Research article

Finite-time stability analysis of singular neutral systems with time delay

  • Received: 17 July 2024 Revised: 30 August 2024 Accepted: 03 September 2024 Published: 14 September 2024
  • MSC : 34A09, 34D20

  • This paper studies the finite-time stability problem for a class of singular neutral systems by using the Lyapunov-Krasovskii function approach and regular neutral system theory. The considered systems involve not only the delayed version of the state, but also the delayed version of the derivative of the state. Some sufficient conditions are presented to ensure that the considered systems are regular, impulse-free, and finite-time stable. Three numerical examples are given to illustrate the effectiveness of the proposed methods.

    Citation: Sheng Wang, Shaohua Long. Finite-time stability analysis of singular neutral systems with time delay[J]. AIMS Mathematics, 2024, 9(10): 26877-26901. doi: 10.3934/math.20241308

    Related Papers:

  • This paper studies the finite-time stability problem for a class of singular neutral systems by using the Lyapunov-Krasovskii function approach and regular neutral system theory. The considered systems involve not only the delayed version of the state, but also the delayed version of the derivative of the state. Some sufficient conditions are presented to ensure that the considered systems are regular, impulse-free, and finite-time stable. Three numerical examples are given to illustrate the effectiveness of the proposed methods.



    加载中


    [1] L. Dai, Singular control systems, Berlin: Springer, 1989. https://doi.org/10.1007/BFb0002477
    [2] E. Boukas, Control of singular systems with random abrupt changes, In: Communications and control engineering, Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-74345-3
    [3] X. Chang, X. Wang, L. Hou, New LMI approach to $H_{\infty}$ control of discrete-time singular systems, Appl. Math. Comput., 474 (2024), 128703. https://doi.org/10.1016/j.amc.2024.128703 doi: 10.1016/j.amc.2024.128703
    [4] Y. Kao, Y. Han, Y. Zhu, Z. Shu, Stability analysis of delayed discrete singular piecewise homogeneous Markovian jump systems with unknown transition probabilities via sliding-mode approach, IEEE Trans. Automat. Control, 69 (2023), 315–322. https://doi.org/10.1109/TAC.2023.3262444 doi: 10.1109/TAC.2023.3262444
    [5] S. Xu, P. Dooren, R. Stefan, J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Trans. Automat. Control, 47 (2002), 1122–1128. https://doi.org/10.1109/TAC.2002.800651 doi: 10.1109/TAC.2002.800651
    [6] Z. Feng, X. Zhang, J. Lam, C. Fan, Estimation of reachable set for switched singular systems with time-varying delay and state jump, Appl. Math. Comput., 456 (2023), 128132. https://doi.org/10.1016/j.amc.2023.128132 doi: 10.1016/j.amc.2023.128132
    [7] Z. Feng, H. Zhang, R. Li, State and static output feedback control of singular Takagi-Sugeno fuzzy systems with time-varying delay via proportional plus derivative feedback, Inform. Sci., 608 (2022), 1334–1351. https://doi.org/10.1016/j.ins.2022.07.005 doi: 10.1016/j.ins.2022.07.005
    [8] H. Zhou, S. Li, J. H. Park, W. Li, Intermittent sampled-data stabilization of highly nonlinear delayed stochastic networks via periodic self-triggered strategy, IEEE Trans. Automat. Control, 2024, 1–8. https://doi.org/10.1109/TAC.2024.3393839 doi: 10.1109/TAC.2024.3393839
    [9] T. Li, J. Zhao, Y. Qi, Switching design of stabilising switched neutral systems with application to lossless transmission lines, IET Control Theory Appl., 8 (2014), 2082–2091. https://doi.org/10.1049/iet-cta.2014.0276 doi: 10.1049/iet-cta.2014.0276
    [10] J. Wang, Q. Zhang, D. Xiao, Output strictly passive control of uncertain singular neutral systems, Math. Probl. Eng., 2015 (2015), 591854. https://doi.org/10.1155/2015/591854 doi: 10.1155/2015/591854
    [11] K. P. Hadeler, Neutral delay equations from and for population dynamics, Electron. J. Qual. Theory Differ. Equ., 11 (2008), 1–18.
    [12] J. Cullum, A. Ruehli, T. Zhang, A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEEC models with retardation, IEEE Trans. Circuits Syst. II. Analog Digit. Signal Process., 47 (2000), 261–273. https://doi.org/10.1109/82.839662 doi: 10.1109/82.839662
    [13] S. Li, X. Wang, H. Qin, S. Zhong, Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays, AIMS Mathematics, 6 (2021), 8044–8063. https://doi.org/10.3934/math.2021467 doi: 10.3934/math.2021467
    [14] B. Meesuptong, P. Singkibud, P. Srisilp, K. Mukdasai, New delay-range dependent exponential stability criterion and $H _ {\infty} $ performance for neutral-type nonlinear system with mixed time-varying delays, AIMS Mathematics, 8 (2023), 691–712. https://doi.org/10.3934/math.2023033 doi: 10.3934/math.2023033
    [15] L. Zhang, X. Zhao, N. Zhao, Real-time reachable set control for neutral singular Markov jump systems with mixed delays, IEEE Trans. Circuits Syst. II. Exp. Briefs, 69 (2021), 1367–1371. https://doi.org/10.1109/TCSII.2021.3118075 doi: 10.1109/TCSII.2021.3118075
    [16] H. Chen, P. Shi, C. Lim, Stability analysis of time-varying neutral stochastic hybrid delay system, IEEE Trans. Automat. Control, 68 (2022), 5576–5583. https://doi.org/10.1109/TAC.2022.3220517 doi: 10.1109/TAC.2022.3220517
    [17] K. Hoshino, Application of finite-time stabilization to position control of quadcopters, In: 2018 15th International conference on control, automation, robotics and vision (ICARCV), Singapore, 2018, 60–65. https://doi.org/10.1109/ICARCV.2018.8581351
    [18] G. Chen, Y. Yang, Finite-time stability of switched positive linear systems, Internat. J. Robust Nonlinear Control, 24 (2014), 179–190. https://doi.org/10.1002/rnc.2870 doi: 10.1002/rnc.2870
    [19] F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37 (2001), 1459–1463. https://doi.org/10.1016/S0005-1098(01)00087-5 doi: 10.1016/S0005-1098(01)00087-5
    [20] Y. Wang, L. Xiao, Y. Guo, Finite-time stability of singular switched systems with a time-varying delay based on an event-triggered mechanism, AIMS Mathematics, 8 (2023), 1901–1924. https://doi.org/10.3934/math.2023098 doi: 10.3934/math.2023098
    [21] C. Ren, S. He, Finite-time stabilization for positive Markovian jumping neural networks, Appl. Math. Comput., 365 (2020), 124631. https://doi.org/10.1016/j.amc.2019.124631 doi: 10.1016/j.amc.2019.124631
    [22] X. Zhang, S. He, V. Stojanovic, X. Luan, F. Liu, Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems, Sci. China Inf. Sci., 64 (2021), 152206. https://doi.org/10.1007/s11432-020-2913-x doi: 10.1007/s11432-020-2913-x
    [23] L. Wang, Z. Wu, T. Huang, P. Chakrabarti, W. Che, Finite-time observability of Boolean networks with Markov jump parameters under mode-dependent pinning control, IEEE Trans. Syst. Man Cybernet. Syst., 54 (2024), 245–254. https://doi.org/10.1109/TSMC.2023.3304843 doi: 10.1109/TSMC.2023.3304843
    [24] S. Rathinasamy, S. Murugesan, F. Alzahrani, Y. Ren, Quantized finite-time non-fragile filtering for singular Markovian jump systems with intermittent measurements, Circuits Syst. Signal Process., 38 (2019), 3971–3995. https://doi.org/10.1007/s00034-019-01046-9 doi: 10.1007/s00034-019-01046-9
    [25] S. Long, Y. Zhang, S. Zhong, New results on the stability and stabilization for singular neutral systems with time delay, Appl. Math. Comput., 473 (2024), 128643. https://doi.org/10.1016/j.amc.2024.128643 doi: 10.1016/j.amc.2024.128643
    [26] W. Chen, F. Gao, J. She, W. Xia, Further results on delay-dependent stability for neutral singular systems via state decomposition method, Chaos Solitons Fract., 141 (2020), 110408. https://doi.org/10.1016/j.chaos.2020.110408 doi: 10.1016/j.chaos.2020.110408
    [27] S. Long, Y. Wu, S. Zhong, D. Zhang, Stability analysis for a class of neutral type singular systems with time-varying delay, Appl. Math. Comput., 339 (2018), 113–131. https://doi.org/10.1016/j.amc.2018.06.058 doi: 10.1016/j.amc.2018.06.058
    [28] J. Wang, Q. Zhang, D. Xiao, F. Bai, Robust stability analysis and stabilisation of uncertain neutral singular systems, Internat. J. Systems Sci., 47 (2016), 3762–3771. https://doi.org/10.1080/00207721.2015.1120905 doi: 10.1080/00207721.2015.1120905
    [29] J. Wang, Q. Zhang, D. Xiao, PD feedback $ H_ {\infty} $ control for uncertain singular neutral systems, Adv. Differ. Equ., 2016 (2016), 26. https://doi.org/10.1186/s13662-016-0749-y doi: 10.1186/s13662-016-0749-y
    [30] W. Chen, J. Lu, G. Zhuang, F. Gao, Z. Zhang, S. Xu, Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays, Appl. Math. Comput., 420 (2022), 126884. https://doi.org/10.1016/j.amc.2021.126884 doi: 10.1016/j.amc.2021.126884
    [31] W. Chen, G. Zhuang, S. Xu, G. Liu, Y. Li, Z. Zhang, New results on stabilization for neutral type descriptor hybrid systems with time-varying delays, Nonlinear Anal. Hybrid Syst., 45 (2022), 101172. https://doi.org/10.1016/j.nahs.2022.101172 doi: 10.1016/j.nahs.2022.101172
    [32] G. Zhuang, J. Xia, J. Feng, B. Zhang, J. Lu, Z. Wang, Admissibility analysis and stabilization for neutral descriptor hybrid systems with time-varying delays, Nonlinear Anal. Hybrid Syst., 33 (2019), 311–321. https://doi.org/10.1016/j.nahs.2019.03.009 doi: 10.1016/j.nahs.2019.03.009
    [33] S. Long, S. Zhong, H. Guan, D. Zhang, Exponential stability analysis for a class of neutral singular Markovian jump systems with time-varying delays, J. Franklin Inst., 356 (2019), 6015–6040. https://doi.org/10.1016/j.jfranklin.2019.04.036 doi: 10.1016/j.jfranklin.2019.04.036
    [34] H. Wang, Y. Wang, G. Zhuang, Asynchronous $ H_ {\infty} $ controller design for neutral singular Markov jump systems under dynamic event-triggered schemes, J. Franklin Inst., 358 (2021), 494–515. https://doi.org/10.1016/j.jfranklin.2020.10.034 doi: 10.1016/j.jfranklin.2020.10.034
    [35] P. Niamsup, V. N. Phat, A new result on finite-time control of singular linear time-delay systems, Appl. Math. Lett., 60 (2016), 1–7. https://doi.org/10.1016/j.aml.2016.03.015 doi: 10.1016/j.aml.2016.03.015
    [36] S. Long, L. Zhou, S. Zhong, D. Liao, An improved result for the finite-time stability of the singular system with time delay, J. Franklin Inst., 359 (2022), 9006–9021. https://doi.org/10.1016/j.jfranklin.2022.09.018 doi: 10.1016/j.jfranklin.2022.09.018
    [37] N. T. Thanh, P. Niamsup, V. N. Phat, Finite-time stability of singular nonlinear switched time-delay systems: A singular value decomposition approach, J. Franklin Inst., 354 (2017), 3502–3518. https://doi.org/10.1016/j.jfranklin.2017.02.036 doi: 10.1016/j.jfranklin.2017.02.036
    [38] N. H. Thanh, V. N. Phat, P. Niamsup, Criteria for robust finite-time stabilisation of linear singular systems with interval time-varying delay, IET Control Theory Appl., 11 (2017), 1968–1975. https://doi.org/10.1049/iet-cta.2017.0048 doi: 10.1049/iet-cta.2017.0048
    [39] X. Yang, X. Li, J. Cao, Robust finite-time stability of singular nonlinear systems with interval time-varying delay, J. Franklin Inst., 355 (2018), 1241–1258. https://doi.org/10.1016/j.jfranklin.2017.12.018 doi: 10.1016/j.jfranklin.2017.12.018
    [40] L. Li, Q. Zhang, Finite-time $H_{\infty}$ control for singular Markovian jump systems with partly unknown transition rates, Appl. Math. Model., 40 (2016), 302–314. https://doi.org/10.1016/j.apm.2015.04.044 doi: 10.1016/j.apm.2015.04.044
    [41] S. Li, Y. Ma, Finite-time dissipative control for singular Markovian jump systems via quantizing approach, Nonlinear Anal. Hybrid Syst., 27 (2018), 323–340. https://doi.org/10.1016/j.nahs.2017.10.007 doi: 10.1016/j.nahs.2017.10.007
    [42] Y. Ma, X. Jia, D. Liu, Finite-time dissipative control for singular discrete-time Markovian jump systems with actuator saturation and partly unknown transition rates, Appl. Math. Model., 53 (2018), 49–70. https://doi.org/10.1016/j.apm.2017.07.035 doi: 10.1016/j.apm.2017.07.035
    [43] Y. Li, Y. He, W. Lin, M. Wu, Reachable set estimation for singular systems via state decomposition method, J. Franklin Inst., 357 (2020), 7327–7342. https://doi.org/10.1016/j.jfranklin.2020.04.031 doi: 10.1016/j.jfranklin.2020.04.031
    [44] Y. Zhao, Y. Ma, Asynchronous $H_{\infty}$ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach, Appl. Math. Comput., 407 (2021), 126304. https://doi.org/10.1016/j.amc.2021.126304 doi: 10.1016/j.amc.2021.126304
    [45] Y. Li, Y. He, Dissipativity analysis for singular Markovian jump systems with time-varying delays via improved state decomposition technique, Inform. Sci., 580 (2021), 643–654. https://doi.org/10.1016/j.ins.2021.08.092 doi: 10.1016/j.ins.2021.08.092
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(460) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog