−tμk)dt+∫112(1−tα)(tμk−(1−t)μk)dt)−cm(bm−a)2(∫120tα(1−tα)((1−t)μk−tμk)dt+∫112tα(1−tα)(tμk−(1−t)μk)dt)]. | (3.8) |
In the following, we compute integrals appearing on the right side of the above inequality
∫120tα((1−t)μk−tμk)dt+∫112tα(tμk−(1−t)μk)dt=2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1). | (3.9) |
∫120(1−tα)((1−t)μk−tμk)dt+∫112(1−tα)(tμk−(1−t)μk)dt.=2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1). | (3.10) |
∫112tα(1−tα)((1−t)μk−tμk)dt+∫112tα(1−tα)(tμk−(1−t)μk)dt=2B(12;α+1,μk+1)−(12)1+μk+αμk+1+α−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+(12)1+μk+2αμk+1+2α+1−(12)1+μk+αμk+1+α−B(α+1,μk+1)−1−(12)1+μk+2αμk+1+2α+B(2α+1,μk+1). | (3.11) |
Using (3.9), (3.10) and (3.11) in (3.8), we get the required inequality (3.5).
Remark 4. Under the assumption of Theorem 10, one can achieve the following outcomes:
(i) If α=m=1 in (3.5), then the inequality stated in [17,Theorem 11] can be obtained.
(ii) If α=m=1 and c=0 in (3.5), then the inequality stated in [17,Corollary 10] can be obtained.
(iii) If α=m=1, ψ=I and c=0 in (3.5), then Theorem 7 can be obtained.
(iv) If α=m=k=1, ψ=I and c=0 in (3.5), then Theorem 4 can be obtained.
(v) If α=k=1 and ψ=I in (3.5), then the inequality stated in [21,Theorem 8] can be obtained.
(vi) If α=μ=m=k=1 and ψ=I in (3.5), then the inequality stated in [26,Corollary 6] can be obtained.
Corollary 7. Under the assumption of Theorem 10 with c=0 in (3.5), the following inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|×(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))]. |
Corollary 8. Under the assumption of Theorem 10 with k=m=1 and c=0 in (3.5), the following inequality holds:
|f(a)+f(b)2−Γ(μ+1)2(b−a)μ[Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μ+1)+1−(12)α+μα+μ+1−B(α+1,μ+1))+|f′(b)|×(2(1−(12)μ)μ+1+(12)1+μ+αμ+1+α−2B(12;α+1,μ+1)−1−(12)1+μ+αμ+1+α+B(α+1,μ+1))]. |
Corollary 9. Under the assumption of Theorem 10 with ψ=I in (3.5), the following inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))]−c(b−a)3(2B(12;α+1,μk+1)−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+1−(12)μk+αμk+1+α−B(α+1,μk+1)−1−(12)μk+2αμk+1+2α+B(2α+1,μk+1))]. |
For next two results, we need the following lemma.
Lemma 2. [26] Let f:[a,b]→R be a differentiable mapping on (a,b) such that f′∈L[a,b], ψ is positive increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and m∈(0,1], then the following integral identity for fractional integral holds:
2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]=mb−a4[∫10tμkf′(at2+m(2−t2)b)dt−∫10tμkf′(am(2−t2)+bt2)dt]. | (3.12) |
Theorem 11. Let f:[a,b]→R be a differentiable mapping on (a,b) such that f′∈Ł[a,b]. Also suppose that |f′|q is strongly (α,m)-convex function on [a,b] for q≥1, ψ is an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)×(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k−21−2αcm(μk+1)(μk+2)(b−am2)2(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q], | (3.13) |
with μ>0.
Proof. Applying Lemma 2 and strongly (α,m)-convexity of |f′|, (for q=1), we have
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4[∫10|tμkf′(at2+m(2−t2)b)|dt+∫10|tμkf′(am(2−t2)+bt2)dt|]≤mb−a4[(|f′(a)|+|f′(b)|2α)∫10tμk+αdt+m(|f′(b)|+|f′(am2)|)2α∫10(2α−tα)tμkdt−cm((b−a)2+(b−am2)2)22α∫10tμk+α(2α−tα)dt]≤mb−a4[k[|f′(a)|+|f′(b)|]2α(μ+αk+k)+mk[2α(αk+μ+k)−(μ+k)](μ+k)(αk+μ+k)×(|f′(b)|+|f′(am2)|)−cmk[2α(2αk+μ+k)−(αk+μ+k)]22α(αk+μ+k)(2αk+μ+k)((b−a)2+(b−am2)2)]. |
Now for q>1, we proceed as follows: From Lemma 2 and using power mean inequality, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(∫10tμkdt)1−1q[(∫10tμk|f′(at2+m(2−t2)b)|qdt)1q+(∫10tμk|f′(am(2−t2)+bt2)|qdt)1q]≤mb−a4(μk+1)1p[(|f′(a)|q2α∫10tα+μkdt+m|f′(b)|q2α∫10(2α−tα)tμkdt−cm(b−a)222α∫10(2α−tα)tμk+αdt)1q+(m|f′(am2)|2α∫10(2α−tα)tμkdt+|f′(b)|q2α∫10tα+μkdt−cm(b−am2)222α∫10(2α−tα)tμk+αdt)1q]≤mb−a4(μk+1)1p[(k|f′(a)|q2α(αk+μ+k)+mk|f′(b)|q[2α(αk+μ+k)−(μ+k)]2α(μ+k)(αk+μ+k)−cmk(b−a)2[2α(2αk+μ+k)−(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q+(mk|f′(am2)|q[2α(αk+μ+k)−(μ+k)]2α(μ+k)(αk+μ+k)+k|f′(b)|q2α(kα+μ+k)−cmk(b−am2)2[2α(2αk+μ+k)−(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q]≤mb−a22+1q(μk+1)(μk+2)1q[(2k|f′(a)|q(μk+1)(μk+2)2α(αk+μ+k)+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k)+2k(μk+1)(μk+2)|f′(b)|q2α(αk+μ+k)−2cm(μk+1)(μk+2)(b−am2)222α2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k))1q]. |
This completes the proof.
Remark 5. Under the assumption of Theorem 11, one can achieve the following outcomes:
(i) If α=m=1 in (3.13), then the inequality stated in [17,Theorem 12] can be obtained.
(ii) If α=k=1 and ψ=I in (3.13), then the inequality stated in [21,Theorem 10] can be obtained.
(iii) If α=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [27,Theorem 2.4] can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (3.13), then the inequality stated in [13,Theorem 3.1] can be obtained.
(v) If α=m=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [9,Theorem 5] can be obtained.
(vi) If α=μ=k=m=q=1 and ψ=I in (3.13), then the inequality stated in [26,Corollary 8] can be obtained.
(vii) If α=μ=k=m=q=1, ψ=I and c=0 in (3.13), then the inequality stated in [28,Theorem 2.2] can be obtained.
Corollary 10. Under the assumption of Theorem 11 with c=0 in (3.13), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)×(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k)1q]. |
Corollary 11. Under the assumption of Theorem 11 with k=1 in (3.13), the following inequality holds:
|2μ−1Γ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μ+1)(μ+2)1q[(21−α|f′(a)|q(μ+1)(μ+2)α+μ+1+21−αm|f′(b)|q(μ+1)(μ+2)×(2α(α+μ+1)−(μ+1)(μ+1)(α+μ+1))−21−2αcm(b−a)2(μ+1)(μ+2)(2α(2α+μ+1)−(α+μ+1)(α+μ+1)(2α+μ+1)))1q+(21−αm|f′(am2)|q(μ+1)(μ+2)(2α(α+μ+1)−(μ+1)(μ+1)(α+μ+1))+21−α(μ+1)(μ+2)|f′(b)|qα+μ+1−21−2αcm(μ+1)(μ+2)(b−am2)2(2α(2α+μ+1)−(α+μ+1)(α+μ+1)(2α+μ+1)))1q]. |
Corollary 12. Under the assumption of Theorem 11 with ψ=I in (3.13), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)−f(am)]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)×(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k−21−2αcm(μk+1)(μk+2)(b−am2)2(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q]. |
Theorem 12. Let f:I→R be a differentiable mapping on (a,b) with a<b. Also suppose that |f′|q is strongly (α,m)-convex function for q>1, ψ is positive increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following fractional integral inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(2−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q], | (3.14) |
with μ>0 and 1p+1q=1.
Proof. By applying Lemma 2 and using the property of modulus, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4[∫10|tμkf′(at2+m(2−t2)b)|dt+∫10|tμkf′(am(2−t2)+bt2)|dt]. |
Now applying Hölder's inequality for integrals, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(μpk+1)1p[(∫10|f′(at2+m(2−t2)b)|qdt)1q+(∫10|f′(am(2−t2)+bt2)|qdt)1q]. |
Using strongly (α,m)-convexity of |f′|q, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(μpk+1)1p[(|f′(a)|q2α∫10tαdt+m|f′(b)|q2α∫10(2α−tα)dt−cm(b−a)222α∫10tα(2α−tα)dt)1q+(m|f′(am2)|q2α∫10(2α−tα)dt+|f′(b)|q2α∫10tαdt−cm(b−am2)222α∫10tα(2α−tα)dt)1q]=mb−a4(μpk+1)1p[(|f′(a)|q2α(α+1)+m|f′(b)|q[2α(1+α)−1]2α(1+α)−cm(b−a)222α(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q+(m|f′(am2)|q[2α(1+α)−1]2α(1+α)+|f′(b)|q2α(α+1)−cm(b−am2)222α(−1−α+2α(1+2α)(1+α)(1+2α)))1q]≤mb−a42−1p(μpk+1)1p[(22−α|f′(a)|q(α+1)+22−αm|f′(b)|q[2α(1+α)−1]1+α−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+(22−αm|f′(am2)|q[2α(1+α)−1](1+α)+22−α|f′(b)|qα+1−22−2αcm(b−am2)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q]≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|×(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Here, we have used the fact aq+bq≤(a+b)q, for q>1, a,b≥0. This completes the proof.
Remark 6. Under the assumption of Theorem 12, one can achieve the following outcomes:
(i) If α=m=1 in (3.14), then the inequality stated in [17,Theorem 13] can be obtained.
(ii) If α=k=1 and ψ=I in (3.14), then the inequality stated in [21,Theorem 10] can be obtained.
(iii) If α=k=1, ψ=I and c=0 in (3.14), then the inequality stated in [27,Theorem 2.7] can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [13,Theorem 2.7] can be obtained.
(v) If α=μ=k=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [29,Theorem 2.4] can be obtained.
Corollary 13. Under the assumption of Theorem 12 with c=0 in 3.14, the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q+(|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)]. |
Corollary 14. Under the assumption of Theorem 12 with k=1 in (3.14), the following inequality holds:
|2μ−1Γ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μp+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(2−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Corollary 15. Under the assumption of Theorem 12 with ψ=I in (3.14), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)−f(am)]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2×(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Some new versions of the Hadamard type inequalities are established for strongly (α,m)-convex functions via the generalized Riemann-Liouville fractional integrals. We have obtained new generalizations as well as proved estimations of such inequalities for strongly (α,m)-convex functions. We conclude that findings of this study give the refinements as well as generalization of several fractional inequalities for convex, strongly convex and strongly m-convex functions. The reader can further deduce inequalities for Riemann-Liouville fractional integrals.
Authors do not have conflict of interest.
[1] |
W. H. Chen, T. A. Dao, On the Cauchy problem for semilinear regularity-loss-type σ-evolution models with memory term, Nonlinear Anal. Real World Appl., 59 (2021), 103265. https://doi.org/10.1016/j.nonrwa.2020.103265 doi: 10.1016/j.nonrwa.2020.103265
![]() |
[2] |
W. H. Chen, T. A. Dao, Sharp lifespan estimates for the weakly coupled system of semilinear damped wave equations in the critical case, Math. Ann., 385 (2023), 101–130. https://doi.org/10.1007/s00208-021-02335-y doi: 10.1007/s00208-021-02335-y
![]() |
[3] |
Y. X. Chen, R. Z. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 111664. https://doi.org/10.1016/j.na.2019.111664 doi: 10.1016/j.na.2019.111664
![]() |
[4] |
F. A. Chiarello, G. Girardi, S. Lucente, Fujita modified exponent for scale invariant damped semilinear wave equation, arXiv, 2020. https://doi.org/10.48550/arXiv.2002.03418 doi: 10.48550/arXiv.2002.03418
![]() |
[5] |
W. Dai, H. Kubo, M. Sobajima, Blow-up for Strauss type wave equation with damping and potential, Nonlinear Anal.: Real World Appl., 57 (2021), 103195. https://doi.org/10.1016/j.nonrwa.2020.103195 doi: 10.1016/j.nonrwa.2020.103195
![]() |
[6] |
T. A. Dao, A result for non-existence of global solutions to semilinear structural damped wave model, arXiv, 2019. https://doi.org/10.48550/arXiv.1912.07066 doi: 10.48550/arXiv.1912.07066
![]() |
[7] |
T. A. Dao, A. Z. Fino, Critical exponent for semilinear structurally damped wave equation of derivative type, Math. Methods Appl. Sci., 43 (2020), 9766–9775. https://doi.org/10.1002/mma.6649. doi: 10.1002/mma.6649
![]() |
[8] |
F. Q. Du, J. H. Hao, Energy decay for wave equation of variable coefficients with dynamic boundary conditions and time varying delay, J. Geom. Anal., 33 (2023), 119. https://doi.org/10.1007/s12220-022-01161-1 doi: 10.1007/s12220-022-01161-1
![]() |
[9] |
V. Georgiev, A. Palmieri, Critical exponent of Fujita type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity, J. Differ. Equations, 269 (2020), 420–448. https://doi.org/10.1016/j.jde.2019.12.009 doi: 10.1016/j.jde.2019.12.009
![]() |
[10] |
V. Georgiev, A. Palmieri, Lifespan estimates for local in time solutions to the semilinear heat equation on the Heisenberg group, Ann. Mat. Pura Appl., 200 (2021), 999–1032. https://doi.org/10.1007/s10231-020-01023-z doi: 10.1007/s10231-020-01023-z
![]() |
[11] |
M. Hamouda, M. A. Hamza, A blow-up result for the wave equation with localized initial data: the scale invariant damping and mass term with combined nonlinearities, arXiv, 2020. https://doi.org/10.48550/arXiv.2010.05455 doi: 10.48550/arXiv.2010.05455
![]() |
[12] |
M. Hamouda, M. A. Hamaz, Blow-up for wave equation with the scale invariant damping and combined nonlinearities, Math. Methods Appl. Sci., 44 (2021), 1127–1136. https://doi.org/10.1002/mma.6817 doi: 10.1002/mma.6817
![]() |
[13] |
W. Han, Y. Zhou, Blow-up for some semilinear wave equations in multi-space dimensions, Commun. Partial Differ. Equ., 39 (2014), 651–665. https://doi.org/10.1080/03605302.2013.863916 doi: 10.1080/03605302.2013.863916
![]() |
[14] |
K. Hidano, C. B. Wang, K. Yokoyama, Combined effects of two nonlinearities in lifespan of small solutions to semilinear wave equations, Math. Ann., 366 (2016), 667–694. https://doi.org/10.1007/s00208-015-1346-1 doi: 10.1007/s00208-015-1346-1
![]() |
[15] |
M. Ikeda, M. Sobajima, K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differ. Equations, 267 (2019), 5165–5201. https://doi.org/10.1016/j.jde.2019.05.029 doi: 10.1016/j.jde.2019.05.029
![]() |
[16] |
M. Ikeda, T. Tanaka, K. Wakasa, Critical exponent for the wave equation with a time dependent scale invariant damping and a cubic convolution, J. Differ. Equations, 270 (2021), 916–946. https://doi.org/10.1016/j.jde.2020.08.047 doi: 10.1016/j.jde.2020.08.047
![]() |
[17] |
M. Ikeda, Z. H. Tu, K. Wakasa, Small data blow-up of semilinear wave equation with scattering dissipation and time dependent mass, Evol. Equ. Control The., 11 (2021), 515–536. https://doi.org/10.3934/eect.2021011 doi: 10.3934/eect.2021011
![]() |
[18] |
T. Imai, M. Kato, H. Takamura, K. Wakasa, The lifespan of solutions of semilinear wave equations with the scale invariant damping in two space dimensions, J. Differ. Equations, 269 (2020), 8387–8424. https://doi.org/10.1016/j.jde.2020.06.019 doi: 10.1016/j.jde.2020.06.019
![]() |
[19] |
F. John, Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., 34 (1981), 29–51. https://doi.org/10.1002/cpa.3160340103 doi: 10.1002/cpa.3160340103
![]() |
[20] |
S. Kitamura, K. Morisawa, H. Takamura, The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension, J. Differ. Equations, 307 (2022), 486–516. https://doi.org/10.1016/j.jde.2021.10.062 doi: 10.1016/j.jde.2021.10.062
![]() |
[21] |
N. A. Lai, M. Y. Liu, Z. H. Tu, C. B. Wang, Lifespan estimates for semilinear wave equations with space dependent damping and potential, Calc. Var. Partial Differ. Equ., 62 (2023), 44. https://doi.org/10.1007/s00526-022-02388-0 doi: 10.1007/s00526-022-02388-0
![]() |
[22] | N. A. Lai, N. M. Schiavone, H. Takamura, Wave-like blow-up for semilinear wave equations with scattering damping and negative mass term, In: M. D'Abbicco, M. Ebert, V. Georgiev, T. Ozawa, New tools for nonlinear PDEs and application, Trends in Mathematics, Birkhäuser, Cham, 2019,217–240. https://doi.org/10.1007/978-3-030-10937-0_8 |
[23] |
N. A. Lai, N. M. Schiavone, H. Takamura, Heat like and wave like lifespan estimates for solutions of semilinear damped wave equations via a Kato's type lemma, J. Differ. Equations, 269 (2020), 11575–11620. https://doi.org/10.1016/j.jde.2020.08.020 doi: 10.1016/j.jde.2020.08.020
![]() |
[24] |
N. A. Lai, H. Takamura, Blow-up for semilinear damped wave equations with sub-critical exponent in the scattering case, Nonlinear Anal., 168 (2018), 222–237. https://doi.org/10.1016/J.NA.2017.12.008 doi: 10.1016/J.NA.2017.12.008
![]() |
[25] |
N. A. Lai, H. Takamura, Non-existence of global solutions of nonlinear wave equations with weak time dependent damping related to Glassey's conjecture, Differ. Integr. Equ., 32 (2019), 37–48. https://doi.org/10.57262/die/1544497285 doi: 10.57262/die/1544497285
![]() |
[26] |
N. A. Lai, H. Takamura, Non-existence of global solutions of wave equations with weak time dependent damping and combined nonlinearity, Nonlinear Anal.: Real World Appl., 45 (2019), 83–96. https://doi.org/10.1016/j.nonrwa.2018.06.008 doi: 10.1016/j.nonrwa.2018.06.008
![]() |
[27] |
N. A. Lai, H. Takamura, K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super Fujita exponent, J. Differ. Equations, 263 (2017), 5377–5394. https://doi.org/10.1016/j.jde.2017.06.017 doi: 10.1016/j.jde.2017.06.017
![]() |
[28] |
N. A. Lai, Z. H. Tu, Strauss exponent for semilinear wave equations with scattering space dependent damping, J. Math. Anal. Appl., 489 (2020), 124189. https://doi.org/10.1016/j.jmaa.2020.124189 doi: 10.1016/j.jmaa.2020.124189
![]() |
[29] |
N. A. Lai, Y. Zhou, Blow-up and lifespan estimate to a nonlinear wave equation in Schwarzschild spacetime, J. Math. Pures Appl., 173 (2023), 172–194. https://doi.org/10.1016/j.matpur.2023.02.009 doi: 10.1016/j.matpur.2023.02.009
![]() |
[30] |
Q. Lei, H. Yang, Global existence and blow-up for semilinear wave equations with variable coefficients, Chin. Ann. Math. Ser. B, 39 (2018), 643–664. https://doi.org/10.1007/s11401-018-0087-3 doi: 10.1007/s11401-018-0087-3
![]() |
[31] |
Y. H. Lin, N. A. Lai, S. Ming, Lifespan estimate for semilinear wave equation in Schwarzschild spacetime, Appl. Math. Lett., 99 (2020), 105997. https://doi.org/10.1016/j.aml.2019.105997 doi: 10.1016/j.aml.2019.105997
![]() |
[32] |
M. Y. Liu, C. B. Wang, Blow-up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds, J. Differ. Equations, 269 (2020), 8573–8596. https://doi.org/10.1016/j.jde.2020.06.032 doi: 10.1016/j.jde.2020.06.032
![]() |
[33] |
S. Ming, S. Y. Lai, X. M. Fan, Lifespan estimates of solutions to quasilinear wave equations with scattering damping, J. Math. Anal. Appl., 492 (2020), 124441. https://doi.org/10.1016/j.jmaa.2020.124441 doi: 10.1016/j.jmaa.2020.124441
![]() |
[34] |
S. Ming, S. Y. Lai, X. M. Fan, Blow-up for a coupled system of semilinear wave equations with scattering dampings and combined nonlinearities, Appl. Anal., 101 (2022), 2996–3016. https://doi.org/10.1080/00036811.2020.1834086 doi: 10.1080/00036811.2020.1834086
![]() |
[35] |
A. Palmieri, H. Takamura, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 187 (2019), 467–492. https://doi.org/10.1016/j.na.2019.06.016 doi: 10.1016/j.na.2019.06.016
![]() |
[36] |
A. Palmieri, Z. H. Tu, Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl., 470 (2019), 447–469. https://doi.org/10.1016/j.jmaa.2018.10.015 doi: 10.1016/j.jmaa.2018.10.015
![]() |
[37] |
A. Palmieri, Z. H. Tu, A blow-up result for a semilinear wave equation with scale invariant damping and mass and nonlinearity of derivative type, Calc. Var. Partial Differ. Equ., 60 (2021), 72. https://doi.org/10.1007/s00526-021-01948-0 doi: 10.1007/s00526-021-01948-0
![]() |
[38] |
K. Wakasa, B. Yordanov, On the non-existence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal., 180 (2019), 67–74. https://doi.org/10.1016/j.na.2018.09.012 doi: 10.1016/j.na.2018.09.012
![]() |
[39] |
K. Wakasa, B. Yordanov, Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differ. Equations, 266 (2019), 5360–5376. https://doi.org/10.1016/j.jde.2018.10.028 doi: 10.1016/j.jde.2018.10.028
![]() |
[40] |
Y. Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B, 28 (2007), 205–212. https://doi.org/10.1007/s11401-005-0205-x doi: 10.1007/s11401-005-0205-x
![]() |
[41] |
Y. Zhou, W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary, J. Math. Anal. Appl., 374 (2011), 585–601. https://doi.org/10.1016/j.jmaa.2010.08.052 doi: 10.1016/j.jmaa.2010.08.052
![]() |
[42] |
Y. Zhou, W. Han, Lifespan of solutions to critical semilinear wave equations, Commun. Partial Differ. Equ., 39 (2014), 439–451. https://doi.org/10.1080/03605302.2013.863914 doi: 10.1080/03605302.2013.863914
![]() |