This study examines the pace at which solutions to a Bresse system in combination with the Cattaneo law of heat conduction and the dispersed delay term degradation. We establish our major finding utilizing the energy approach in the Fourier space.
Citation: Abdelbaki Choucha, Asma Alharbi, Bahri Cherif, Rashid Jan, Salah Boulaaras. Decay rate of the solutions to the Bresse-Cattaneo system with distributed delay[J]. AIMS Mathematics, 2023, 8(8): 17890-17913. doi: 10.3934/math.2023911
[1] | Houssem Eddine Khochemane, Ali Rezaiguia, Hasan Nihal Zaidi . Exponential stability and numerical simulation of a Bresse-Timoshenko system subject to a neutral delay. AIMS Mathematics, 2023, 8(9): 20361-20379. doi: 10.3934/math.20231038 |
[2] | Abdelkader Moumen, Fares Yazid, Fatima Siham Djeradi, Moheddine Imsatfia, Tayeb Mahrouz, Keltoum Bouhali . The influence of damping on the asymptotic behavior of solution for laminated beam. AIMS Mathematics, 2024, 9(8): 22602-22626. doi: 10.3934/math.20241101 |
[3] | Khaled zennir, Djamel Ouchenane, Abdelbaki Choucha, Mohamad Biomy . Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping. AIMS Mathematics, 2021, 6(3): 2704-2721. doi: 10.3934/math.2021164 |
[4] | Tae Gab Ha, Seyun Kim . Existence and energy decay rate of the solutions for the wave equation with a nonlinear distributed delay. AIMS Mathematics, 2023, 8(5): 10513-10528. doi: 10.3934/math.2023533 |
[5] | Abdelbaki Choucha, Sofian Abuelbacher Adam Saad, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Lord Shulman thermoelastic Timoshenko model. AIMS Mathematics, 2023, 8(7): 17246-17258. doi: 10.3934/math.2023881 |
[6] | Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252 |
[7] | Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057 |
[8] | Afraz Hussain Majeed, Sadia Irshad, Bagh Ali, Ahmed Kadhim Hussein, Nehad Ali Shah, Thongchai Botmart . Numerical investigations of nonlinear Maxwell fluid flow in the presence of non-Fourier heat flux theory: Keller box-based simulations. AIMS Mathematics, 2023, 8(5): 12559-12575. doi: 10.3934/math.2023631 |
[9] | Saima Rashid, Fahd Jarad, Hajid Alsubaie, Ayman A. Aly, Ahmed Alotaibi . A novel numerical dynamics of fractional derivatives involving singular and nonsingular kernels: designing a stochastic cholera epidemic model. AIMS Mathematics, 2023, 8(2): 3484-3522. doi: 10.3934/math.2023178 |
[10] | Armel Andami Ovono, Alain Miranville . On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. AIMS Mathematics, 2016, 1(1): 24-42. doi: 10.3934/Math.2016.1.24 |
This study examines the pace at which solutions to a Bresse system in combination with the Cattaneo law of heat conduction and the dispersed delay term degradation. We establish our major finding utilizing the energy approach in the Fourier space.
In this paper, we are particularly interested in examining the pace at which the following problem solution degrades
{φtt−(φx−ψ−lω)x−k20l(ωx−lφ)=0,ψtt−a2ψxx−(φx−ψ−lω)+mθx=0,ωtt−k20(ωx−lφ)x−l(φx−ψ−lω)+γ1ωt+∫τ2τ1γ2(s)ωt(x,t−s)ds=0,θt+qx+mψtx=0,τqqt+βq+θx=0. | (1.1) |
where
(x,s,t)∈R×(τ1,τ2)×R+, |
under the initial
(φ,φt,ψ,ψt,ω,ωt,θ,q)(x,0)=(φ0,φ1,ψ0,ψ1,ω0,ω1,θ0,q0),x∈R,ωt(x,−t)=f0(x,t),(x,t)∈R×(0,τ2), | (1.2) |
where the parameters a,l,m,k0,γ1 and β are considered to be positive constants, the function θ stands for temperature gradient, the functions φ,ψ and ω stand for the vertical displacements of the girder, the tilt angle of the linear filament substance and the longitudinal displacements, respectively, the integral embodies the dispersed delay terms with τ1,τ2>0 being a time delay, and γ2 is a L∞ function.
There are several consequences from the coupling of the Cattaneo law of heat conduction with various systems, which has been discussed by several writers. For instance, see (Bresse-Cattaneo) in [6,14], the Bresse concept and the Fourier law of heat conduction (Bresse-Fourier) have both been addressed in [13], Timoshenko system with historical data in [1,7,9] and Moore-Gibson-Thompson problem in [4]. The following papers are recommended to the reader for further information [2,3,5,8,16].
In the absence of distributed delay term. The researchers briefly looked into the decay rate of system (1.1) in [14], and they presented the results as follows:
● For α=0
‖∂kxU(t)‖2≤C‖U0‖1(1+t)−112−k6+C(1+t)−ℓ2‖∂k+ℓxU0‖2. | (1.3) |
● For α≠0
‖∂kxU(t)‖2≤C‖U0‖1(1+t)−112−k6+C(1+t)−ℓ10‖∂k+ℓxU0‖2, | (1.4) |
where
α=α(τq)=(τq−1)(1−a2)−τqm2. | (1.5) |
The Bresse-Cattaneo system (1.1) optimality decay rates were subsequently displayed by the authors in [6]. Alternatively, they enhanced the approximations (1.3) and (1.4) obtained by incorporating new, extremely sensitive Lyapunov functionals.
● For α=0
‖∂kxU(t)‖2≤C‖U0‖1(1+t)−14−k2+Ce−ct‖∂k+ℓxU0‖2. | (1.6) |
● For α≠0
‖∂kxU(t)‖2≤C‖U0‖1(1+t)−14−k2+C(1+t)−ℓ‖∂k+ℓxU0‖2, | (1.7) |
and they demonstrated that the estimations (1.6) and (1.7) depending on the parameter δ and under the following supposition
δ=k20l2−l2−1≠0, | (1.8) |
are accurate. After a thorough examination of the concept of dispersed postponement, the following questions seem intuitive: What sort of phrase has systemic suppressive activities? How should one determine the complexities that will enable them to "predict" devaluation? Is the concept of amortization always useful? Could the inclusion of the dispersed delay term have somehow made this type of issue more difficult to solve? This work is an attempt to comprehend the Bresse-Cattaneo framework and the dispersed delay term. The distributed delay term that is shown below, notably in Fourier space, does not apply to the Bresse-Cattaneo with friction attenuation solutions if they are relatively simple.
We aim to demonstrate the decay properties of the solution using the energy method in the Fourier space for the problems (1.1) and (1.2) relying on all recent publications, particularly [6,14]. This is one of the first studies we are aware of that looks at the Bresse-Cattaneo system with the dispersed delay factor in the Fourier space.
The sections of this manuscript are as follows: Here, we apply our presumptions and preliminary findings to the major decay conclusion. We build the Lyapunov component and determine the estimation for the Fourier image in the subsequent portion by employing the energy approach in Fourier space.
First, as in [11], we introduce the new variable
Y(x,ρ,s,t)=ωt(x,t−sρ), |
then we get
{sYt(x,ρ,s,t)+Yρ(x,ρ,s,t)=0,Y(x,0,s,t)=ωt(x,t). |
Therefore, our problem is expressed as follows
{φtt−(φx−ψ−lω)x−k20l(ωx−lφ)=0,ψtt−a2ψxx−(φx−ψ−lω)+mθx=0,ωtt−k20(ωx−lφ)x−l(φx−ψ−lω)+γ1ωt+∫τ2τ1γ2(s)Y(x,1,s,t)ds=0,θt+qx+mψtx=0,τqqt+βq+θx=0,sYt(x,ρ,s,t)+Yρ(x,ρ,s,t)=0, | (1.9) |
where
(x,ρ,s,t)∈R×(0,1)×(τ1,τ2)×R+, |
using the initial data
{(φ,φt,ψ,ψt,ω,ωt,θ,q)(x,0)=(φ0,φ1,ψ0,ψ1,ω0,ω1,θ0,q0),Y(x,ρ,s,0)=f0(x,sρ),(x,ρ,s)∈R×(0,1)×(0,τ2). | (1.10) |
Regarding the significance of the delay, we only presumptively determine that
(H1) γ2:[τ1,τ2]→R is a limited function considering
∫τ2τ1|γ2(s)|ds<γ1. | (1.11) |
To support our primary finding, we require the Hausdorff-Young inequality in the following Lemma
Lemma 1.1. [10] There is a constant C>0 such that, for each k,ς≥0,c>0, guarantees that the estimation given below is true ∀t≥0:
∫|ξ|≤1|ξ|ke−c|ξ|ςtdξ≤C(1+t)−(k+n)/ς,ξ∈Rn. | (1.12) |
Also, we recall Plancherel's theorem.
Theorem 1.1. ([15] Plancherel theorem)
The integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if f(x) is a function on the real line, and ˆf(ξ) is its frequency spectrum, then
∫∞−∞|f(x)|2dx=∫∞−∞|ˆf(ξ)|2dξ. |
In this section, we obtain a degradation estimation for the Fourier image of the remedy to problems (1.9) and (1.10). This approach enables us to provide the decay rate of the solution in the energy space by utilizing Plancherel's theorem together with some integral estimations, such as Lemma (1.1). By utilizing the energy approach in Fourier space, we create the proper Lyapunov functionals for this problem. Ultimately, we substantiate our major finding.
Allow us to now incorporate the control values to construct the Lyapunov functional in the Fourier space and for convenience
v=(φx−ψ−lω),u=φt,z=aψx,y=ψtϕ=k0(ωx−lφ),η=ωt. | (2.1) |
The system (1.9) then adopts the following structure
{vt−ux+y+lη=0ut−vx−k0lϕ=0zt−ayx=0yt−azx−v+mθx=0ϕt−k0ηx+k0lu=0ηt−k0ϕx−lv+γ1η+∫τ2τ1γ2(s)Y(x,1,s,t)ds=0θt+qx+myx=0τqqt+βq+θx=0sYt+Yρ=0, | (2.2) |
with the initial data
(v,u,z,y,ϕ,η,θ,q,Y)(x,0)=(v0,u0,z0,y0,ϕ0,η0,θ0,q0,f0),x∈R, | (2.3) |
where
v0=(φ0,x−ψ0−lω0),u0=φ1,z0=aψ0,x,y0=ψ1,ϕ0=k0(ω0,x−lφ0),η0=ω1. |
Hence, for (τq≠0) the problem (2.2) and (2.3) is written as
{Ut+AUx+LU=0,U(x,0)=U0(x), | (2.4) |
with U=(v,u,z,y,ϕ,η,ϑ,q,Y)T,U0=(v0,u0,z0,y0,ϕ0,η0,ϑ0,q0,f0) and
AU=(−u−v−ay−az+mθ−k0η−k0ϕ+q+my+1τqθ0),LU=(y+lη−k0lϕ0vk0lu−lv+γ1η+∫τ2τ1γ2(s)Y(x,1,s,t)ds0βτqq1sYρ). |
Now, we will state the well-posedness result of system (2.4).
Theorem 2.1. Suppose that (1.11). Let U0∈Hs(R),s∈N and s≥2, then problem (2.4) has a unique solution U such that
U∈C0([0;∞);Hs(R))∩C1([0;∞);Hs−1(R)). |
For a complete proof and more information, see [12].
When we execute the Fourier transform to (2.4), the underneath respective problem arises:
{ˆUt+iξAˆU+LˆU=0,ˆU(ξ,0)=ˆU0(ξ), | (2.5) |
where the solution ˆU(ξ,t)=(ˆv,ˆu,ˆz,ˆy,ˆϕ,ˆη,ˆθ,ˆq,ˆY)T(ξ,t) is given by
ˆU(ξ,t)=eΨ(ξ)tˆU(ξ,0), |
with
Ψ(ξ):=−(iξA+L). |
Hence, in order to prove the asymptotic behavior of the solution, it suffices to get a function ρ(ξ) such that
|eΨ(ξ)t|≤Ce−cρ(ξ)t, |
where C and c positive constants. Thus, the behavior of the solution depends on a critical way on the behavior of the function ρ(ξ).
To arrive at this result, we start with (2.5)1 where it is rewritten as:
{ˆvt−iξˆu+ˆy+lˆη=0ˆut−iξˆv−k0lˆϕ=0ˆzt−aiξˆy=0ˆyt−aiξˆz−ˆv+miξˆθ=0ˆϕt−k0iξˆη+k0lˆu=0ˆηt−k0iξˆϕ−lˆv+γ1ˆη+∫τ2τ1γ2(s)ˆY(ξ,1,s,t)ds=0ˆθt+iξˆq+miξˆy=0ˆqt+βτqˆq+1τqiξˆθ=0sˆYt+ˆYρ=0. | (2.6) |
Lemma 2.1. Assume that (1.11) is accurate. Let ˆU(ξ,t) be the solution of (2.5). Then the energy functional ˆE(ξ,t) is thus given by
ˆE(ξ,t)=12{|ˆv|2+|ˆu|2+|ˆz|2+|ˆy|2+|ˆϕ|2+|ˆη|2+|ˆθ|2+τq|ˆq|2}+12∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ, | (2.7) |
satisfies
dˆE(ξ,t)dt≤−C1|ˆη|2−β|ˆq|2≤0, | (2.8) |
where C1=(γ1−∫τ2τ1|γ2(s)|ds)>0.
Proof. Firstly, multiplying (2.6)1,2,3,4,5,6 by ¯ˆv,¯ˆu,¯ˆz,¯ˆy,¯ˆϕ and ¯ˆη respectively, and multiplying (2.6)7,8 by ˆθ,τq¯ˆq, adding these equalities and taking the real part, we get
12ddt[|ˆv|2+|ˆu|2+|ˆz|2+|ˆy|2+|ˆϕ|2+|ˆη|2+|ˆθ|2+τq|ˆq|2]dx+β|ˆq|2+γ1|ˆη|2+ℜe{∫τ2τ1γ2(s)¯ˆηˆY(ξ,1,s,t)ds}=0. | (2.9) |
Secondly, multiplying the Eq (2.6)9 by ¯ˆY|γ2(s)|, and integrating the findings with (0,1)×(τ1,τ2)
ddt12∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ=−12∫10∫τ2τ1|γ2(s)|ddρ|ˆY(ξ,ρ,s,t)|2dsdρ=12∫τ2τ1|γ2(s)|(|ˆY(ξ,0,s,t)|2−|ˆY(ξ,1,s,t)|2)ds=12(∫τ2τ1|γ2(s)|ds)|ˆη|2−12∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds, | (2.10) |
as well as utilizing Young's inequality, we have
ℜe{∫τ2τ1γ2(s)¯ˆηˆY(ξ,1,s,t)ds}≤12(∫τ2τ1|γ2(s)|ds)|ˆη|2+12∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds, | (2.11) |
by substituting (2.10) and (2.11) into (2.9), we find
dˆE(ξ,t)dt≤−(γ1−∫τ2τ1|γ2(s)|ds)|ˆη|2−β|ˆq|2, |
then, by (1.11), ∃C1=(γ1−∫τ2τ1|γ2(s)|ds)>0 so that
dˆE(ξ,t)dt≤−C1|ˆη|2−β|ˆq|2≤0. | (2.12) |
Hence, we obtain (2.7) (ˆE is a non-increasing function).
We now require the following lemmas in order to accomplish our objectives.
Lemma 2.2. The functional
D1(ξ,t):=ℜe{iξτq(ˆθ¯ˆq)}, | (2.13) |
satisfies, for any ε1>0
dD1(ξ,t)dt≤−12ξ2|ˆθ|2+ε1ξ2|ˆy|2+c(ε1)(1+ξ2)|ˆq|2. | (2.14) |
Proof. Differentiating D1 and by using (2.6), we get
dD1(ξ,t)dt=ℜe{iξτqˆθt¯ˆq−iξτqˆqt¯ˆθ}=−ξ2|ˆθ|2+τqξ2|ˆq|2+ℜe{mτqξ2ˆy¯ˆq}+ℜe{iβξˆq¯ˆθ}. | (2.15) |
With the help of Young's inequality, we estimate the terms in the RHS of (2.15) and obtain for every ε1,δ1>0
+ℜe{iβξˆq¯ˆθ}≤δ1ξ2|ˆθ|2+c(δ1)|ˆq|2,+ℜe{mτqξ2ˆy¯ˆq}≤ε1ξ2|ˆy|2+c(ε1)ξ2|ˆq|2. | (2.16) |
By adding the aforementioned estimations (2.16) to (2.15) and setting δ1=12, we find (2.14).
Lemma 2.3. The functional
D2(ξ,t):=ld1δ2F1(ξ,t)+d1mδ2F2(ξ,t)+m2δF3(ξ,t)+m2δlk0F4(ξ,t), | (2.17) |
where
F1(ξ,t):=ℜe{−m2ξ2ˆy¯ˆv−m2aξ2ˆu¯ˆz+(1−a2)mξ2ˆθ¯ˆu+d2τqlξ2ˆv¯ˆq},F2(ξ,t):=ℜe{ilξˆy¯ˆθ−iξˆη¯ˆθ},F3(ξ,t):=ℜe{−l(δ−ξ2)ˆη¯ˆv+lk0ξ2ˆϕ¯ˆu+il2k0ξˆη¯ˆϕ},F4(ξ,t):=ℜe{−ilk0ξˆv¯ˆu+iξˆy¯ˆϕ} | (2.18) |
and
d1=ml(a2+m2−1),d2=l(1−1δl2), | (2.19) |
satisfies, for any ε2,ε3,ε4>0
dD2(ξ,t)dt≤−m2δ22ξ2|ˆv|2−m2δ2l22(1+ξ2)|ˆv|2+2ε2|ˆy|2+(3+γ1)ε3ξ2|ˆϕ|2+3ε4ξ2|ˆu|2+c(ε3)ξ2|ˆθ|2+c(ε3)ξ2|ˆz|2+c(ε2,ε4)ξ2(1+ξ2)|ˆq|2+c(ε2,ε3,ε4)(1+ξ2+ξ4)|ˆη|2+c(ε3)(1+ξ2)∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.20) |
Proof. Firstly, differentiating F1,F2,F3 and F4 and by using (2.6), we get
dF1(ξ,t)dt=−m2ξ2|ˆv|2+m2ξ2|ˆy|2+ℜe{lm2ξ2ˆη¯ˆy}−ℜe{am2lk0ξ2ˆϕ¯ˆz}+ℜe{imαξ3ˆq¯ˆu}+ℜe{(1−a2)mlk0ξ2ˆϕ¯ˆθ}−ℜe{d2τqξ2ˆη¯ˆq}−d2τqlℜe{ξ2ˆy¯ˆq}−d2βlℜe{ξ2ˆq¯ˆv}, | (2.21) |
dF2(ξ,t)dt=−lmξ2|ˆy|2+mlξ2|ˆθ|2−ℜe{alξ2ˆz¯ˆθ}−ℜe{lξ2ˆq¯ˆy}+ℜe{k0ξ2ˆϕ¯ˆθ}+ℜe{iγ1ξˆη¯ˆθ}+ℜe{mξ2ˆy¯ˆη}+ℜe{ξ2ˆq¯ˆη}+ℜe{iξ∫τ2τ1γ2(s)¯ˆθˆY(ξ,1,s,t)ds}, | (2.22) |
dF3(ξ,t)dt=−k20l2ξ2|ˆu|2−l2(δ−ξ2)|ˆv|2+(l2(δ−ξ2)+l2k20ξ2)|ˆη|2−ℜe{ilk0ξ(l2k20−1)ˆϕ¯ˆv}+ℜe{lγ1(δ−ξ2)ˆη¯ˆv}+ℜe{ilξ(ξ2(k20−1)−(l2+1))ˆη¯ˆu}+ℜe{l(δ−ξ2)ˆy¯ˆη}−ℜe{il2k0γ1ξˆη¯ˆϕ}+ℜe{l(δ−ξ2)∫τ2τ1γ2(s)¯ˆvˆY(ξ,1,s,t)ds}−ℜe{il2k0ξ∫τ2τ1γ2(s)¯ˆϕˆY(ξ,1,s,t)ds}, | (2.23) |
and
dF4(ξ,t)dt=−k0lξ2|ˆv|2+k0lξ2|ˆu|2+ℜe{k0ξ2ˆη¯ˆy}−ℜe{aξ2ˆz¯ˆϕ}+ℜe{il2k0ξˆη¯ˆu}+ℜe{mξ2ˆθ¯ˆϕ}+ℜe{i(k20l2−1)ξˆϕ¯ˆv}. | (2.24) |
Now, differentiating D2 and by exploiting (2.21)–(2.24), gives
dD2(ξ,t)dt=−m2δ2ξ2|ˆv|2−m2l2δ2(1+ξ2)|ˆv|2+d1m2δ2lξ2|ˆθ|2+m2δ[l2(δ−ξ2)+l2k0ξ2]|ˆη|2+ℜe{δd3ξ2ˆη¯ˆy}+ℜe{lm2δ2ˆη¯ˆy}+ℜe{imαld1δ2ξ3ˆq¯ˆu}−ℜe{d4ξ2ˆϕ¯ˆz}+ℜe{d5ξ2ˆϕ¯ˆθ}−ℜe{d1δ2d2βξ2ˆq¯ˆv}+ℜe{id1mγ1δ2ξˆη¯ˆθ}+ℜe{d6ξ2ˆη¯ˆq}−ℜe{d1maδ2lξ2ˆz¯ˆθ}+ℜe{m2δlγ1(δ−ξ2)ˆη¯ˆv}+ℜe{d7ξ2ˆy¯ˆq}−ℜe{im2δl2k0γ1ξˆη¯ˆϕ}+ℜe{il(k20−1)m2δξ3ˆη¯ˆu}+ℜe{ilm2δ2ξˆη¯ˆu}+ℜe{id1mδ2ξ∫τ2τ1γ2(s)¯ˆθˆY(ξ,1,s,t)ds}+ℜe{m2lδ(δ−ξ2)∫τ2τ1γ2(s)¯ˆvˆY(ξ,1,s,t)ds}−ℜe{im2δl2k0ξ∫τ2τ1γ2(s)¯ˆϕˆY(ξ,1,s,t)ds}, | (2.25) |
where
α:=(a2−1)(1−τq)−m2τq, | (2.26) |
and
d3=m2δd1(l2+1)+m2l(k20−1),d4=l2d1δ2am2k0+m2δalk0,d5=l2k0md1δ2(1−a2)+d1mδ2k0+m3δlk0,d6=d1mδ2−ld1δ2d2τq,d7=d1δ2d2τq+d1mδ2l. |
By applying the Young's inequality to the terms on the RHS of (2.25), we obtain for any ε2,ε3,ε4,δ2,δ3,δ4>0
dD2(ξ,t)dt≤−(m2δ2−δ2)ξ2|ˆv|2−(m2l2δ2−δ3−γ1δ4)(1+ξ2)|ˆv|2+2ε2|ˆy|2+(3+γ1)ε3ξ2|ˆϕ|2+3ε4ξ2|ˆu|2+c(ε3)ξ2|ˆθ|2+c(ε2,ε4,δ2)ξ2(1+ξ2)|ˆq|2+c(ε2,ε3,ε4,δ3)(1+ξ2+ξ4)|ˆη|2+c(ε3)ξ2|ˆz|2+c(ε3,δ4)(1+ξ2)∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.27) |
By letting δ2=m2δ22,δ3=m2δ2l24,δ4=m2δ2l24γ1, we obtain (2.20).
Lemma 2.4. Assume that (1.8) holds. The functional
D3(ξ,t):=τqlk0F1(ξ,t)+τqmk0F2(ξ,t)−m2τqF4(ξ,t)+F5(ξ,t)+F6(ξ,t), | (2.28) |
where
F5(ξ,t):=ℜe{−iβk0d1τqξˆu¯ˆq+iτqm2lξˆη¯ˆϕ},F6(ξ,t):=ℜe{ak0lˆy¯ˆv+ilk0ξˆz¯ˆy−ik0ξˆz¯ˆη−iaξˆy¯ˆϕ}, | (2.29) |
satisfies
(1) For α=0. Then,
dD3(ξ,t)dt≤−ak0l2(1+ξ2)|ˆy|2+c|ˆv|2−τqm2lk02ξ2|ˆϕ|2+c(1+ξ2)|ˆη|2−τqm2lk02ξ2|ˆu|2+cξ2|ˆz|2+c(1+ξ2)|ˆq|2+cξ2|ˆθ|2+c∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.30) |
(2) For α≠0. Then,
dD3(ξ,t)dt≤−ak0l2(1+ξ2)|ˆy|2+c|ˆv|2−τqm2lk02ξ2|ˆϕ|2+c(1+ξ2)|ˆη|2−τqm2lk02ξ2|ˆu|2+cξ2|ˆz|2+c(1+ξ2+ξ4)|ˆq|2+cξ2|ˆθ|2+c∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.31) |
Proof. Firstly, a direct differentiation of F5,F6 and by using (2.6), we get
dF5(ξ,t)dt=−τqm2lk0ξ2|ˆϕ|2+τqm2lk0ξ2|ˆη|2+ℜe{τqβk0ld1ξ2ˆv¯ˆq}−ℜe{iβ2d1k0ξˆq¯ˆu}+ℜe{βk0d1ξ2ˆθ¯ˆu}−ℜe{τqβlk20d1ξˆϕ¯ˆq}+ℜe{iτqm2l2ξˆv¯ˆϕ}−ℜe{iτqm2lγ1ξˆη¯ˆϕ}+ℜe{iτqm2l2k0ξˆu¯ˆη}+ℜe{iτqm2lξ∫τ2τ1γ2(s)¯ˆϕˆY(ξ,1,s,t)ds}, | (2.32) |
and
dF6(ξ,t)dt=−ak0l(1+ξ2)|ˆy|2+ak0l|ˆv|2+ak0lξ2|ˆz|2+ℜe{ia2k0lξˆz¯ˆv}+ℜe{(a2−k20)ξ2ˆϕ¯ˆz}−ℜe{ik0γ1ξˆη¯ˆz}−ℜe{ialk0mξˆθ¯ˆv}−ℜe{k0lmξ2ˆθ¯ˆz}−ℜe{iaξˆv¯ˆϕ}−ℜe{amξ2ˆθ¯ˆϕ}−ℜe{ak0l2ˆη¯ˆy}−ℜe{ik0ξ∫τ2τ1γ2(s)¯ˆzˆY(ξ,1,s,t)ds}. | (2.33) |
Now, by differentiating D3 and exploiting (2.32), (2.33), (2.21), (2.22) and (2.24), we find
dD3(ξ,t)dt=−ak0l(1+ξ2)|ˆy|2−τqm2lk0ξ2|ˆϕ|2+τqm2lk0ξ2|ˆη|2+ak0l|ˆv|2+ak0lξ2|ˆz|2−τqm2lk0ξ2|ˆu|2+τqm2lk0ξ2|ˆθ|2+ℜe{ia2k0lξˆz¯ˆv}+ℜe{d8ξ2ˆϕ¯ˆz}−ℜe{ik0γ1ξˆη¯ˆz}−ℜe{ialk0mξˆθ¯ˆv}−ℜe{k0lm(1+aτq)ξ2ˆθ¯ˆz}−ℜe{id9ξˆv¯ˆϕ}−ℜe{d10ξ2ˆθ¯ˆϕ}−ℜe{ak0l2ˆη¯ˆy}+ℜe{l2m2k0τqξ2ˆη¯ˆy}−ℜe{iτqm2lγ1ξˆη¯ˆϕ}−ℜe{d11ξ2ˆq¯ˆy}−ℜe{ik0ξ∫τ2τ1γ2(s)¯ˆzˆY(ξ,1,s,t)ds}−ℜe{iβ2d1k0ξˆq¯ˆu}+ℜe{βk0d1ξ2ˆθ¯ˆu}−ℜe{τqβlk20d1ξˆϕ¯ˆq}+ℜe{2iτqm2l2k0ξˆu¯ˆη}−ℜe{iτqm2lξ∫τ2τ1γ2(s)¯ˆϕˆY(ξ,1,s,t)ds}+ℜe{imγ1τqk0ξˆη¯ˆθ}+ℜe{iτqmk0ξ∫τ2τ1γ2(s)¯ˆθˆY(ξ,1,s,t)ds}+ℜe{τql(m−d2τqk0)ξ2ˆq¯ˆη}+ℜe{imατqlk0ξ3ˆq¯ˆu}, | (2.34) |
where
d8=a2−k20−τqam2l2k20+m2τq,d9=a−τqm2(l2k20−1)−m2l2τq,d10=am−τqmk20+τq(a2−1)ml2k20+m3τq,d11=τqk0(lm+d2τq). |
At this point, we distinguish two cases according to the values of α:
Case 1. (α=0).
In this case, the last term in the RHS of (2.34) is zero. Then, by applying the Young's inequality we obtain for any δi,i=5,...,9>0
dD3(ξ,t)dt≤−(ak0l−δ7)|ˆy|2−(ak0l−2δ8)ξ2)|ˆy|2+c(δ5)|ˆv|2−(τqm2lk0−5δ5−δ6γ1)ξ2|ˆϕ|2+c(δ5,δ7,δ8,δ9)(1+ξ2)|ˆη|2−(τqm2lk0−3δ9)ξ2|ˆu|2+c(δ5)ξ2|ˆz|2+c(δ5,δ8,δ9)(1+ξ2)|ˆq|2+c(δ5,δ9)ξ2|ˆθ|2+c(δ6)∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.35) |
By letting δ5=τqm2lk020,δ6=τqm2lk04γ1,δ7=alk02,δ8=alk04 and δ9=τqm2lk06, we find (2.30).
Case 2. (α≠0).
The last term of the RHS in this situation is estimated as follows in (2.34)
+ℜe{imατqlk0ξ3ˆq¯ˆu}≤δ9ξ2|ˆu|2+c(δ9)ξ4|ˆq|2. | (2.36) |
Similarly to (2.35) and by Young's inequality, we get
dD3(ξ,t)dt≤−(ak0l−δ7)|ˆy|2−(ak0l−2δ8)ξ2)|ˆy|2+c(δ5)|ˆv|2−(τqm2lk0−5δ5−δ6γ1)ξ2|ˆϕ|2+c(δ5,δ7,δ8,δ9)(1+ξ2)|ˆη|2−(τqm2lk0−4δ9)ξ2|ˆu|2+c(δ5)ξ2|ˆz|2+c(δ5,δ8,δ9)(1+ξ2+ξ4)|ˆq|2+c(δ5,δ9)ξ2|ˆθ|2+c(δ6)∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.37) |
By letting δ5=τqm2lk020,δ6=τqm2lk04γ1,δ7=alk02,δ8=alk04 and δ9=τqm2lk08, we find (2.31). Lemma 5 has been successfully proved.
Next, we have the following lemma.
Lemma 2.5. The functional
D4(ξ,t):=lF1(ξ,t)+d12F2(ξ,t)+lF7(ξ,t), | (2.38) |
where
F7(ξ,t):=alm2ℜe{iξ(−lˆz¯ˆy+ˆz¯ˆη)}andd12=m(1+a2l2), | (2.39) |
satisfies, for any ε5,ε6,ε7>0.
(1) For α=0. Then,
dD4(ξ,t)dt≤−a2l3m22ξ2|ˆz|2−lm22ξ2|ˆv|2+ε5ξ2|ˆϕ|2+2ε6ξ2|ˆy|2+c(ε5)ξ2|ˆθ|2+c(ε6)(1+ξ2)|ˆη|2+c(ε6)ξ2|ˆq|2+c∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.40) |
(2) For α≠0. Then,
dD4(ξ,t)dt≤−a2l3m22ξ2|ˆz|2−lm22ξ2|ˆv|2+ε5ξ2|ˆϕ|2+2ε6ξ2|ˆy|2+ε7ξ2|ˆu|2+c(ε5)ξ2|ˆθ|2+c(ε6)(1+ξ2)|ˆη|2+c(ε6,ε7)(ξ2+ξ4)|ˆq|2+c∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds. | (2.41) |
Proof. Firstly, differentiating F7 and by using (2.6), we get
dF7(ξ,t)dt=a2l2m2ξ2|ˆy|2−a2l2m2ξ2|ˆz|2+ℜe{iγ1alm2ξˆη¯ˆz}−ℜe{a2lm2ξ2ˆy¯ˆη}+ℜe{alm2k0ξ2ˆϕ¯ˆz}+ℜe{am3l2ξ2ˆθ¯ˆz}−ℜe{ialm2ξ∫τ2τ1γ2(s)¯ˆzˆY(ξ,1,s,t)ds}. | (2.42) |
Now, differentiating D4 and by exploiting (2.42), (2.21) and (2.22), gives
dD4(ξ,t)dt=−a2l3m2ξ2|ˆz|2−lm2ξ2|ˆv|2+lmd12ξ2|ˆθ|2+ℜe{ial2m2γ1ξˆη¯ˆz}+ℜe{d13ξ2ˆy¯ˆη}+ℜe{(al3m3−ald12)ξ2ˆθ¯ˆz}+ℜe{iγ1d12ξ2ˆη¯ˆθ}+ℜe{d14ξ2ˆϕ¯ˆθ}−ℜe{(d2τql−d12)ξ2ˆη¯ˆq}−ℜe{(d2τq−ld12)ξ2ˆy¯ˆq}−ℜe{d2βξ2ˆq¯ˆv}+ℜe{ial2m2ξ∫τ2τ1γ2(s)¯ˆzˆY(ξ,1,s,t)ds}+ℜe{iξ∫τ2τ1γ2(s)¯ˆθˆY(ξ,1,s,t)ds}+ℜe{imlαξ3ˆq¯ˆu}, | (2.43) |
where
d13=l2m2−a2l2m2+md12d14=(1−a2)ml2k0+k0d12. |
At this point, we distinguish two cases:
Case 1. (α=0).
In this instance, we obtain for any δ10,δ11,δ12>0 and ε5,ε6>0 by applying the Young's inequality to the elements on the RHS of (2.43).
dD4(ξ,t)dt≤−(a2l3m2−2δ10−γ1δ11)ξ2|ˆz|2−(lm2−δ12)ξ2|ˆv|2+ε5ξ2|ˆϕ|2+2ε6ξ2|ˆy|2+c(δ10,ε5)ξ2|ˆθ|2+c(δ10,ε6)(1+ξ2)|ˆη|2+c(δ12,ε6)ξ2|ˆq|2+c(δ11)∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds, | (2.44) |
by letting δ10=a2l3m28,δ11=a2l3m24γ1,δ8=m2l2, we find (2.40).
Case 2. (α=0).
The last term of the RHS in this situation is estimated as follows in (2.43), for any ε7>0
ℜe{imlαξ3ˆq¯ˆu}≤ε7ξ2|ˆu|2+c(ε7)ξ4|ˆq|2. | (2.45) |
Substituting the inequality (2.45) into the statement (2.43), we find (2.41). Lemma 2.5 has been successfully proved.
After that, we have the following lemma.
Lemma 2.6. The functional
D5(ξ,t):=∫10∫τ2τ1se−sρ|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ, |
satisfies,
dD5(ξ,t)dt≤−ζ1∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ+γ1|ˆη|2−ζ1∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds, | (2.46) |
where ζ1>0.
Proof. By differentiating D5, with respect to t and we use (2.6)9, we have
dD5(ξ,t)dt=−∫10∫τ2τ1se−sρ|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ−∫τ2τ1|γ2(s)|[e−s|ˆY(ξ,1,s,t)|2−|ˆY(ξ,0,s,t)|2]ds. |
Using the fact that Y(ξ,0,s,t)=ωt(ξ,t)=η, and e−s≤e−sρ≤1, for all 0<ρ<1, we obtain
dD5(ξ,t)dt≤−∫10∫τ2τ1se−s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ−∫τ2τ1e−s|γ2(s)||ˆY(ξ,1,s,t)|2ds+(∫τ2τ1|γ2(s)|ds)|ˆη|2. |
We have −e−s≤−e−τ2, for all s∈[τ1,τ2]. Since −e−s is an increasing function. Lastly, by setting ζ1=e−τ2 and remembering (1.11), we obtain (2.46).
At this stage, we define the Lyapunov functionals
● For α=0:
K1(ξ,t):=N(1+ξ2)ˆE(ξ,t)+N1D1(ξ,t)+N21(1+ξ2)D2(ξ,t)+N3D3(ξ,t)+N4D4(ξ,t)+N5(1+ξ2)D5(ξ,t). | (2.47) |
● For α≠0:
K2(ξ,t):=M(1+ξ2)2ˆE(ξ,t)+M1D1(ξ,t)+M21(1+ξ2)D2(ξ,t)+M3D3(ξ,t)+M4D4(ξ,t)+M5(1+ξ2)D5(ξ,t), | (2.48) |
positive constants with values of N,M,Ni,Mi,i=1,...,5 are to be carefully selected subsequently.
Lemma 2.7. There exist μi>0,i=1,...,6 such that the functionals K1(ξ,t) and K2(ξ,t) given by (2.47) and (2.48) satisfies
● For α=0:
{μ1(1+ξ2)ˆE(ξ,t)≤K1(ξ,t)≤μ2(1+ξ2)ˆE(ξ,t),K′1(ξ,t)≤−μ3ρ1(ξ)K1(ξ,t),∀t>0. | (2.49) |
● For α≠0:
{μ4(1+ξ2)2ˆE(ξ,t)≤K2(ξ,t)≤μ5(1+ξ2)2ˆE(ξ,t),K′2(ξ,t)≤−μ6ρ2(ξ)K2(ξ,t),∀t>0, | (2.50) |
where
ρ1(ξ)=ξ2(1+ξ2),andρ2(ξ)=ξ2(1+ξ2)2. | (2.51) |
Proof. Firstly, by differentiating (2.47) and using (2.8), (2.14), (2.20), (2.30), (2.40) and (2.46), with the fact that ξ21+ξ2≤min{1,ξ2} and 11+ξ2≤1, we find
K′1(ξ,t)≤−ξ2[τqm2k0l2N3−3ε4N2]|ˆu|2−[m2δ2l22N2−cN3]|ˆv|2−ξ2[m2l2N4]|ˆv|2−ξ2(1+ξ2)[m2δ22N2]|ˆv|2−(1+ξ2)[alk02N3−ε1N1−2ε2N2−2ε6N4]|ˆy|2−ξ2[a2l3m22N4−cN2−cN3]|ˆz|2−ξ2[τqm2lk02N3−(3+γ1)ε3N2−ε5N4]|ˆϕ|2−ξ2[12N1−c(ε3)N2−cN3−c(ε5)N4]|ˆθ|2−(1+ξ2)[βN−c(ε1)N1−c(ε2,ε4)N2−cN3−c(ε6)N4]|ˆq|2−(1+ξ2)[C1N−c(ε2,ε3,ε4)N2−cN3−c(ε6)N4−γ1N5]|ˆη|2−(1+ξ2)[ζ1N5−cN2−cN3−cN4]∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds−ζ1N5(1+ξ2)∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ. | (2.52) |
By setting
ε1=alk0N312N1,ε2=alk0N324N2,ε3=τqm2lk0N38(3+γ1)N2,ε4=τqm2lk0N312N2,ε5=τqm2lk0N38N4,ε6=alk0N324N4, |
we obtain
K′1(ξ,t)≤−ξ2[τqm2k0l4N3]|ˆu|2−[m2δ2l22N2−cN3]|ˆv|2−(1+ξ2)[alk04N3]|ˆy|2−ξ2[m2l2N4]|ˆv|2−ξ2(1+ξ2)[m2δ22N2]|ˆv|2−ξ2[a2l3m22N4−cN2−cN3]|ˆz|2−ξ2[τqm2lk04N3]|ˆϕ|2−ξ2[12N1−c(N2,N3)N2−cN3−c(N3,N4)N4]|ˆθ|2−(1+ξ2)[βN−c(N1,N3)N1−c(N2,N3)N2−cN3−c(N3,N4)N4]|ˆq|2−(1+ξ2)[C1N−c(N2,N3)N2−cN3−c(N3,N4)N4−γ1N5]|ˆη|2−(1+ξ2)[ζ1N5−cN2−cN3−cN4]∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds−(1+ξ2)ζ1N5∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ. | (2.53) |
Now, we fixed N3 and choosing N2 large enough such that
m2δ2l22N2−cN3>0, |
then we select N4 in a size big enough that
α2=a2l3m22N4−cN2−cN3>0, |
then we select N1,N5 in a size big enough that
α3=12N1−c(N2,N3)N2−cN3−c(N3,N4)N4>0,ζ1N5−cN2−cN3−cN4>0. |
Hence, we arrive at
K′1(ξ,t)≤−α0ξ2|ˆu|2−α5ξ2|ˆϕ|2−(1+ξ2)[βN−c]|ˆq|2−α1ξ2|ˆv|2−α4(1+ξ2)|ˆy|2−α2ξ2|ˆz|2−α3ξ2|ˆθ|2−(1+ξ2)[C1N−c]|ˆη|2−α6(1+ξ2)∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ, | (2.54) |
where α1=m2l2N4,α6=ζ1N5.
Secondly, we have
|K1(ξ,t)−N(1+ξ2)ˆE(ξ,t)|=N1|D1(ξ,t)|+N21(1+ξ2)|D2(ξ,t)|+N3|D3(ξ,t)|+N4|D4(ξ,t)|+N5(1+ξ2)|D5(ξ,t)|. |
Using Young's inequality, the fact that ξ21+ξ2≤min{1,ξ2} and 11+ξ2≤1, we find
|K1(ξ,t)−N(1+ξ2)ˆE(ξ,t)|≤c(1+ξ2)ˆE(ξ,t). |
Hence, we get
(N−c)(1+ξ2)ˆE(ξ,t)≤K1(ξ,t)≤(N+c)(1+ξ2)ˆE(ξ,t). | (2.55) |
Now, we select N in a size big enough that
N−c>0,C1N−c>0,βN−c>0, |
and using the estimations (2.7), (2.54) and (2.55), there is a positive constant κ>0, for all t>0 and for all ξ∈R, we have
μ1(1+ξ2)ˆE(ξ,t)≤K1(ξ,t)≤μ2(1+ξ2)ˆE(ξ,t), | (2.56) |
and
K′1(ξ,t)≤−κξ2{|ˆu|2+|ˆϕ|2+|ˆθ|2+|ˆv|2+|ˆy|2+|ˆz|2+|ˆq|2+|ˆη|2+∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ}, | (2.57) |
then
K′1(ξ,t)≤−λ1ρ1(ξ)ˆE(ξ,t),∀t≥0. | (2.58) |
Furthermore, we derive the following for any positive constant μ3=λ1μ2>0
K′1(ξ,t)≤−μ3ρ1(ξ)K1(ξ,t),∀t≥0, | (2.59) |
where ρ1(ξ)=ξ2(1+ξ2), for some λ1,μi>0,i=1,2,3. The proof of the first result (2.49) is finished.
We demonstrate the second result similarly to the first proof. So we derive (2.48) and using (2.8), (2.14), (2.20), (2.31), (2.41) and (2.46), with the fact that ξ21+ξ2≤min{1,ξ2} and 11+ξ2≤1, we get
K′2(ξ,t)≤−ξ2[τqm2k0l2M3−3ε4M2−ε7M4]|ˆu|2−[m2δ2l22M2−cM3]|ˆv|2−ξ2[m2l2M4]|ˆv|2−ξ2(1+ξ2)[m2δ22M2]|ˆv|2−(1+ξ2)[alk02M3−ε1M1−2ε2M2−2ε6M4]|ˆy|2−ξ2[a2l3m22M4−cM2−cM3]|ˆz|2−ξ2[τqm2lk02M3−(3+γ1)ε3M2−ε5M4]|ˆϕ|2−ξ2[12M1−c(ε3)M2−cM3−c(ε5)M4]|ˆθ|2−(1+ξ2)2[βM−c(ε1)M1−c(ε2,ε4)M2−cN3−c(ε6,ε7)M4]|ˆq|2−(1+ξ2)2[C1M−c(ε2,ε3,ε4)M2−cM3−c(ε6)M4−γ1M5]|ˆη|2−(1+ξ2)[ζ1M5−cM2−cM3−cM4]∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds−ζ1M5(1+ξ2)∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ. | (2.60) |
By setting
ε1=alk0M312M1,ε2=alk0M324M2,ε3=τqm2lk0M38(3+γ1)M2,ε4=τqm2lk0M324M2,ε5=τqm2lk0M38M4,ε6=alk0M324M4,ε7=τqm2lk0M38M2. |
We obtain
K′2(ξ,t)≤−ξ2[τqm2k0l4M3]|ˆu|2−[m2δ2l22M2−cM3]|ˆv|2−(1+ξ2)[alk04M3]|ˆy|2−ξ2[m2l2M4]|ˆv|2−ξ2(1+ξ2)[m2δ22M2]|ˆv|2−ξ2[a2l3m22M4−cM2−cM3]|ˆz|2−ξ2[τqm2lk04M3]|ˆϕ|2−ξ2[12M1−c(M2,M3)M2−cM3−c(M3,M4)M4]|ˆθ|2−(1+ξ2)[βM−c(M1,M3)M1−c(M2,M3)M2−cM3−c(M2,M3,M4)M4]|ˆq|2−(1+ξ2)[C1M−c(M2,M3)M2−cM3−c(M3,M4)M4−γ1M5]|ˆη|2−(1+ξ2)[ζ1M5−cM2−cM3−cM4]∫τ2τ1|γ2(s)||ˆY(ξ,1,s,t)|2ds−ζ1M5(1+ξ2)∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ. | (2.61) |
Now, we fixed M3 and choosing M2 large enough such that
m2δ2l22M2−cM3>0, |
then we select M4 in a size big enough that
κ2=a2l3m22M4−cM2−cM3>0. |
Likewise we select M1,M5 in a size big enough that
κ3=12M1−c(M2,M3)M2−cM3−c(M2,M3,M4)M4>0,ζ1M5−cM2−cM3−cM4>0. |
Hence, we arrive at
K′1(ξ,t)≤−κ0ξ2|ˆu|2−κ5ξ2|ˆϕ|2−(1+ξ2)2[βM−c]|ˆq|2−κ1ξ2|ˆv|2−κ4(1+ξ2)|ˆy|2−κ2ξ2|ˆz|2−κ3ξ2|ˆθ|2−(1+ξ2)2[C1M−c]|ˆη|2−κ6(1+ξ2)∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ, | (2.62) |
where κ1=m2l2M4,κ6=ζ1M5.
As an alternative, we have
|K2(ξ,t)−M(1+ξ2)2ˆE(ξ,t)|=M1|D1(ξ,t)|+M21(1+ξ2)|D2(ξ,t)|+M3|D3(ξ,t)|+M4|D4(ξ,t)|+M5(1+ξ2)|D5(ξ,t)|. |
Using Young's inequality, the fact that ξ21+ξ2≤min{1,ξ2} and 11+ξ2≤1, we find
|K2(ξ,t)−M(1+ξ2)2ˆE(ξ,t)|≤c(1+ξ2)2ˆE(ξ,t). |
Hence, we get
(M−c)(1+ξ2)2ˆE(ξ,t)≤K2(ξ,t)≤(M+c)(1+ξ2)2ˆE(ξ,t). | (2.63) |
Now we select M in a size big enough that
M−c>0,C1M−c>0,βM−c>0, |
and using the estimations (2.7), (2.62) and (2.63), there is a positive constant ˆκ>0, for all t>0 and for all ξ∈R, we have
μ4(1+ξ2)2ˆE(ξ,t)≤K2(ξ,t)≤μ5(1+ξ2)2ˆE(ξ,t), | (2.64) |
and
K′2(ξ,t)≤−ˆκξ2{|ˆu|2+|ˆϕ|2+|ˆθ|2+|ˆv|2+|ˆy|2+|ˆz|2+|ˆq|2+|ˆη|2+∫10∫τ2τ1s|γ2(s)||ˆY(ξ,ρ,s,t)|2dsdρ}, | (2.65) |
then
K′2(ξ,t)≤−λ2ρ2(ξ)ˆE(ξ,t),∀t≥0. | (2.66) |
Furthermore, we derive the following for any positive constant μ6=λ2μ5>0
K′2(ξ,t)≤−μ6ρ2(ξ)K2(ξ,t),∀t≥0, | (2.67) |
where ρ2(ξ)=ξ2(1+ξ2)2, for some λ2,μi>0,i=4,5,6. The proof of the second result (2.50) is finished.
The pointwise estimations of the functional ˆE(ξ,t) provided by the next proposition.
Proposition 2.1. Suppose (1.8) and (1.11) hold. Then, for every t≥0 and ξ∈R, positive constants k1,k2>0 exists such that the energy functional provided by (2.7) meets the following conditions
{ˆE(ξ,t)≤k1ˆE(ξ,0)e−μ3ρ1(ξ)t,ifα=0,ˆE(ξ,t)≤k2ˆE(ξ,0)e−μ6ρ2(ξ)t,ifα≠0, | (2.68) |
where ρ1(ξ)=ξ2(1+ξ2),ρ2(ξ)=ξ2(1+ξ2)2.
Proof. From (2.49)2 and (2.50)2, we have by integration over (0,t)
K1(ξ,t)≤K1(ξ,0)e−μ3ρ1(ξ)t,∀t≥0,ifα=0 | (2.69) |
K2(ξ,t)≤K2(ξ,0)e−μ6ρ2(ξ)t,∀t≥0,ifα≠0. | (2.70) |
Hence, by according of (2.49)1, (2.50)1 and (2.69), (2.70), we establish (2.68).
Now, we declare and support the following finding
Theorem 2.2. Suppose that s be a nonnegative integer, and let U0∈Hs(R)∩L1(R). Consequently, for any t≥0, the following decay estimates are satisfied by the solution U to problems (2.2) and (2.3)
● When α=0
‖∂kxU(t)‖2≤C‖U0‖1(1+t)−14−k2+Ce−μ34t‖∂kxU0‖2. | (2.71) |
● When α≠0
‖∂kxU(t)‖2≤C‖U0‖1(1+t)−14−k2+C(1+t)−ℓ2‖∂k+ℓxU0‖2, | (2.72) |
where k and ℓ are positive integers that meet the equation k+ℓ≤s and C>0.
Proof. From (2.7), we have |ˆU(ξ,t)|2≡ˆE(ξ,t).
● By using the Plancherel theorem 1.1 and making use of (2.68)1, If α=0, we can determine
‖∂kxU(t)‖22=∫R|ξ|2k|ˆU(ξ,t)|2dξ≤c∫R|ξ|2ke−μ3ρ1(ξ)t|ˆU(ξ,0)|2dξ≤c∫|ξ|≤1|ξ|2ke−μ3ρ1(ξ)t|ˆU(ξ,0)|2dξ⏟R1+c∫|ξ|≥1|ξ|2ke−μ3ρ1(ξ)t|ˆU(ξ,0)|2dξ⏟R2. | (2.73) |
We now determine R1,R2, the low-frequency component|ξ|≤1, and the high-frequency component |ξ|≥1, separately.
Firstly, we have ρ1(ξ)≥12ξ2, for |ξ|≤1. Then
R1≤c∫|ξ|≤1|ξ|2ke−μ32|ξ|2t|ˆU(ξ,0)|2dξ≤csup|ξ|≤1{|ˆU(ξ,0)|2}∫|ξ|≤1|ξ|2ke−μ32|ξ|2tdξ, | (2.74) |
Lemma 1.1 allows us to acquire
R1≤csup|ξ|≤1{|ˆU(ξ,0)|2}(1+t)−k−12≤c‖U0‖21(1+t)−k−12. | (2.75) |
Secondly, we have ρ1(ξ)≥12, for |ξ|≥1. Then
R2≤c∫|ξ|≥1|ξ|2ke−μ32t|ˆU(ξ,0)|2dξ,∀t≥0. | (2.76) |
≤ce−μ32t∫|ξ|≥1|ξ|2k|ˆU(ξ,0)|2dξ≤ce−μ32t‖∂kxU(x,0)‖22,∀t≥0. | (2.77) |
Substituting (2.75) and (2.77) into (2.73), we find (2.71).
● If α≠0, similar to the first estimate, we apply the Plancherel theorem 1.1 and exploiting (2.68)2, we find
‖∂kxU(t)‖22=∫R|ξ|2k|ˆU(ξ,t)|2dξ≤c∫R|ξ|2ke−μ6ρ2(ξ)t|ˆU(ξ,0)|2dξ≤c∫|ξ|≤1|ξ|2ke−μ6ρ2(ξ)t|ˆU(ξ,0)|2dξ⏟R3+c∫|ξ|≥1|ξ|2ke−μ6ρ2(ξ)t|ˆU(ξ,0)|2dξ⏟R4. | (2.78) |
Now, we determine R3,R4, the low-frequency component |ξ|≤1 and the high-frequency component |ξ|≥1 separately.
Firstly, we have ρ2(ξ)≥14ξ2, for |ξ|≤1. Then
R3≤c∫|ξ|≤1|ξ|2ke−μ64|ξ|2t|ˆU(ξ,0)|2dξ≤csup|ξ|≤1{|ˆU(ξ,0)|2}∫|ξ|≤1|ξ|2ke−μ64|ξ|2tdξ, | (2.79) |
by using Lemma 1.1, we obtain
R3≤csup|ξ|≤1{|ˆU(ξ,0)|2}(1+t)−k−12≤c‖U0‖21(1+t)−k−12. | (2.80) |
Secondly, we have ρ2(ξ)≥14ξ−2, for |ξ|≥1. Then
R4≤c∫|ξ|≥1|ξ|2ke−μ64|ξ|−2t|ˆU(ξ,0)|2dξ,∀t≥0. | (2.81) |
Expoiting the inequality
sup|ξ|≥1{|ξ|−2ℓe−c14|ξ|−2t}≤C(1+t)−ℓ, | (2.82) |
we get that
R4≤csup|ξ|≥1{|ξ|−2ℓe−μ64|ξ|−2t}∫|ξ|≥1|ξ|2(k+ℓ)|ˆU(ξ,0)|2dξ≤c(1+t)−ℓ‖∂k+ℓxU(x,0)‖22,∀t≥0. | (2.83) |
Substituting (2.80) and (2.83) into (2.78), we find (2.72).
The investigation of the generalized degradation assessment of Bresse-Cattaneo system integration about the distributed delay term is the goal of this research, which employs the energy technique in Fourier space.
The distinct process that emerges from the distributed delay, which determines the system's development of this feature in Fourier space, is what we are interested in with this present work.
The same strategy will be used in the same systems in the upcoming works, but we will use various types of memory because we anticipate getting comparable outcomes.
Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.
The authors declare no conflicts of interest.
[1] |
M. Afilal, B. Feng, A. Soufyane, New decay rates for Cauchy problem of Timoshenko thermoelastic systems with past history: Cattaneo and Fourier law, Math. Methods Appl. Sci., 44 (2021), 11873–11894. https://doi.org/10.1002/mma.6579 doi: 10.1002/mma.6579
![]() |
[2] |
P. R. Agarwal, Q. Bazighifan, M. A. Ragusa, Nonlinear neutral delay differential equations of fourth-order: oscillation of solutions, Entropy, 23 (2021), 129. https://doi.org/10.3390/e23020129 doi: 10.3390/e23020129
![]() |
[3] | H. Bounadja, B. Said-Houari, Decay rates for the Moore-Gibson-Thompson equation with memory, Evol. Equ. Control Theory., 10 (2021), 431–460. |
[4] |
S. Boulaaras, A. Choucha, A. Scapellato, General decay of the Moore-Gibson-Thompson equation with viscoelastic memory of Type II, J. Funct. Spaces, 2022 (2022), 9015775. https://doi.org/10.1155/2022/9015775 doi: 10.1155/2022/9015775
![]() |
[5] | A. Choucha, S. Boulaaras, D. Ouchenane, Exponential decay and global existence Of solutions of a singular nonlocal viscoelastic system with distributed delay and damping terms, Filomat, 35 (2021), 795–826. |
[6] |
L. Djouamai, B. Said-Houari, A new stability number of the Bresse-Cattaneo system, Math. Methods Appl. Sci., 41 (2018), 2827–2847. https://doi.org/10.1002/mma.4784 doi: 10.1002/mma.4784
![]() |
[7] | C. D. Enyi, Timoshenko systems with Cattaneo law and partial Kelvin-Voigt damping: well-posedness and stability, Appl. Anal., 2022. https://doi.org/10.1080/00036811.2022.2152802 |
[8] | M. E. Gurtin, A. S. Pipkin, A general decay of a heat condition with finite wave speeds, Arch. Rational. Mech. Anal., 31 (1968), 113–126. |
[9] |
M. Khader, B. Said-Houari, Decay rate of solution for the Cauchy problem in Timoshenko system with past history, Appl. Math. Optim., 75 (2017), 403–428. https://doi.org/10.1007/s00245-016-9336-6 doi: 10.1007/s00245-016-9336-6
![]() |
[10] |
N. Mori, S. Kawashima, Decay property for the Timoshenko system with Fourier's type heat conduction, J. Hyperbolic Differ. Equ., 11 (2014), 135–157. https://doi.org/10.1142/S0219891614500039 doi: 10.1142/S0219891614500039
![]() |
[11] | A. S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Int. Equs., 21 (2008), 935–958. |
[12] | R. Racke, Lectures on nonlinear evolution equations, Berlin: Springer, 1992. |
[13] |
B. Said-Houari, A. Soufyane, The Bresse system in thermoelasticity, Math. Methods. Appl. Sci., 38 (2015), 3642–3652. https://doi.org/10.1002/mma.3305 doi: 10.1002/mma.3305
![]() |
[14] |
B. Said-Houari, T. Hamadouche, The asymptotic behavior of the Bresse-Cattanao system, Commun. Contemp. Math., 18 (2016), 1550045. https://doi.org/10.1142/S0219199715500455 doi: 10.1142/S0219199715500455
![]() |
[15] | C. C. Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and atoms introduction to quantum electrodynamics. Photons et atomes. Introduction a l'electrodynamique quantique, Hoboken: Wiley, 1997. |
[16] |
J. B. Zuo, A. Rahmoune, Y. J. Li, General decay of a nonlinear viscoelastic wave equation with Balakrishnan-Taylor damping and a delay involving variable exponents, J. Funct. Spaces, 2022 (2022), 9801331. https://doi.org/10.1155/2022/9801331 doi: 10.1155/2022/9801331
![]() |
1. | Abdelbaki Choucha, Salah Boulaaras, Rafik Guefaifia, Rashid Jan, Decay rate of solution for a Lord‐Shulman thermoelastic Timoshenko system with impacts of microtemperature without mechanical damping, 2024, 0170-4214, 10.1002/mma.10404 |