In this work, we consider the fractional Stefan-type problem in a Lipschitz bounded domain $ \Omega\subset\mathbb{R}^d $ with time-dependent Dirichlet boundary condition for the temperature $ \vartheta = \vartheta(x, t) $, $ \vartheta = g $ on $ \Omega^c\times]0, T[$, and initial condition $ \eta_0 $ for the enthalpy $ \eta = \eta(x, t) $, given in $ \Omega\times]0, T[$ by
$ \frac{\partial \eta}{\partial t} +\mathcal{L}_A^s \vartheta = f\quad\text{ with }\eta\in \beta(\vartheta), $
where $ \mathcal{L}_A^s $ is an anisotropic fractional operator defined in the distributional sense by
$ \langle\mathcal{L}_A^su, v\rangle = \int_{\mathbb{R}^d}AD^su\cdot D^sv\, dx, $
$ \beta $ is a maximal monotone graph, $ A(x) $ is a symmetric, strictly elliptic and uniformly bounded matrix, and $ D^s $ is the distributional Riesz fractional gradient for $ 0 < s < 1 $. We show the existence of a unique weak solution with its corresponding weak regularity. We also consider the convergence as $ s\nearrow 1 $ towards the classical local problem, the asymptotic behaviour as $ t\to\infty $, and the convergence of the two-phase Stefan-type problem to the one-phase Stefan-type problem by varying the maximal monotone graph $ \beta $.
Citation: Catharine W. K. Lo, José Francisco Rodrigues. On an anisotropic fractional Stefan-type problem with Dirichlet boundary conditions[J]. Mathematics in Engineering, 2023, 5(3): 1-38. doi: 10.3934/mine.2023047
In this work, we consider the fractional Stefan-type problem in a Lipschitz bounded domain $ \Omega\subset\mathbb{R}^d $ with time-dependent Dirichlet boundary condition for the temperature $ \vartheta = \vartheta(x, t) $, $ \vartheta = g $ on $ \Omega^c\times]0, T[$, and initial condition $ \eta_0 $ for the enthalpy $ \eta = \eta(x, t) $, given in $ \Omega\times]0, T[$ by
$ \frac{\partial \eta}{\partial t} +\mathcal{L}_A^s \vartheta = f\quad\text{ with }\eta\in \beta(\vartheta), $
where $ \mathcal{L}_A^s $ is an anisotropic fractional operator defined in the distributional sense by
$ \langle\mathcal{L}_A^su, v\rangle = \int_{\mathbb{R}^d}AD^su\cdot D^sv\, dx, $
$ \beta $ is a maximal monotone graph, $ A(x) $ is a symmetric, strictly elliptic and uniformly bounded matrix, and $ D^s $ is the distributional Riesz fractional gradient for $ 0 < s < 1 $. We show the existence of a unique weak solution with its corresponding weak regularity. We also consider the convergence as $ s\nearrow 1 $ towards the classical local problem, the asymptotic behaviour as $ t\to\infty $, and the convergence of the two-phase Stefan-type problem to the one-phase Stefan-type problem by varying the maximal monotone graph $ \beta $.
[1] | W. Arendt, I. Chalendar, R. Eymard, Galerkin approximation in Banach and Hilbert spaces, IMA J. Numer. Anal., 42 (2022), 165–198. https://doi.org/10.1093/imanum/draa067 doi: 10.1093/imanum/draa067 |
[2] | I. Athanasopoulos, L. Caffarelli, E. Milakis, The two-phase Stefan problem with anomalous diffusion, Adv. Math., 406 (2022), 108527. https://doi.org/10.1016/j.aim.2022.108527 doi: 10.1016/j.aim.2022.108527 |
[3] | H. Attouch, Convergence de fonctionnelles convexes, In: Journées d'Analyse Non Linéaire, Berlin, Heidelberg: Springer, 1978, 1–40. https://doi.org/10.1007/BFb0061795 |
[4] | H. Attouch, Variational convergence for functions and operators, Boston: Pitman Advanced Publishing Program, 1984. |
[5] | H. Attouch, A. Damlamian, Problèmes d'évolution dans les Hilbert et applications, J. Math. Pure. Appl., 54 (1975), 53–74. |
[6] | H. Attouch, A. Damlamian, Strong solutions for parabolic variational inequalities, Nonlinear Anal. Theor., 2 (1978), 329–353. https://doi.org/10.1016/0362-546X(78)90021-4 doi: 10.1016/0362-546X(78)90021-4 |
[7] | J. C. Bellido, J. Cueto, C. Mora-Corral, $\Gamma $-convergence of polyconvex functionals involving $s$-fractional gradients to their local counterparts, Calc. Var., 60 (2021), 7. https://doi.org/10.1007/s00526-020-01868-5 doi: 10.1007/s00526-020-01868-5 |
[8] | M. Błasik, M. Klimek, Numerical solution of the one phase 1D fractional Stefan problem using the front fixing method, Math. Method. Appl. Sci., 38 (2015), 3214–3228. https://doi.org/10.1002/mma.3292 doi: 10.1002/mma.3292 |
[9] | C. Brändle, E. Chasseigne, F. Quirós, Phase transitions with midrange interactions: a nonlocal Stefan model, SIAM J. Math. Anal., 44 (2012), 3071–3100. https://doi.org/10.1137/110849365 doi: 10.1137/110849365 |
[10] | L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional $p-$laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813–1845. https://doi.org/10.3934/dcds.2016.36.1813 doi: 10.3934/dcds.2016.36.1813 |
[11] | H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, In: Contributions to nonlinear functional analysis (Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 12–14, 1971), 1971,101–156. https://doi.org/10.1016/B978-0-12-775850-3.50009-1 |
[12] | H. Brézis, Intégrales convexes dans les espaces de Sobolev, Israel J. Math., 13 (1972), 9–23. https://doi.org/10.1007/BF02760227 doi: 10.1007/BF02760227 |
[13] | H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, New York: North-Holland Publishing Co., 1973. |
[14] | A. N. Ceretani, D. A. Tarzia, Determination of two unknown thermal coefficients through an inverse one-phase fractional Stefan problem, Fract. Calc. Appl. Anal., 20 (2017), 399–421. https://doi.org/10.1515/fca-2017-0021 doi: 10.1515/fca-2017-0021 |
[15] | E. Chasseigne, S. Sastre-Gómez, A nonlocal two-phase Stefan problem, Differential Integral Equations, 26 (2013), 1335–1360. |
[16] | G. E. Comi, G. Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I, Rev. Mat. Complut., in press. https://doi.org/10.1007/s13163-022-00429-y |
[17] | G. E. Comi, G. Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: Existence of blow-up, J. Funct. Anal., 277 (2019), 3373–3435. https://doi.org/10.1016/j.jfa.2019.03.011 doi: 10.1016/j.jfa.2019.03.011 |
[18] | A. Damlamian, Résolution de certaines inéquations variationnelles stationnaires et d'évolution, Publications Sciences Mathématiques, Univ. Pierre et Marie Curie, 1976. |
[19] | A. Damlamian, Some results on the multi-phase Stefan problem, Commun. Part. Differ. Equ., 2 (1977), 1017–1044. https://doi.org/10.1080/03605307708820053 doi: 10.1080/03605307708820053 |
[20] | A. Damlamian, N. Kenmochi, Asymptotic behavior of solutions to a multiphase Stefan problem, Japan J. Appl. Math., 3 (1986), 15. https://doi.org/10.1007/BF03167089 doi: 10.1007/BF03167089 |
[21] | F. del Teso, J. Endal, E. R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments, SIAM J. Numer. Anal., 56 (2018), 3611–3647. https://doi.org/10.1137/18M1180748 doi: 10.1137/18M1180748 |
[22] | F. del Teso, J. Endal, E. R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory, SIAM J. Numer. Anal., 57 (2019), 2266–2299. https://doi.org/10.1137/19M1237041 doi: 10.1137/19M1237041 |
[23] | F. del Teso, J. Endal, J. L. Vázquez, On the two-phase fractional Stefan problem, Adv. Nonlinear Stud., 20 (2020), 437–458. https://doi.org/10.1515/ans-2020-2081 doi: 10.1515/ans-2020-2081 |
[24] | F. del Teso, J. Endal, J. L. Vázquez, The one-phase fractional Stefan problem, Math. Mod. Meth. Appl. Sci., 31 (2021), 83–131. https://doi.org/10.1142/S0218202521500032 doi: 10.1142/S0218202521500032 |
[25] | F. Demengel, G. Demengel, Functional spaces for the theory of elliptic partial differential equations, London: Springer, 2012. https://doi.org/10.1007/978-1-4471-2807-6 |
[26] | G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré), C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A1461–A1463. |
[27] | J. Fernández Bonder, A. Silva, J. F. Spedaletti, Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems, Discrete Contin. Dyn. Syst., 41 (2021), 2125–2140. https://doi.org/10.3934/dcds.2020355 doi: 10.3934/dcds.2020355 |
[28] | A. Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51–87. https://doi.org/10.1090/S0002-9947-1968-0227625-7 doi: 10.1090/S0002-9947-1968-0227625-7 |
[29] | A. Henrot, Extremum problems for eigenvalues of elliptic operators, Basel: Birkhäuser Verlag, 2006. https://doi.org/10.1007/3-7643-7706-2 |
[30] | K. Ishige, T. Kawakami, Refined asymptotic expansions of solutions to fractional diffusion equations, 2021, arXiv: 2109.14193. |
[31] | S. L. Kamenomostskaja, On Stefan's problem, Mat. Sb. (N.S.), 53 (1961), 489–5C. |
[32] | N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bulletin of the Faculty of Education, Chiba University, 1981. |
[33] | O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Providence: American Mathematical Society, 1968. |
[34] | X. Li, Analytical solutions to a fractional generalized two phase Lame-Clapeyron-Stefan problem, International Journal of Numerical Methods for Heat & Fluid Flow, 24 (2014), 1251–1259. https://doi.org/10.1108/HFF-03-2013-0102 doi: 10.1108/HFF-03-2013-0102 |
[35] | J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris: Gauthier-Villars, 1969. |
[36] | C. W. Lo, J. F. Rodrigues, On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative, 2021, arXiv: 2101.06863. |
[37] | S. W. McCue, B. Wu, J. M. Hill, Classical two-phase Stefan problem for spheres, Proc. R. Soc. A, 464 (2008), 2055–2076. https://doi.org/10.1098/rspa.2007.0315 doi: 10.1098/rspa.2007.0315 |
[38] | O. A. Oleĭnik, A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350–1354. |
[39] | R. T. Rockafellar, Integrals which are convex functionals. II, Pacific J. Math., 39 (1971), 439–469. |
[40] | J. F. Rodrigues, The Stefan problem revisited, In: Mathematical models for phase change problems, Basel: Birkhäuser, 1989,129–190. https://doi.org/10.1007/978-3-0348-9148-6_8 |
[41] | J. F. Rodrigues, Variational methods in the Stefan problem, In: Phase transitions and hysteresis, Berlin, Heidelberg: Springer, 1994,147–212. http://dx.doi.org/10.1007/BFb0073397 |
[42] | S. Roscani, K. Ryszewska, L. Venturato, A one-phase space – fractional Stefan problem with no liquid initial domain, 2021, arXiv: 2111.06690. |
[43] | S. D. Roscani, D. A. Tarzia, A generalized Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan problem, Advances in Mathematical Sciences and Applications, 24 (2014), 237–249. |
[44] | K. Ryszewska, A space-fractional Stefan problem, Nonlinear Anal., 199 (2020), 112027. https://doi.org/10.1016/j.na.2020.112027 doi: 10.1016/j.na.2020.112027 |
[45] | T.-T. Shieh, D. Spector, On a new class of fractional partial differential equations, Adv. Calc. Var., 8 (2014), 321–366. https://doi.org/10.1515/acv-2014-0009 doi: 10.1515/acv-2014-0009 |
[46] | T.-T. Shieh, D. Spector, On a new class of fractional partial differential equations II, Adv. Calc. Var., 11 (2017), 289–307. https://doi.org/10.1515/acv-2016-0056 doi: 10.1515/acv-2016-0056 |
[47] | M. Silhavy, Fractional vector analysis based on invariance requirements (critique of coordinate approaches), Continuum Mech. Thermodyn., 32 (2020), 207–288. https://doi.org/10.1007/s00161-019-00797-9 doi: 10.1007/s00161-019-00797-9 |
[48] | J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica pura ed applicata, 146 (1987), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360 |
[49] | B. E. Stoth, Convergence of the two-phase Stefan problem to the one-phase problem, Quart. Appl. Math., 55 (1997), 113–126. https://doi.org/10.1090/qam/1433755 doi: 10.1090/qam/1433755 |
[50] | D. A. Tarzia, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Sér. A, 288 (1979), 941–944. |
[51] | D. A. Tarzia, Étude de l'inéquation variationnelle proposée par Duvaut pour le problème de Stefan à deux phases. I, Boll. Un. Mat. Ital. B (6), 1 (1982), 865–883. |
[52] | D. A. Tarzia, Étude de l'inéquation variationnelle proposée par Duvaut pour le problème de Stefan à deux phases. II, Boll. Un. Mat. Ital. B (6), 2 (1983), 589–603. |
[53] | A. Visintin, Introduction to Stefan-type problems, In: Handbook of differential equations: evolutionary equations. Vol. IV, Amsterdam: Elsevier/North-Holland, 1971,377–484. http://dx.doi.org/10.1016/S1874-5717(08)00008-X |
[54] | V. R. Voller, An exact solution of a limit case Stefan problem governed by a fractional diffusion equation, Int. J. Heat Mass Trans., 53 (2010), 5622–5625. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.038 doi: 10.1016/j.ijheatmasstransfer.2010.07.038 |
[55] | E. Zeidler, Nonlinear functional analysis and its applications. II/A: Linear monotone operators, New York: Springer, 1990. https://doi.org/10.1007/978-1-4612-0985-0 |