
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(8): 17860–17889.
DOI: 10.3934/math.2023910
Received: 11 April 2023
Revised: 09 May 2023
Accepted: 14 May 2023
Published: 24 May 2023

Research article

Lifespan estimate of solution to the semilinear wave equation with damping
term and mass term

Xiongmei Fan1, Sen Ming2,*, Wei Han2 and Zikun Liang3

1 Data Science And Technology, North University of China, Taiyuan 030051, China
2 Department of Mathematics, North University of China, Taiyuan 030051, China
3 Department of Mechanics and Aerospace Engineering, Southern University of Science and

Technology, Shenzhen 518055, China

* Correspondence: Email: senming1987@163.com.

Abstract: This paper is mainly concerned with the initial boundary value problems of semilinear
wave equations with damping term and mass term as well as Neumann boundary conditions on exterior
domain in three dimensions. Blow-up and upper bound lifespan estimates of solutions to the problem
with damping term and mass term are derived by applying test function technique and iterative method,
where nonlinear terms are power nonlinearity |u|p, derivative nonlinearity |ut|

p, combined nonlinearities
|ut|

p + |u|q, respectively. Moreover, upper bound lifespan estimate of solution to the problem with scale
invariant damping term, non-negative mass term and combined nonlinearities |ut|

p + |u|q is obtained.
The proofs are based on the test function method and iterative approach. The main new contribution is
that upper bound lifespan estimates of solutions are associated with the Strauss exponent and Glassey
exponent. In addition, the variation trend of wave is achieved by taking advantage of numerical
simulation.
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1. Introduction

Our main goal of the present work is to investigate the following semilinear wave equations with
damping term and mass term, namely
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
utt − ∆u + b1(t)ut − b2(t)u = f (u, ut), x ∈ Ωc, t > 0,
u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Ωc,

∂u
∂n
|∂B1(0) = 0

(1.1)

and 
utt − ∆u +

µ

1 + t
ut +

ν2

(1 + t)2 u = f (u, ut), x ∈ Ωc, t > 0,

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Ωc,

∂u
∂n
|∂B1(0) = 0,

(1.2)

where ∆ =
3∑

i=1

∂2

∂x2
i
. The coefficients b1(t) ∈ C([0,∞)) ∩ L1([0,∞)), b2(t) = ν0

(1+t)β+1 (ν0 > 0, β > 1) are

non-negative functions. µ, ν ≥ 0. We set f (u, ut) = |u|p, |ut|
p, |ut|

p + |u|q in problem (1.1) and f (u, ut) =

|ut|
p + |u|q in problem (1.2), respectively. The exponents of nonlinear terms satisfy 1 < p, q < ∞. Let

Ω = B1(0) = {x ∈ R3
∣∣∣ |x| ≤ 1} and Ωc = R3\B1(0). Ωc and ∂Ωc are smooth and compact. Initial values

satisfy f (x), g(x) ∈ C∞(Ωc) and supp ( f (x), g(x)) ⊂ Ωc ∩ BR(0), where BR(0) = {x
∣∣∣ |x| ≤ R}, R > 2.

The small parameter ε > 0 describes the size of initial values. ∂u
∂n stands for the derivative of external

normal direction. It is well known that a solution u has compact support when the initial values have
compact supports. As a consequence, we directly suppose that the solution has compact support set.

We briefly review several previous results concerning problem (1.1) with b1(t) = b2(t) = 0. It is
worth pointing out that the Cauchy problem with f (u, ut) = |u|p asserts the Strauss exponent pc(n)
(see [31, 40–42]), which is the positive root of quadratic equation

r(n, p) = −(n − 1)p2 + (n + 1)p + 2 = 0.

The Cauchy problem with f (u, ut) = |ut|
p admits the Glassey exponent pG(n) = n+1

n−1 , which has been
investigated in [14,19]. Ikeda et al. [15] establish blow-up dynamic and lifespan estimate of solution to
the semilinear wave equation and related weakly coupled system by using a framework of test function
approach. The Cauchy problem with f (u, ut) = |ut|

p + |u|q is discussed in Han et al. [13]. Upper bound
lifespan estimate of solution is illustrated by making use of test function method and the Kato lemma.

Recently, many researchers have been devoted to the study of Cauchy problem for semilinear wave
equation utt − ∆u + g(ut) = f (u, ut), x ∈ Rn, t > 0,

u(x, 0) = εu0(x), ut(x, 0) = εu1(x), x ∈ Rn,
(1.3)

where f (u, ut) = |u|p, |ut|
p, |ut|

p + |u|q. Problem (1.3) with damping term g(ut) = ut,
µ

1+t ut,
µ

(1+t)β ut (β >
1), (−∆)δut (δ ∈ (0, 1

2 ]), a(x)ut (a(x) ∈ C(Rn)) and power nonlinear term f (u, ut) = |u|p is considered
in [6, 9, 18, 24, 27, 30, 38]. Lai et al. [27] derive upper bound lifespan estimate of solution to
problem (1.3) with damping term g(ut) =

µ

1+t ut by exploiting the Kato lemma. Imai et al. [18]
investigate problem (1.3) with scale invariant damping in two dimensions. Blow-up result and
lifespan estimate of solution are discussed under certain restriction on the constant µ. Applying
test function approach and imposing certain integral sign conditions on the initial values, Georgiev
et al. [9] illustrate blow-up result of solution to problem (1.3) with g(ut) = ut on the Heisenberg

AIMS Mathematics Volume 8, Issue 8, 17860–17889.



17862

group when 1 < p < pF(n). Wakasa et al. [38] consider formation of singularity of solution
to problem (1.3) with scattering damping µ

(1+t)β ut (β > 1). Lifespan estimate of solution to the
variable coefficient wave equation in the critical case is analyzed by employing rescaled test function
method and iteration technique, which has been utilized in [39]. Problem (1.3) with damping term
g(ut) =

µ

(1+t)β ut (β > 1), µ

(1+|x|)β ut (β > 2), µ(−∆)
σ
2 ut (µ > 0, 0 < σ ≤ 2) and derivative type nonlinear

term f (u, ut) = |ut|
p is considered in [7, 25, 28]. Lai et al. [25] derive upper bound lifespan estimate

of solution to problem (1.3) with scattering damping term g(ut) =
µ

(1+t)β ut (β > 1) in the sub-critical
and critical cases by introducing a bounded multiplier. Lai et al. [28] verify blow-up and lifespan
estimate of solutions to problem (1.3) with space dependent damping term g(ut) =

µ

(1+|x|)β ut (β > 2)

in the case 1 < p ≤ pG(n) = n+1
n−1 by utilizing test function method (Ψ = ∂tψ = ∂t(−η

2p′

M (t)e−tφ1(x))).
Dao et al. [7] investigate formation of singularity of solution to problem (1.3) with structural damping
term g(ut) = µ(−∆)

σ
2 ut (µ > 0, 0 < σ ≤ 2) and derivative nonlinearity. Problem (1.3) with damping

term g(ut) =
µ

1+t ut,
µ

(1+t)β ut (β > 1) and combined nonlinearities f (u, ut) = |ut|
p + |u|q is illustrated

in [12, 26, 32, 33]. Applying the rescaled test function approach and iterative method, Ming et al. [33]
establish upper bound lifespan estimate of solution to problem (1.3) with scattering damping and
divergence form nonlinearity in the sub-critical and critical cases. Hamouda et al. [12] illustrate
influence of scale invariant damping on the formation of singularity of solution. Lifespan estimate of
solution is derived by imposing certain assumptions on the parameter µ. Liu and Wang [32] consider
blow-up of solution to the semilinear wave equation with combined nonlinearities on asymptotically
Euclidean manifolds in the case n = 2, µ = 0.

Scholars focus widespread attention on the Cauchy problem for semilinear wave equation with
damping term and mass term (see detailed illustrations in [1, 4, 11, 17, 22, 36, 37]). Taking advantage
of the iteration method, Lai et al. [22] establish blow-up result of solution to the semilinear wave
equation with scattering damping term and negative mass term, where the nonlinearity is |u|p. Ikeda
et al. [17] investigate lifespan estimate of solution to the semilinear wave equation with damping term,
mass term as well as power nonlinearity in the sub-critical and critical cases by utilizing test function
approach (ψ(x, t) = ρ(t)φ1(x)), which is inspired by [36]. Lai et al. [23] derive upper bound lifespan
estimate of solution to the semilinear wave equation with damping term and mass term by employing
the Kato lemma and iteration approach. Blow-up phenomenon and lifespan estimate of solution to
the semilinear wave equation with scale invariant damping, non-negative mass term and power type of
nonlinear term are documented in [36], where the iteration method is performed. Hamouda et al. [11]
show blow-up dynamic of solution to the semilinear wave equation with scale invariant damping, mass
term and combined nonlinearities. The proof is based on the multiplier technique and solving the
ordinary differential inequality. We refer readers to the works in [2, 3, 5, 8, 10, 16, 20, 21, 29, 34, 35] for
more details.

Enlightened by the works in [11, 17, 22, 24–26, 36], our interest is to show blow-up results of
solutions to problems (1.1) and (1.2) with Neumann boundary conditions on exterior domain in
three dimensions. It is worth pointing out that upper bound lifespan estimates of solutions to the
Cauchy problem of semilinear wave equation with scattering damping term µ

(1+t)β ut (µ > 0, β > 1)
and nonlinear terms |u|p, |ut|

p, |ut|
p + |u|q are discussed in [24–26]. Lai et al. [22] derive blow-up and

lifespan estimate of solution to the semilinear wave equation with scattering damping and negative
mass term by exploiting the test function technique and iterative approach, where the nonlinear term
is |u|p. However, there is no related result about blow-up dynamic of solution to problem (1.1). Thus,
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we extend the Cauchy problem studied in [24–26] to problem (1.1) with damping term, negative
mass term and Neumann boundary condition on exterior domain in three dimensions. Upper bound
lifespan estimate of solution to problem (1.1) is established by making use of a radial symmetry test

function ψ(x, t) = e−t 1
r er with r =

√
x2

1 + x2
2 + x2

3 (see Theorems 1.1, 1.3–1.5). The Cauchy problem

investigated in [23] is extended to problem (1.1) by utilizing the test function method (ψ(x, t) = e−t 1
r er)

and the Kato lemma (see Theorem 1.2). We derive lifespan estimate of solution to problem (1.1) with
f (u, ut) = |u|p (see Theorem 1.6) by taking advantage of the test function approach (ψ1(x, t) = ρ(t)1

r er),
which is inspired by the work [17]. Making use of a multiplier, Hamouda et al. [11] verify blow-up
phenomenon of solution to the semilinear wave equation with scale invariant damping and mass term
as well as combined nonlinearities. We extend the problem discussed in [11] to problem (1.2). Upper
bound lifespan estimate of solution to problem (1.2) with combined nonlinearities f (u, ut) = |ut|

p + |u|q

is acquired by applying the test function technique (ψ2(x, t) = ρ1(t)1
r er) and iterative method (see

Theorem 1.7). To the best of our knowledge, the results in Theorems 1.1–1.7 are new. Moreover, we
characterize the variation of wave by utilizing numerical simulation.

Definitions of weak solutions and the main results in this paper are illustrated as follows.

Definition 1.1. A function u is called a weak solution of problem (1.1) on [0,T ) if u ∈

C([0,T ),H1(Ωc)) ∩C1([0,T ), L2(Ωc)) ∩ Lp
loc((0,T ) ×Ωc) when f (u, ut) = |u|p, u ∈ C([0,T ),H1(Ωc)) ∩

C1([0,T ), L2(Ωc)) ∩ C1((0,T ), Lp(Ωc)) when f (u, ut) = |ut|
p, u ∈ ∩1

i=0C
i([0,T ),H1−i(Ωc)) ∩

C1((0,T ), Lp(Ωc)) ∩ Lq
loc((0,T ) ×Ωc) when f (u, ut) = |ut|

p + |u|q and∫
Ωc

ut(x, t)φ(x, t)dx −
∫

Ωc
εg(x)φ(x, 0)dx

+

∫ t

0
ds

∫
Ωc
{−ut(x, s)φt(x, s) − ∆u(x, s)φ(x, s)}dx

+

∫ t

0
ds

∫
Ωc

b1(s)ut(x, s)φ(x, s)dx −
∫ t

0
ds

∫
Ωc

b2(s)u(x, s)φ(x, s)dx

=

∫ t

0
ds

∫
Ωc

f (u, ut)(x, s)φ(x, s)dx, (1.4)

where φ ∈ C∞0 ([0,T ) ×Ωc) and t ∈ [0,T ).

Definition 1.2. A function u is called a weak solution of problem (1.2) on [0,T ) if u ∈

C([0,T ),H1(Ωc)) ∩ C1([0,T ), L2(Ωc)), u ∈ Lq
loc((0,T ) × Ωc), ut ∈ Lp

loc((0,T ) × Ωc) when f (u, ut) =

|ut|
p + |u|q and ∫

Ωc
ut(x, t)φ(x, t)dx −

∫
Ωc

ut(x, 0)φ(x, 0)dx −
∫ t

0

∫
Ωc

ut(x, s)φt(x, s)dxds

+

∫ t

0

∫
Ωc
∇u(x, s)∇φ(x, s)dxds +

∫ t

0

∫
Ωc

µ

1 + s
ut(x, s)φ(x, s)dxds

+

∫ t

0

∫
Ωc

ν2

(1 + s)2 u(x, s)φ(x, s)dxds

=

∫ t

0

∫
Ωc

(|ut(x, s)|p + |u(x, s)|q)φ(x, s)dxds, (1.5)

where φ ∈ C∞0 ([0,T ) ×Ωc) and t ∈ [0,T ).
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Setting
m(t) = (1 + t)µ,

we rewrite Definition 1.2 by choosing m(t)φ(x, t) as a test function.

Definition 1.3. A function u is called a weak solution of problem (1.2) on [0,T ) if u ∈

C([0,T ),H1(Ωc)) ∩ C1([0,T ), L2(Ωc)), u ∈ Lq
loc((0,T ) × Ωc), ut ∈ Lp

loc((0,T ) × Ωc) when f (u, ut) =

|ut|
p + |u|q and

m(t)
∫

Ωc
ut(x, t)φ(x, t)dx −

∫
Ωc

ut(x, 0)φ(x, 0)dx

−

∫ t

0
m(s)

∫
Ωc

ut(x, s)φt(x, s)dxds +

∫ t

0
m(s)

∫
Ωc
∇u(x, s)∇φ(x, s)dxds

+

∫ t

0

∫
Ωc

ν2m(s)
(1 + s)2 u(x, s)φ(x, s)dxds

=

∫ t

0
m(s)

∫
Ωc

(|ut(x, s)|p + |u(x, s)|q)φ(x, s)dxds, (1.6)

where φ ∈ C∞0 ([0,T ) ×Ωc) and t ∈ [0,T ).

Theorem 1.1. Let 1 < p < pc(3). Assume that ( f , g) ∈ H1(Ωc)×L2(Ωc) are non-negative functions and
f does not vanish identically. If a solution u to problem (1.1) with f (u, ut) = |u|p satisfies supp (u, ut) ⊂
{(x, t) ∈ Ωc × [0,T )

∣∣∣ |x| ≤ t + R}, then u blows up in finite time. Moreover, there exists a constant
ε0 = ε0( f , g, R, p, b1(t), b2(t)) > 0 such that the lifespan estimate T (ε) satisfies

T (ε)≤ Cε
−2p(p−1)

r(p,3) , (1.7)

where 0 < ε ≤ ε0, C > 0 is independent of ε.

Theorem 1.2. Assume b1(t) = ν1
(1+t)β , b2(t) = ν2

(1+t)2 , ν1 ≥ 0, β > 1, ν2 > 0. Let δ = 1 + 4ν2e
ν1

1−β > 1,

d∗(3) = 2
√

2 − 2 ∈ [0, 2), 1 < p < pδ(3) and

pδ(3) = max{pF(
5 −
√
δ

2
), pc(3)} =


pc(3),

√
δ ≤ 3 − d∗(3),

pF(
5 −
√
δ

2
), 3 − d∗(3) <

√
δ < 5,

+∞,
√
δ ≥ 5.

Here, pF(n) = 1+ 2
n is the solution of equation rF(p, n) = 2−n(p−1) = 0. Suppose that ( f , g) ∈ H1(Ωc)×

L2(Ωc) are non-negative functions and do not vanish identically. If a solution u to problem (1.1) with
f (u, ut) = |u|p satisfies supp (u, ut) ⊂ {(x, t) ∈ Ωc × [0,T )

∣∣∣ |x| ≤ t + R}, then u blows up in finite time.
Moreover, the lifespan estimate T (ε) satisfies

T (ε) ≤



Cε
−2p(p−1)

r(p,3) ,
√
δ ≤ 1,

Cε
−(p−1)

rF (p,3− 1+
√
δ

2 ) , 1 <
√
δ < 3 − d∗(3), 1 < p ≤

2

3 −
√
δ
,

Cε
−2p(p−1)

r(p,3) , 1 <
√
δ < 3 − d∗(3),

2

3 −
√
δ
< p < pδ(3),

Cε−( 2
p−1−3+ 1+

√
δ

2 )−1
,
√
δ ≥ 3 − d∗(3),
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where C > 0 is independent of ε.

Theorem 1.3. Let 1 < p ≤ pG(3) = 2. Assume that ( f , g) ∈ H1(Ωc) × L2(Ωc) are non-negative
functions and g does not vanish identically. If the solution u to problem (1.1) with f (u, ut) = |ut|

p

satisfies supp (u, ut) ⊂ {(x, t) ∈ Ωc × [0,T )
∣∣∣ |x| ≤ t + R}, then u blows up in finite time. Moreover, the

lifespan estimate T (ε) satisfies

T (ε) ≤

Cε−
p−1
2−p , 1 < p < pG(3),

exp(Cε−1), p = pG(3),

where C > 0 is independent of ε.

Theorem 1.4. Let p > 1 and 1 < q < min {1 + 2
p−1 , 6}. Assume that f and g satisfy the conditions in

Theorem 1.3. If a solution u to problem (1.1) with f (u, ut) = |ut|
p + |u|q satisfies supp (u, ut) ⊂ {(x, t) ∈

Ωc × [0,T )
∣∣∣ |x| ≤ t + R}, then u blows up in finite time. Moreover, the lifespan estimate T (ε) satisfies

T (ε) ≤ Cε−
p(q−1)

q+1−p(q−1) ,

where C > 0 is independent of ε.

Theorem 1.5. Let p > 3 and 1 < q < 2. Assume that f and g satisfy the conditions in Theorem 1.3. If
the solution u to problem (1.1) with f (u, ut) = |ut|

p+|u|q satisfies supp (u, ut) ⊂ {(x, t) ∈ Ωc×[0,T )
∣∣∣ |x| ≤

t + R}, then u blows up in finite time. Moreover, the lifespan estimate T (ε) satisfies

T (ε) ≤ Cε−
q−1

2(2−q) ,

where C > 0 is independent of ε.

Theorem 1.6. Let 1 < p < pc(3). Let f and g satisfy the conditions in Theorem 1.1. Suppose that
b1(t) ∈ C1([0,∞)) and r2(t) ∈ L1([0,∞)) satisfyr′2(t) + b1(t)r2(t) − r2

2(t) = −b2(t),
r2(t)|t=0 = r2(0).

ρ′(0) is the initial value of ρ′(t), where ρ(t) is the solution to problem (5.1). It holds thatg(x) + r2(0) f (x) ≥ 0,
g(x) + (b1(0) − ρ′(0)) f (x) ≥ 0.

There is no sign requirement for b1(t) and b2(t). If a solution u to problem (1.1) with f (u, ut) = |u|p

satisfies supp (u, ut) ⊂ {(x, t) ∈ Ωc × [0,T )
∣∣∣ |x| ≤ t + R}, then u blows up in finite time. Moreover, the

lifespan estimate T (ε) satisfies
T (ε) ≤ Cε

−2p(p−1)
r(p,3) ,

where C > 0 is independent of ε.
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Theorem 1.7. Let p > pG(3 + µ), q > qS (3 + µ), µ, ν2 ≥ 0 and δ = (µ − 1)2 − 4ν2 ≥ 0. Assume that
λ(p, q, 3+µ) < 4, where λ(p, q, n) = (q−1)((n−1)p−2) < 4. The initial values ( f , g) ∈ H1(Ωc)×L2(Ωc)
are non-negative functions which do not vanish identically and satisfy

µ − 1 −
√
δ

2
f (x) + g(x) > 0. (1.8)

If a solution u to problem (1.2) with f (u, ut) = |ut|
p+|u|q satisfies supp (u, ut) ⊂ {(x, t) ∈ Ωc×[0,T )

∣∣∣ |x| ≤
t + R}, then u blows up in finite time. Moreover, there exists a constant ε0 = ε0( f , g, R, p, q, µ, ν) > 0
such that the lifespan estimate T (ε) satisfies

T (ε) ≤ Cε−
2p(q−1)

4−λ(p, q, 3+µ) , (1.9)

where C > 0 is independent of ε.

Remark 1.1. Utilizing the Sobolev embedding theorem yields H1(Ωc) ↪→ Lq(Ωc) when n = 3, q < 6
in Theorems 1.4 and 1.5. Consequently, the nonlinear term |u|q in problem (1.1) is integrable in the
domain Ωc ⊂ R3.
Remark 1.2. Taking advantage of the Poincare’s inequality, we conclude∫

Ωc
|∇u|pψdx ≥

1
(t + R)p

∫
Ωc
|u|pψdx ≥ C

∫
Ωc
|u|pψdx.

Similar to the proof of Theorem 1.1, we obtain the same result in (1.7) when nonlinear term is f (u, ut) =

|∇u|p.
Remark 1.3 We call that u is a global solution of problems (1.1) and (1.2) if the maximal existence
time of solution Tmax = ∞. While in the case Tmax < ∞, we call that u blows up in finite time.

2. Proofs of Theorems 1.1 and 1.2

2.1. Several related lemmas

Lemma 2.1. [35] Let b1(t) ∈ C([0,∞)) ∩ L1([0,∞)) be a non-negative function, which satisfies

m1(t) = exp(−
∫ ∞

t
b1(τ)dτ),

m1(0) ≤ m1(t) ≤ 1, m′1(t)
m1(t) = b1(t) for t ≥ 0.

Lemma 2.2. Let φ1(x) = φ1(r) = 1
r er, where x = (x1, x2, x3) and r =

√
x2

1 + x2
2 + x2

3. It holds that

∆φ1 = (∂rr +
2
r
∂r)φ1 = φ1

and ∂φ1
∂r |r=1 = 0. Setting ψ = e−tφ1(x), it satisfies∫

Ωc∩{|x|≤t+R}
ψ

p
p−1 dx ≤ C(R + t)2− p

p−1 , ∆ψ = ψ,

where C is a positive constant.
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Proof of Lemma 2.2. Direct calculation shows

∂φ1

∂xi
=
∂φ1

∂r
xi

r
,

∂2φ1

∂x2
i

=
∂2φ1

∂r2

x2
i

r2 +
r2 − x2

i

r3

∂φ1

∂r
,

where i = 1, 2, 3. Thus, we obtain

∆φ1 =
∂2φ1

∂x2
1

+
∂2φ1

∂x2
2

+
∂2φ1

∂x2
3

=
∂2φ1

∂r2 (
x2

1

r2 +
x2

2

r2 +
x2

3

r2 ) +
∂φ1

∂r
(
r2 − x2

1

r3 +
r2 − x2

2

r3 +
r2 − x2

3

r3 )

= (∂rr +
2
r
∂r)φ1 = φ1.

Employing ψ = e−t 1
r er gives rise to∫

Ωc∩{|x|≤t+R}
ψ

p
p−1 dx =

∫
S2

dw
∫ t+R

1
[e−t 1

r
er]

p
p−1 r2dr

≤ C
∫ t+R

0
[e−(t−r)]

p
p−1 (R + r)2− p

p−1 dr ≤ C(R + t)2− p
p−1 .

We complete the proof of Lemma 2.2.

2.2. Proof of Theorem 1.1

Let us set three functions 

F0(t) =

∫
Ωc

u(x, t)dx,

F1(t) =

∫
Ωc

u(x, t)ψ(x, t)dx,

F2(t) =

∫
Ωc

ut(x, t)ψ(x, t)dx,

where ψ(x, t) = e−tφ1(x) = e−t 1
r er. It holds that

�ψ = 0, ∆ψ = ψ, (ψ)t = −ψ, (ψ)tt = ψ. (2.1)

By straightforward computation, we achieve∫
Ωc

∆udx =

∫
∂Ωc

1
∂u
∂n

dS −
∫

Ωc
∇1 · ∇udx = 0. (2.2)

Choosing the test function φ(x, s) ≡ 1 on (x, s) ∈ {Ωc × [0, t]
∣∣∣ |x| ≤ s + R} in (1.4) with f (u, ut) = |u|p

and utilizing (2.2) yield

F′′0 (t) + b1(t)F′0(t) = b2(t)F0(t) +

∫
Ωc
|u(x, t)|pdx. (2.3)
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Multiplying (2.3) with m1(t) and integrating on [0, t], we deduce

F′0(t) ≥ m1(0)
∫ t

0

∫
Ωc
|u(x, s)|pdxds, (2.4)

where we have used the fact F′0(0) ≥ 0 and F0(t) > 0.
We are in the position to establish the lower bound of F1(t). Elementary computation leads to

∂u
∂n
|∂Ωc =

∂u
∂n
|r=1 = 0,

∂ψ

∂n
|∂Ωc =

∂ψ

∂n
|r=1 = 0. (2.5)

Applying (2.5) and the Green formula yields∫
Ωc

(∆uψ − u∆ψ)dx =

∫
∂Ωc

(
∂u
∂n
ψ − u

∂ψ

∂n
)dS = 0.

Thus, we have ∫
Ωc

∆uψdx =

∫
Ωc

u∆ψdx =

∫
Ωc

uψdx. (2.6)

Utilizing (2.1), (2.6) and replacing φ(x, s) in (1.4) with f (u, ut) = |u|p by ψ(x, s), we obtain

m1(t)
∫

Ωc
ut(x, t)ψ(x, t)dx − m1(0)ε

∫
Ωc

g(x)ψ(x, 0)dx

−m1(t)
∫

Ωc
u(x, t)ψt(x, t)dx + m1(0)ε

∫
Ωc

f (x)ψt(x, 0)dx

+

∫ t

0

∫
Ωc

m1(s)b1(s)u(x, s)ψt(x, s)dxds

=

∫ t

0

∫
Ωc

m1(s)b2(s)u(x, s)ψ(x, s)dxds

+

∫ t

0

∫
Ωc

m1(s)|u(x, s)|pψ(x, s)dxds.

That is

m1(t){F′1(t) + 2F1(t)} = m1(0)ε
∫

Ωc
{ f (x) + g(x)}φ1(x)dx

+

∫ t

0
m1(s){b1(s) + b2(s)}F1(s)ds +

∫ t

0

∫
Ωc

m1(s)|u(x, s)|pψ(x, s)dxds,

which leads to

F′1(t) + 2F1(t) ≥ m1(0)C f ,gε +

∫ t

0
m1(s){b1(s) + b2(s)}F1(s)ds,

where C f ,g =
∫

Ωc{ f (x) + g(x)}φ1(x)dx > 0.
Thanks to the positivity of F1(t) and F1(0), we deduce

F1(t) >
1 − e−2t

2
m1(0)C f ,gε, (2.7)
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where t > 2. Employing (2.4) and the Holder inequality yields

F0(t) > C1m1(0)
∫ t

0
ds

∫ s

0
(r + R)−3(p−1)F p

0 (r)dr. (2.8)

Making use of the Holder inequality and Lemma 2.2 gives rise to∫
Ωc
|u(x, t)|pdx ≥ (

∫
Ωc∩{|x|≤t+R}

(ψ(x, t))
p

p−1 dx)−(p−1)|F1(t)|p ≥ C(t + R)2−p|F1(t)|p. (2.9)

Taking advantage of (2.4), (2.7) and (2.9), we acquire

F0(t) >
C2ε

p

12
(R + t)−pt4.

We denote

F0(t) > D j(R + t)−a jtb j , (2.10)

where

D1 =
C2ε

p

12
, a1 = p, b1 = 4. (2.11)

Combining (2.8) with (2.10), we derive

F0(t) >
C1m1(0)Dp

j

(pb j + 2)2 (R + t)−3(p−1)−pa jtpb j+2.

Thus, we define the sequences {D j} j∈N, {a j} j∈N, {b j} j∈N by

D j+1 ≥
C1m1(0)Dp

j

(pb j + 2)2 , a j+1 = pa j + 3(p − 1), b j+1 = pb j + 2. (2.12)

Exploiting (2.11), (2.12) and iterative argument gives rise to

a j = p j−1(p + 3) − 3, b j = p j−1(4 +
2

p − 1
) −

2
p − 1

,

D j ≥ C3

Dp
j−1

p2( j−1) ≥ exp{p j−1(log D1 − S p(∞))},

where S p(∞) is obtained by using the d’Alembert’s criterion. Moreover, S p( j) =
j−1∑
k=1

2k log p−log C3
pk

converges to S p(∞) as j→ ∞. As a consequence, making use of (2.10) yields

F0(t) ≥ (t + R)3t−
2

p−1 exp(p j−1J(t)) (2.13)

and

J(t) = −(p + 3) log(t + R) + (4 +
2

p − 1
) log t + log D1 − S p(∞) ≥ log(D1t

r(p,3)
2(p−1) ) −C4,

where C4 = (p + 3) log 2 + S p(∞) > 0 and t ≥ R > 2. Utilizing the condition p < pc(3), we arrive at
J(t) > 1 when t ≥ C5ε

−
2p(p−1)

r(p,3) . Sending j → ∞ in (2.13) yields F0(t) → ∞. Therefore, we derive the
lifespan estimate

T (ε) ≤ C5ε
−

2p(p−1)
r(p,3) .

The proof of Theorem 1.1 is finished.
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2.3. Proof of Theorem 1.2

Integrating (2.3) on [0, t], we acquire

F0(t) = F0(0) + m1(0)F′0(0)
∫ t

0

1
m1(s)

ds

+

∫ t

0

1
m1(s)

ds
∫ s

0
m1(r)b2(r)F0(r)dr

+

∫ t

0

1
m1(s)

ds
∫ s

0
m1(r)dr

∫
Ωc
|u(x, s)|pdx. (2.14)

Let us define two functions

F̃0(t) =
1
2

F0(0) +
m1(0)

2
F′0(0)t + m1(0)

∫ t

0
ds

∫ s

0
b2(r)F̃0(r)dr

+m1(0)
∫ t

0
ds

∫ s

0
dr

∫
Ωc
|u(x, r)|pdx (2.15)

and

G(t) = (1 + t)k+λF0(t).

Thanks to m1(0) < m1(t) < 1 and ν2 > 0, we achieve

F0(t) − F̃0(t) ≥
1
2

F0(0) +
m1(0)

2
F′0(0)t + m1(0)

∫ t

0
ds

∫ s

0
b2(r)[F0(r) − F̃0(r)]dr.

Applying comparison argument, we conclude F0(t) ≥ F̃0(t). Employing (2.15) and the formula (4.2)
with µ1 = 0, µ2 = −m1(0)ν2 in [23] gives rise to

F̃′′0 (t) − b2(t)m1(0)F̃0(t) = m1(0)
∫

Ωc
|u(x, t)|pdx. (2.16)

Similar to the derivation in the proof of Theorem 5 in [23], we derive

F̃0(t) = F̃0(0)(1 + t)−k + [kF̃0(0) + F̃′0(0)](1 + t)−k
∫ t

0
(1 + s)−λds

+(1 + t)−k
∫ t

0
(1 + s)−λds

∫ s

0
(1 + r)k+λdr ×

∫
Ωc
|u(x, r)|pdx, (2.17)

G(t) &
∫ t

T0

ds
∫ s

T0

r−(3+k+λ)(p−1)G(r)pdr (2.18)

and

G(t) & εtλ. (2.19)
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Here, A & B means that there exists a positive constant C such that A ≥ CB. Taking into account (2.7)
and the Holder inequality, we obtain∫

Ωc
|u(x, t)|p & εp(t + R)2−p,

which together with (2.17) results in

F̃0(t) & εp(1 + t)−k
∫ t

T1

(1 + s)−λds
∫ s

T1

(1 + r)q+
√
δ−1dr,

where t ≥ T1 > 0, q = −1+
√
δ

2 − p + 4. Therefore, we arrive at

G(t) & εp


tλ+q, q > 0,
tλ ln(1 + t), q = 0,
tλ, q < 0.

(2.20)

Utilizing (2.18)–(2.20) and the Kato lemma in Sub-section 4.3 in [23], we finishes the proof of
Theorem 1.2.

3. Proof of Theorem 1.3

Direct computation gives rise to

d
dt

[m1(t)
∫

Ωc
{ut(x, t) + u(x, t)}ψ(x, t)dx]

= b1(t)m1(t)
∫

Ωc
{ut(x, t) + u(x, t)}ψ(x, t)dx + m1(t)

d
dt

∫
Ωc
{ut(x, t) + u(x, t)}ψ(x, t)dx. (3.1)

Making use of (1.4) and (2.6), we acquire

d
dt

∫
Ωc
{ut(x, t) + u(x, t)}ψ(x, t)dx

=

∫
Ωc
|ut(x, t)|pψ(x, t)dx − b1(t)

∫
Ωc

ut(x, t)ψ(x, t)dx

+ b2(t)
∫

Ωc
u(x, t)ψ(x, t)dx. (3.2)

Plugging (3.2) into (3.1) yields

d
dt

[m1(t)
∫

Ωc
{ut(x, t) + u(x, t)}ψ(x, t)dx]

= b1(t)m1(t)
∫

Ωc
u(x, t)ψ(x, t)dx + b2(t)m1(t)

∫
Ωc

u(x, t)ψ(x, t)dx

+m1(t)
∫

Ωc
|ut(x, t)|pψ(x, t)dx, (3.3)
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which together with (2.7) results in

m1(t)
∫

Ωc
{ut(x, t) + u(x, t)}ψ(x, t)dx

≥ m1(0)ε
∫

Ωc
{ f (x) + g(x)}φ1(x)dx

+

∫ t

0
ds

∫
Ωc

m1(s)|ut(x, s)|pψ(x, s)dx. (3.4)

Combining (1.4), (2.1) and (2.6), we have

d
dt

[m1(t)
∫

Ωc
ut(x, t)ψ(x, t)dx] + m1(t)

∫
Ωc
{ut(x, t) − u(x, t)}ψ(x, t)dx

= m1(t)
∫

Ωc
|ut(x, t)|pψ(x, t)dx + m1(t)b2(t)

∫
Ωc

u(x, t)ψ(x, t)dx. (3.5)

An application of (3.4) and (3.5) gives rise to

d
dt

[m1(t)
∫

Ωc
ut(x, t)ψ(x, t)dx] + 2m1(t)

∫
Ωc

ut(x, t)ψ(x, t)dx

≥ m1(0)ε
∫

Ωc
{ f (x) + g(x)}φ1(x)dx + m1(t)

∫
Ωc
|ut(x, t)|pψ(x, t)dx

+

∫ t

0
ds

∫
Ωc

m1(s)|ut(x, s)|pψ(x, s)dx. (3.6)

We set

G(t) = m1(t)
∫

Ωc
ut(x, t)ψ(x, t)dx −

m1(0)
2

ε

∫
Ωc

g(x)φ1(x)dx

−
1
2

∫ t

0
m1(s)ds

∫
Ωc
|ut(x, s)|pψ(x, s)dx, (3.7)

where G(0) =
m1(0)ε

2

∫
Ωc g(x)φ1(x)dx > 0. Taking into account (3.6), we acquire

G′(t) + 2G(t) ≥
m1(t)

2

∫
Ωc
|ut(x, t)|pψ(x, t)dx + m1(0)ε

∫
Ωc

f (x)φ1(x)dx ≥ 0.

It follows that G(t) ≥ e−2tG(0) > 0 for t ≥ 0. Thus, we conclude∫
Ωc

ut(x, t)ψ(x, t)dx ≥
m1(0)ε

2

∫
Ωc

g(x)φ1(x)dx. (3.8)

We define

H(t) =
1
2

∫ t

0
m1(s)ds

∫
Ωc
|ut(x, s)|pψ(x, s)dx +

m1(0)
2

ε

∫
Ωc

g(x)φ1(x)dx.

Applying the Holder inequality and (3.8) yields

H′(t) ≥
C1−p

2(R + t)p−1 Hp(t).
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As a direct consequence, we have

−
d
dt

[H−p+1(t)] ≥
C1−p

2(R + t)p−1 .

It is worth noticing that H(0) =
m1(0)

2 ε
∫

Ωc g(x)φ1(x)dx. Therefore, employing the assumption 1 < p ≤ 2,
we derive the lifespan estimate in Theorem 1.3. The proof of Theorem 1.3 is finished.

4. Proofs of Theorems 1.4 and 1.5

4.1. Proof of Theorem 1.4

We are in the position to establish the estimate of F0(t). Choosing the test function φ(x, t) = 1
in (1.4) yields

F′′0 (t) + b1(t)F′0(t) =

∫
Ωc
{|ut(x, t)|p + |u(x, t)|q}dx + b2(t)F0(t). (4.1)

Multiplying (4.1) with m1(t) and integrating on [0, t] yield

F′0(t) ≥ m1(0)
∫ t

0

∫
Ωc
{|ut(x, s)|p + |u(x, s)|q}dxds, (4.2)

where we have applied the fact F′0(0) ≥ 0 and F0(t) > 0.
Similar to the estimates in (2.7) and (3.8), we obtain the estimates

F1(t) ≥
m1(0)ε

2

∫
Ωc

f (x)φ1(x)dx ≥ 0, F2(t) ≥
m1(0)ε

2

∫
Ωc

g(x)φ1(x)dx ≥ 0

when nonlinear term is f (u, ut) = |ut|
p + |u|q. Taking advantage of Lemma 2.2 and (3.8), we derive∫

Ωc
|ut(x, t)|pdx ≥

|F2(t)|p

(
∫

Ωc∩{|x|≤t+R}
(ψ(x, t))

p
p−1 dx)p−1

≥ C1ε
p(t + R)2−p, (4.3)

where C1 = C1−p(m1(0)
2

∫
Ωc g(x)φ1(x)dx)p. Plugging (4.3) into (4.2) leads to

F0(t) ≥ m1(0)C1ε
p
∫ t

0

∫ s

0
(r + R)2−pdrds ≥ C2ε

p(t + R)−pt4. (4.4)

Recalling (4.2), we acquire

F0(t) ≥ C3m1(0)
∫ t

0

∫ s

0
(r + R)−3(q−1)Fq

0(r)drds. (4.5)

We set

F0(t) ≥ D j(t + R)−a jtb j , (4.6)

where

D1 = C2ε
p, a1 = p, b1 = 4. (4.7)
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Inserting (4.6) into (4.5), we come to the estimate

F0(t) ≥
C3m1(0)Dq

j

(qb j + 2)2 (t + R)−3(q−1)−qa jtqb j+2.

Therefore, we denote the sequences {D j} j∈N, {a j} j∈N, {b j} j∈N by

D j+1 ≥
C3m1(0)Dq

j

(qb j + 2)2 , a j+1 = 3(q − 1) + qa j, b j+1 = qb j + 2. (4.8)

Taking advantage of (4.7), (4.8) and iterative argument gives rise to

a j = q j−1(p + 3) − 3, b j = q j−1(4 +
2

q − 1
) −

2
q − 1

,

D j ≥ C4

Dq
j−1

q2( j−1) ≥ exp{q j−1(log D1 − S (∞))},

where S ( j) =
j−1∑
k=1

2k log q−log C4
qk converges to S (∞) as j→ ∞.

From (4.6), we have

F0(t) ≥ (t + R)3t
−2
q−1 exp{q j−1J(t)} (4.9)

and

J(t) ≥ −(p + 3) log(2t) + (4 +
2

q − 1
) log t + log D1 − S (∞)

= log(t1+ 2
q−1−pD1) −C5,

where C5 = (p + 3) log 2 + S (∞) > 0, t ≥ R > 2. Recalling the assumption q < 1 + 2
p−1 , we deduce

that J(t) > 1 when t > C6ε
−p(q−1)

q+1−p(q−1) . Sending j → ∞ in (4.9) yields F0(t) → ∞. Therefore, we achieve
the lifespan estimate

T ≤ C7ε
−p(q−1)

q+1−p(q−1) .

The proof of Theorem 1.4 is finished.

4.2. Proof of Theorem 1.5

We set I[ f ] =
∫

Ωc f (x)dx. Utilizing (4.4) gives rise to

F0(t) ≥ Cεpt4−p

for sufficiently large t, where C > 0 is independent of ε. Thus, we deduce that (4.4) is weaker than the
linear growth when p > 3. An application of (4.2) leads to

F′0(t) ≥
m1(0)
m1(t)

F′0(0) ≥ m1(0)ε
∫

Ωc
g(x)dx. (4.10)
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That is

F0(t) ≥ C8εt. (4.11)

It is deduced from (4.5) and (4.11) that

F0(t) ≥ C9ε
q
∫ t

0

∫ s

0
(R + r)−3(q−1)rqdrds ≥ C10ε

q(R + t)−3(q−1)tq+2.

We assume

F0(t) ≥ D j(R + t)−a jtb j , (4.12)

where

D1 = C10ε
q, a1 = 3(q − 1), b1 = q + 2. (4.13)

Plugging (4.12) into (4.5), we derive

F0(t) ≥ D j+1(R + t)−qa j−3(q−1)tqb j+2 (4.14)

with

D j+1 ≥
C11m1(0)D

q
j

(qb j + 2)2
, a j+1 = 3(q − 1) + qa j, b j+1 = qb j + 2. (4.15)

Making use of (4.13) and (4.15), we conclude

a j = 3q j − 3, b j = q j−1(q + 2 +
2

q − 1
) −

2
q − 1

,

D j ≥ C12
D

q
j−1

q2( j−1) ≥ exp{q j−1(log D1 − S q(∞))}.

Applying (4.12) gives rise to

F0(t) ≥ (R + t)3t−
2

q−1 exp(q j−1J(t))

and

J(t) = −3q log(R + t) + (q + 2 +
2

q − 1
) log t + log D1 − S q(∞).

Bearing in mind 1 < q < 2, we arrive at the lifespan estimate in Theorem 1.5. This completes the proof
of Theorem 1.5.
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5. Proof of Theorem 1.6

To outline the proof of Theorem 1.6, we recall the following Lemmas.

Lemma 5.1. [17] Let ρ(t) be a solution of the second order ODEρ′′(t) − b1(t)ρ′(t) + (−b2(t) − 1 − b′1(t))ρ(t) = 0,
ρ(0) = 1, ρ(∞) = 0,

(5.1)

where ρ(t) decays as e−t for large t.

Lemma 5.2. Let φ1(x) = φ1(r) = 1
r er, where x = (x1, x2, x3) and r =

√
x2

1 + x2
2 + x2

3. Setting ψ1(x, t) =

ρ(t)φ1(x), it holds that∫
Ωc∩{|x|≤t+R}

(ψ1(x, t))
p

p−1 dx ≤ C(R + t)2− p
p−1 , ∆ψ1 = ψ1,

where ρ(t) ∼ e−t, C is a positive constant.

Proof of Lemma 5.2. Taking into account ψ1 = ρ(t)1
r er, we obtain∫

Ωc∩{|x|≤t+R}
(ψ1)

p
p−1 dx =

∫
S2

dw
∫ t+R

1
[ρ(t)

1
r

er]
p

p−1 r2dr

≤C
∫ t+R

0
[ρ(t − r)]

p
p−1 (R + r)2− p

p−1 dr ≤ C(R + t)2− p
p−1 .

We finish the proof of Lemma 5.2.

Proof of Theorem 1.6. Let us define the functions
F0(t) =

∫
Ωc

u(x, t)dx,

F1(t) =

∫
Ωc

u(x, t)ψ1(x, t)dx,

where ψ1(x, t) = ρ(t)φ1(x).
Choosing the test function φ(x, s) ≡ 1 on {(x, s) ∈ Ωc× [0, t]

∣∣∣ |x| ≤ s+R} in (1.4) with f (u, ut) = |u|p,
we have

F′′0 (t) + b1(t)F′0(t) − b2(t)F0(t) =

∫
Ωc
|u(x, t)|pdx. (5.2)

We rewrite (5.2) into the form

F′′0 (t) + b1(t)F′0(t) − b2(t)F0(t)
= [F′0(t) + r2(t)F0(t)]′ + r1(t)[F′0(t) + r2(t)F0(t)], (5.3)

where r1(t) and r2(t) satisfy r1(t) + r2(t) = b1(t),
r′2(t) + r1(t)r2(t) = −b2(t).
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Multiplying both sides of (5.3) by exp
∫ s1

s2
r1(τ)dτ, integrating over [0, s2] and applying g(x) +

r2(0) f (x) ≥ 0 yield

F′0(s2) + r2(s2)F0(s2) ≥
∫ s2

0
e
∫ s1

s2
r1(τ)dτ

∫
Ωc
|u(x, s1)|pdxds1. (5.4)

Multiplying (5.4) by exp
∫ s2

t
r2(τ)dτ leads to

F0(t) ≥
∫ t

0
e
∫ s2

t r2(τ)dτ
∫ s2

0
e
∫ s1

s2
r1(τ)dτ

∫
Ωc
|u(x, s1)|pdxds1ds2. (5.5)

Replacing φ(x, s) with ψ1(x, s) in (1.4) in the case f (u, ut) = |u|p and employing (2.6), we derive∫ t

0

∫
Ωc

utt(x, s)ψ1(x, s)dxds −
∫ t

0

∫
Ωc

u(x, s)ψ1(x, s)dxds

+

∫ t

0

∫
Ωc
∂s(b1(s)ψ1(x, s)u(x, s)) − ∂s(b1(s)ψ1(x, s))u(x, s)dxds

−

∫ t

0

∫
Ωc

b2(s)ψ1(x, s)u(x, s)dxds

=

∫ t

0

∫
Ωc
|u(x, s)|pψ1(x, s)dxds. (5.6)

Employing Lemma 5.1 and (5.6), we deduce

F′1(t) + (b1(t) − 2
ρ′(t)
ρ(t)

)F1(t) ≥ εC f , g, (5.7)

where C f , g =
∫

Ωc(g(x) + (b1(0) − ρ′(0)) f (x))φ1(x)dx > 0.

Multiplying (5.7) with 1
ρ2(t)e

∫ t
0 b1(τ)dτ yields

F1(t) ≥ εC f , g, b1(t)

∫ t

0

ρ2(t)
ρ2(s)

ds. (5.8)

Utilizing Lemma 5.2 gives rise to∫
Ωc
|u(x, t)|pdx ≥

|F1(t)|p

(
∫

Ωc∩{|x|≤t+R}
(ψ1(x, t))

p
p−1 dx)p−1

≥ Cεp〈t〉2−p, (5.9)

where 〈t〉 = 3 + |t|. Taking advantage of (5.5) and Lemma 2.1 in [17] leads to

F0(t) ≥ Cr1, r2

∫ t

0

∫ s2

0
F p

0 (s1)(s1 + R)3(1−p)ds1ds2. (5.10)

Similar to the iteration argument in Theorem 1.1, we derive the lifespan estimate in Theorem 1.6.
The proof of Theorem 1.6 is finished.
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6. Proof of Theorem 1.7

6.1. Several lemmas

Lemma 6.1. [11] Assume that ρ1(t) is solution of

d2ρ1(t)
dt2 − ρ1(t) −

d
dt

(
µ

1 + t
ρ1(t)) +

ν2

(1 + t)2ρ1(t) = 0. (6.1)

The expression of ρ1(t) is
ρ1(t) = (1 + t)

µ+1
2 K √

δ
2

(1 + t),

where Kξ(t) =
√

π
2t e
−t(1 + O(t−1)) as t → ∞ and K′ξ(t) = −Kξ+1(t) +

ξ

t Kξ(t). It holds that

ρ′1(t)
ρ1(t)

= −1 + O(t−1), t → ∞. (6.2)

Let φ1(x) = φ1(r) = 1
r er, where x = (x1, x2, x3) and r =

√
x2

1 + x2
2 + x2

3. Setting ψ2(x, t) = ρ1(t)φ1(x), it
holds that

∂2
t ψ2(x, t) − ∆ψ2(x, t) −

∂

∂t
(
µ

1 + t
ψ2(x, t)) +

ν2

(1 + t)2ψ2(x, t) = 0 (6.3)

and ∫
Ωc∩{|x|≤t+R}

(ψ2(x, t))
p

p−1 dx ≤ Cρ
p

p−1

1 e
pt

p−1 (t + R)2− p
p−1 (6.4)

for some positive constant C.

Proof of Lemma 6.1. Applying ψ2 = ρ1(t)1
r er gives rise to∫

Ωc∩{|x|≤t+R}
(ψ2)

p
p−1 dx =

∫
S2

dw
∫ t+R

1
[ρ1(t)

1
r

er]
p

p−1 r2dr

≤C
∫ t+R

0
[ρ1(t)er]

p
p−1 r2− p

p−1 dr

≤Cρ
p

p−1

1 e
pt

p−1 (t + R)2− p
p−1 .

We complete the proof of Lemma 6.1.
We denote two functions 

G1(t) =

∫
Ωc

u(x, t)ψ2(x, t)dx,

G2(t) =

∫
Ωc

ut(x, t)ψ2(x, t)dx.

Lemma 6.2. Let u be a weak solution of problem (1.2). If (p, q) and ( f (x), g(x)) satisfy the conditions
in Theorem 1.7, then there exists T0 = T0(µ, ν) > 1 such that

G1(t) ≥ CG1ε, (6.5)

where t ≥ T0, CG1 is a positive constant which depends on f , g, µ, ν.
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Proof of Lemma 6.2. Replacing φ(x, t) in (1.5) by ψ2(x, t) = ρ1(t)φ1(x) and employing (6.3), we derive∫
Ωc

(
ut(x, t)ψ2(x, t) − u(x, t)∂tψ2(x, t) +

µ

1 + t
u(x, t)ψ2(x, t)

)
dx

=

∫ t

0

∫
Ωc

(
|ut(x, s)|p + |u(x, s)|q

)
ψ2(x, s)dxds + εC( f , g), (6.6)

where

C( f , g) = K √
δ

2
(1)

∫
Ωc

(
(
µ − 1 −

√
δ

2
f (x) + g(x)

)
φ1(x)dx

+K √
δ

2 +1
(1)

∫
Ωc

g(x)φ1(x)dx > 0.

Thus, we obtain

G′1(t) + (
µ

1 + t
− 2

ρ′1(t)
ρ1(t)

)G1(t)

=

∫ t

0

∫
Ωc

(
|ut(x, s)|p + |u(x, s)|q

)
ψ2(x, s)dxds + εC( f , g). (6.7)

Multiplying (6.7) by 1
ρ2

1(t) (1 + t)µ, integrating over (0, t) and exploiting Lemma 6.1 yield

G1(t) ≥ G1(0)
ρ2

1(t)
(1 + t)µ

+ εC( f , g)
ρ2

1(t)
(1 + t)µ

∫ t

0

(1 + s)µ

ρ2
1(s)

ds

≥ εC( f , g)(1 + t)K2
√
δ

2

(1 + t)
∫ t

t
2

1
K2
√
δ

2

(1 + s)
ds

≥
ε

4
C( f , g)e−2t

∫ t

t
2

e2sds

≥
ε

16
C( f , g) (6.8)

for t > T0(µ, ν) > 1, where G1(0) = εK √
δ

2
(1)

∫
Ωc f (x)φ1(x)dx > 0. This finishes the proof of Lemma 6.2.

Lemma 6.3. Let u be a weak solution of problem (1.2). If (p, q) and ( f (x), g(x)) satisfy the conditions
in Theorem 1.7, it holds that

G2(t) + Cν2(1 + ν
2

p−1 e
p

p−1 t(1 + t)
)
≥ 0, (6.9)

where C is a positive constant which depends on p, f , g, R, ε0, µ but not on ε, ν.

Proof of Lemma 6.3. We define two functions
F1(t) =

∫
Ωc

u(x, t)ψ(x, t)dx,

F2(t) =

∫
Ωc

ut(x, t)ψ(x, t)dx.
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Replacing φ(x, s) in (1.6) by ψ(x, t) and using the fact F′1(t) + F1(t) = F2(t) lead to

m(t)(F1(t) + F2(t)) − εC( f , g) +

∫ t

0

ν2m(s)
(1 + s)2 F1(s)ds

=

∫ t

0
m(s)

∫
Ωc

(
|ut(x, s)|p + |u(x, s)|q

)
ψ(x, s)dxds +

∫ t

0
m′(s)F1(s)ds, (6.10)

where C( f , g) =
∫

Ωc

(
f (x) + g(x)

)
φ1(x)dx.

Therefore, we arrive at

d
dt

(F2(t)m(t)) + 2m(t)F2(t)

= m(t)(F1(t) + F2(t)) −
ν2m(t)
(1 + t)2 F1(t)

+m(t)
∫

Ωc

(
|ut(x, t)|p + |u(x, t)|q

)
ψ(x, t)dx. (6.11)

Combining (6.8), (6.10) and (6.11), we deduce

d
dt

(F2(t)m(t)) + 2m(t)F2(t)

= εC( f , g) +

∫ t

0
m(s)

∫
Ωc

(
|ut(x, s)|p + |u(x, s)|q

)
ψ(x, s)dxds

+m(t)
∫

Ωc

(
|ut(x, t)|p + |u(x, t)|q

)
ψ(x, t)dx

+

∫ t

0
m′(s)F1(s)ds − ν2

∫ t

0

m(t)
(1 + s)2 F1(s)ds

−ν2 m(t)
(1 + t)2 F1(t)

≥

∫ t

0

∫
Ωc
|ut(x, s)|pψ(x, s)dxds −Cεν2 −Cν2

∫ t

0
es|F2(s)|ds, (6.12)

where C( f , g) =
∫

Ωc

(
f (x)+g(x)

)
φ1(x)dx, we have applied the facts G1(t) = etρ1(t)F1(t), F′1(t)+ F1(t) =

F2(t) and m(t) ≥ 1.
Taking advantage of the Holder inequality and Lemma 2.2 yields

Cν2
∫ t

0
es|F2(s)|ds ≤

∫ t

0

∫
Ωc
|ut(x, s)|pψ(x, s)dxds + Cν

2p
p−1 e

p
p−1 t(1 + t). (6.13)

Making use of (6.12) and (6.13), we have

d
dt

(
e2tF2(t)m(t)

)
+ Cν2e2t + Cν

2p
p−1 e

3p−2
p−1 t(1 + t) ≥ 0. (6.14)

As a consequent, it holds that

G2(t) + Cν2etρ1(t)(1 + t)−µ + Cν
2p
p−1 etρ1(t)e

p
p−1 t(1 + t)1−µ ≥ 0, (6.15)
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where we have used G2(t) = etρ1(t)F2(t).
An application of (6.15) and the fact ρ1(t)et ≤ C(1 + t)

µ
2 gives rise to

G2(t) + Cν2(1 + ν
2

p−1 e
p

p−1 t(1 + t)
)
≥ 0. (6.16)

This ends the proof of Lemma 6.3.

Lemma 6.4. Let u be a weak solution of problem (1.2). If (p, q) and ( f (x), g(x)) satisfy the conditions
in Theorem 1.7, then there exists T1 > 0 such that

G2(t) ≥ CG2ε, t ≥ T1 = − ln(ε), (6.17)

where CG2 is a positive constant which depends on p, f , g, R, ε0, ν, µ.

Proof of Lemma 6.4. Applying (6.7) and the fact G′1(t) − ρ′1(t)
ρ1(t)G1(t) = G2(t) leads to

G2(t) + (
µ

1 + t
−
ρ′1(t)
ρ1(t)

)G1(t)

=

∫ t

0

∫
Ωc

(
|ut(x, s)|p + |u(x, s)|q

)
ψ2(x, s)dxds + εC( f , g). (6.18)

Taking into account (6.1), (6.2), (6.18) and Lemma 6.2, we derive

G′2(t) +
3
4

(
µ

1 + t
− 2

ρ′1(t)
ρ1(t)

)G2(t)

≥ I4(t) + I5(t) +

∫
Ωc

(
|ut(x, t)|p + |u(x, t)|q

)
ψ2(x, t)dx

≥ Cε, (6.19)

where

I4(t) =
(
−
ρ′1(t)

2ρ1(t)
−

µ

4(1 + t)
)(

G2(t) + (
µ

1 + t
−
ρ′1(t)
ρ1(t)

)G1(t)
)

≥ Cε +
1
4

∫ t

0

∫
Ωc

(
|ut(x, s)|p + |u(x, s)|q

)
ψ2(x, s)dxds

for t > T̃1(µ, ν) ≥ T0,

I5(t) =
(
1 −

ν2

(1 + t)2 + (
ρ′1(t)

2ρ1(t)
+

µ

4(1 + t)
)(

µ

1 + t
−
ρ′1(t)
ρ1(t)

)
)
G1(t) ≥ 0

for t > T̃2(µ, ν) ≥ T̃1(µ, ν).
Utilizing (6.19) and Lemma 6.3, we conclude

G2(t) ≥ CG2ε (6.20)

for t ≥ T1 = − ln ε. This completes the proof of Lemma 6.4.
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6.2. Proof of Theorem 1.7

We define the function

F(t) =

∫
Ωc

u(x, t)dx. (6.21)

Choosing the test function φ(x, t) ≡ 1 in (1.5) yields

F′′(t) +
µ

1 + t
F′(t) +

ν2

(1 + t)2 F(t) =

∫
Ωc

(
|ut(x, t)|p + |u(x, t)|q

)
dx. (6.22)

Therefore, we obtain

(
F′(t) +

r1

1 + t
F(t)

)′
+

r2 + 1
1 + t

(
F′(t) +

r1

1 + t
F(t)

)
=

∫
Ωc

(
|ut(x, t)|p + |u(x, t)|q

)
dx, (6.23)

where r1 =
µ−1−

√
δ

2 and r2 =
µ−1+

√
δ

2 are real roots of the quadratic equation r2 − (µ − 1)r + ν2 = 0.
It is deduced from (1.8) and (6.23) that

F(t) ≥
∫ t

0
(
1 + τ

1 + t
)r1dτ

∫ τ

0
(
1 + s
1 + τ

)r2+1ds
∫

Ωc

(
|ut(x, s)|p + |u(x, s)|q

)
dx. (6.24)

Making use of the Holder inequality and (6.24), we acquire

F(t) ≥ C
∫ t

0
(
1 + τ

1 + t
)r1dτ

∫ τ

0
(
1 + s
1 + τ

)r2+1(1 + s)−3(q−1)|F(s)|qds, (6.25)

where C = (means(B1))1−qR−3(q−1) > 0.
Employing Lemma 6.4, (6.4) and the fact ρ1(t)et ≤ C(1 + t)

µ
2 gives rise to∫

Ωc
|ut(x, t)|pdx ≥ Gp

2(t)(
∫

Ωc∩{|x|≤t+R}
(ψ2(x, t))

p
p−1 dx)−(p−1)

≥ C̃1ε
p(t + R)−

µp+2(p−2)
2 . (6.26)

Plugging (6.26) into (6.24), we deduce

F(t) ≥ C̃1ε
p
∫ t

0
(
1 + τ

1 + t
)r1dτ

∫ τ

0
(
1 + s
1 + τ

)r2+1(s + R)−
µp+2(p−2)

2 ds

≥ C̃1ε
p(1 + t)−r1

∫ t

T0

(1 + τ)r1−r2−1−(2+µ) p
2 dτ

∫ τ

T0

(1 + s)3+r2ds

≥ C̃1ε
p(1 + t)−r2−1−(2+µ) p

2

∫ t

T0

dτ
∫ τ

T0

(s − T0)3+r2ds

≥
C̃1

(4 + r2)(5 + r2)
εp(t + R)−r2−1−(2+µ) p

2 (t − T0)5+r2 (6.27)

for t > T0.
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We set

F(t) ≥ D j(t + R)−a j(t − T0)b j , (6.28)

where

D1 =
C̃1

(4 + r2)(5 + r2)
, a1 = r2 + 1 + (2 + µ)

p
2
, b1 = 5 + r2. (6.29)

Utilizing (6.25) and (6.28), we have

F(t) ≥ CDq
j(1 + t)−r2−1−3(q−1)−qa j

∫ t

T0

∫ τ

T0

(s − T0)r2+1+qb jdsdτ

≥
CDq

j

(r2 + qb j + 2)(r2 + qb j + 3)
(t + R)−r2−1−3(q−1)−qa j

× (t − T0)r2+qb j+3. (6.30)

We denote the sequences {D j} j∈N, {a j} j∈N, {b j} j∈N by

D j+1 ≥
CDq

j

(r2 + qb j + 2)(r2 + qb j + 3)
, (6.31)

a j+1 = r2 + 1 + 3(q − 1) + qa j, b j+1 = r2 + qb j + 3. (6.32)

Taking advantage of (6.29), (6.31) and (6.32) leads to

a j = q j−1(a1 + 3 +
r2 + 1
q − 1

) − (3 +
r2 + 1
q − 1

), (6.33)

b j = q j−1(b1 +
r2 + 3
q − 1

) −
r2 + 3
q − 1

, (6.34)

D j ≥ exp{q j−1(log D1 − S q(∞))}, (6.35)

where S q( j) =
2q log q
(q−1)2 −

q log C
q−1 converges to S q(∞) as j→ ∞.

Employing (6.28), (6.29) and (6.33)–(6.35), we achieve

F(t) ≥ exp(q j−1J(t))(t + R)3+
r2+1
q−1 (t − T0)

r2+3
q−1 (6.36)

and

J(t) = log D1 − S q(∞) −
(
a1 + 3 +

r2 + 1
q − 1

)
log(t + R)

+
(
b1 +

r2 + 3
q − 1

)
log(t − T0)

≥ log
(
D1(t − T0)

4−((2+µ)p−2)(q−1)
2(q−1)

)
− S q(∞)

−
(
a1 + 3 +

r2 + 1
q − 1

)
log 2 (6.37)

for t > 2T0 + 1. Recalling p > pG(3 + µ), q > qS (3 + µ) and λ(p, q, 3 + µ) < 4, we conclude lifespan
estimate (1.9) in Theorem 1.7. This completes the proof of Theorem 1.7.
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7. Numerical simulation

We are in the position to show variation of wave for the Cauchy problem of semilinear wave
equation in two dimensions. All codes are written and run with Matlab2014a on Windows 10 (64bite),
RAM:8G and CPU 3.60 GHz. That is,

∂u
∂t

= v,

∂v
∂t

= (
∂2

∂x2 +
∂2

∂y2 )u + |u|3,
(7.1)


∂u
∂t

= v,

∂v
∂t

= (
∂2

∂x2 +
∂2

∂y2 )u − ut + u + |u|3.
(7.2)

Suppose that the initial values satisfy

u|t=0 = e−20[(x−0.4)2+(y+0.4)2] + e−20[(x+0.4)2+(y−0.4)2],
∂u
∂t
|t=0 = 0.

The following two group figures indicate the propagation of wave in two dimensions.

Figure 1. Wave variation of semilinear wave equation.

Figure 1 represents the trend of wave from t = 0 s to t = 1 s when nonlinear term is |u|3 in
problem (7.1). It indicates that there are two peaks of wave when t = 0 s. With the increase of time,
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two peaks of wave move downward until they disappear. Then, two new wave peaks appear at different
positions when t = 0.8 s. From t = 0.8 s to t = 0.9 s, the new wave amplitudes decrease gradually.
However, when t = 0.9 s ∼ 1 s, the old wave amplitudes increase constantly. When t = 1 s, the wave
peaks appear again and the position of wave peaks is same as the position of t = 0 s.

Figure 2. Wave variation of semilinear wave equation with frictional damping term and
negative mass term.

Figure 2 stands for the trend of wave from t = 0 s to t = 2.9 s when nonlinear term is |u|3 in
problem (7.2). When t = 0 s, it shows the initial state of wave with two peaks. From t = 0 s to
t = 0.5 s, the wave peaks continue to drop and begin to stack when they meet. When t = 0.5 s ∼ 1 s,
two new waves appear at different positions and the amplitude increases continuously to form two new
wave peaks. When t = 1 s ∼ 1.1 s, the amplitudes of wave decreases gradually. When t = 2.9 s, two
wave peaks appears again and the position is same as t = 0 s.

From our observation of the above two groups of figures, we obtain that the frictional damping and
negative mass terms have an effect on the wave propagation and wave amplitude.

8. Conclusions

This article is dedicated to investigating blow-up results and lifespan estimates of solutions to the
initial boundary value problems of semilinear wave equations with damping term and mass term as well
as Neumann boundary conditions on exterior domain in three dimensions. Our main new contribution
is that upper bound lifespan estimates of solutions are related to the Strauss exponent and Glassey
exponent. We extend the Cauchy problem investigated in the related papers to problems (1.1) and
(1.2) with damping term, mass term and Neumann boundary condition on exterior domain in three

AIMS Mathematics Volume 8, Issue 8, 17860–17889.
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dimensions. Applying test function technique (ψ2(x, t) = ρ1(t) 1
r er with r =

√
x2

1 + x2
2 + x2

3) and
iterative approach, upper bound lifespan estimates of solutions to problems (1.1) and (1.2) are deduced
(see Theorems 1.1–1.7). In addition, we characterize the variation of wave by employing numerical
simulation.
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