Research article Special Issues

Linear stability analysis of overdetermined problems with non-constant data

  • Received: 17 March 2022 Revised: 16 July 2022 Accepted: 19 July 2022 Published: 09 August 2022
  • We study an overdetermined problem that arises as the Euler-Lagrange equation of a weighted variational problem in elasticity. Based on a detailed linear analysis by spherical harmonics, we prove the existence and local uniqueness as well as an optimal stability estimate for the shape of a domain allowing the solvability of the overdetermined problem. Our linear analysis reveals that the solution structure is strongly related to the choice of parameters in the problem. In particular, the global uniqueness holds for the pair of the parameters lying in a triangular region.

    Citation: Michiaki Onodera. Linear stability analysis of overdetermined problems with non-constant data[J]. Mathematics in Engineering, 2023, 5(3): 1-18. doi: 10.3934/mine.2023048

    Related Papers:

  • We study an overdetermined problem that arises as the Euler-Lagrange equation of a weighted variational problem in elasticity. Based on a detailed linear analysis by spherical harmonics, we prove the existence and local uniqueness as well as an optimal stability estimate for the shape of a domain allowing the solvability of the overdetermined problem. Our linear analysis reveals that the solution structure is strongly related to the choice of parameters in the problem. In particular, the global uniqueness holds for the pair of the parameters lying in a triangular region.



    加载中


    [1] A. Acker, Interior free boundary problems for the Laplace equation, Arch. Rational Mech. Anal., 75 (1981), 157–168. https://doi.org/10.1007/BF00250477 doi: 10.1007/BF00250477
    [2] A. Acker, Uniqueness and monotonicity of solutions for the interior Bernoulli free boundary problem in the convex, $n$-dimensional case, Nonlinear Anal. Theor., 13 (1989), 1409–1425. https://doi.org/10.1016/0362-546X(89)90102-8 doi: 10.1016/0362-546X(89)90102-8
    [3] A. Aftalion, J. Busca, W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations, 4 (1999), 907–932.
    [4] V. Agostiniani, R. Magnanini, Symmetries in an overdetermined problem for the Green's function, Discrete Cont. Dyn. Syst. S, 4 (2011), 791–800. https://doi.org/10.3934/dcdss.2011.4.791 doi: 10.3934/dcdss.2011.4.791
    [5] C. Bianchini, A Bernoulli problem with non-constant gradient boundary constraint, Appl. Anal., 91 (2012), 517–527. https://doi.org/10.1080/00036811.2010.549479 doi: 10.1080/00036811.2010.549479
    [6] C. Bianchini, A. Henrot, P. Salani, An overdetermined problem with non-constant boundary condition, Interfaces Free Bound., 16 (2014), 215–241. https://doi.org/10.4171/IFB/318 doi: 10.4171/IFB/318
    [7] B. Brandolini, C. Nitsch, P. Salani, C. Trombetti, Serrin-type overdetermined problems: allternative proof, Arch. Rational Mech. Anal., 190 (2008), 267–280. https://doi.org/10.1007/s00205-008-0119-3 doi: 10.1007/s00205-008-0119-3
    [8] B. Brandolini, C. Nitsch, P. Salani, C. Trombetti, On the stability of the Serrin problem, J. Differ. Equations, 245 (2008), 1566–1583. https://doi.org/10.1016/j.jde.2008.06.010 doi: 10.1016/j.jde.2008.06.010
    [9] L. A. Caffarelli, H. W. Alt, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105–144. https://doi.org/10.1515/crll.1981.325.105 doi: 10.1515/crll.1981.325.105
    [10] L. Cavallina, T. Yachimura, On a two-phase Serrin-type problem and its numerical computation, ESAIM: COCV, 26 (2020), 65. https://doi.org/10.1051/cocv/2019048 doi: 10.1051/cocv/2019048
    [11] L. Cavallina, Local analysis of a two phase free boundary problem concerning mean curvature, Indiana Univ. Math. J., in press.
    [12] L. Cavallina, T. Yachimura, Symmetry breaking solutions for a two-phase overdetermined problem of Serrin-type, In: Current trends in analysis, its applications and computation (Proceedings of the 12th ISAAC Congress, Aveiro, Portugal, 2019), Birkhäuser, 2022, in press.
    [13] G. Ciraolo, R. Magnanini, V. Vespri, Hölder stability for Serrin's overdetermined problem, Annali di Matematica, 195 (2016), 1333–1345. https://doi.org/10.1007/s10231-015-0518-7 doi: 10.1007/s10231-015-0518-7
    [14] M. Del Pino, F. Pacard, J. Wei, Serrin's overdetermined problem and constant mean curvature surfaces, Duke Math. J., 164 (2015), 2643–2722. https://doi.org/10.1215/00127094-3146710 doi: 10.1215/00127094-3146710
    [15] M. M. Fall, I. A. Minlend, T. Weth, Unbounded periodic solutions to Serrin's overdetermined boundary value problem, Arch. Rational Mech. Anal., 223 (2017), 737–759. https://doi.org/10.1007/s00205-016-1044-5 doi: 10.1007/s00205-016-1044-5
    [16] W. M. Feldman, Stability of Serrin's problem and dynamic stability of a model for contact angle motion, SIAM J. Math. Anal., 50 (2018), 3303–3326. https://doi.org/10.1137/17M1143009 doi: 10.1137/17M1143009
    [17] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
    [18] A. Gilsbach, M. Onodera, Linear stability estimates for Serrin's problem via a modified implicit function theorem, Calc. Var., 60 (2021), 241. https://doi.org/10.1007/s00526-021-02107-1 doi: 10.1007/s00526-021-02107-1
    [19] A. Henrot, M. Onodera, Hyperbolic solutions to Bernoulli's free boundary problem, Arch. Rational Mech. Anal., 240 (2021), 761–784. https://doi.org/10.1007/s00205-021-01620-z doi: 10.1007/s00205-021-01620-z
    [20] A. Henrot, H. Shahgholian, The one phase free boundary problem for the p-Laplacian with non-constant Bernoulli boundary condition, Trans. Amer. Math. Soc., 354 (2002), 2399–2416. https://doi.org/10.1090/S0002-9947-02-02892-1 doi: 10.1090/S0002-9947-02-02892-1
    [21] N. Kamburov, L. Sciaraffia, Nontrivial solutions to Serrin's problem in annular domains, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 1–22. https://doi.org/10.1016/j.anihpc.2020.05.001 doi: 10.1016/j.anihpc.2020.05.001
    [22] R. Magnanini, G. Poggesi, On the stability for Alexandrov's soap bubble theorem, J. Anal. Math., 139 (2019), 179–205. https://doi.org/10.1007/s11854-019-0058-y doi: 10.1007/s11854-019-0058-y
    [23] R. Magnanini, G. Poggesi, Serrin's problem and Alexandrov's soap bubble theorem: enhanced stability via integral identities, Indiana Univ. Math. J., 69 (2020), 1181–1205. https://doi.org/10.1512/iumj.2020.69.7925 doi: 10.1512/iumj.2020.69.7925
    [24] R. Magnanini, G. Poggesi, Nearly optimal stability for Serrin's problem and the Soap Bubble theorem, Calc. Var., 59 (2020), 35. https://doi.org/10.1007/s00526-019-1689-7 doi: 10.1007/s00526-019-1689-7
    [25] R. Magnanini, G. Poggesi, Interpolating estimates with applications to some quantitative symmetry results, Mathematics in Engineering, 5 (2023), 1–21. https://doi.org/10.3934/mine.2023002 doi: 10.3934/mine.2023002
    [26] F. Morabito, P. Sicbaldi, Delaunay type domains for an overdetermined elliptic problem in $\mathbb{S}^n\times\mathbb{R}$ and $\mathbb{H}^n\times\mathbb{R}$, ESAIM: COCV, 22 (2016), 1–28. https://doi.org/10.1051/cocv/2014064 doi: 10.1051/cocv/2014064
    [27] F. Morabito, Symmetry breaking bifurcations for two overdetermined boundary value problems with non-constant Neumann condition on exterior domains in $\mathbb{R}^3$, Commun. Part. Diff. Eq., 46 (2021), 1137–1161. https://doi.org/10.1080/03605302.2020.1871363 doi: 10.1080/03605302.2020.1871363
    [28] M. Onodera, Geometric flows for quadrature identities, Math. Ann., 361 (2015), 77–106. https://doi.org/10.1007/s00208-014-1062-2 doi: 10.1007/s00208-014-1062-2
    [29] M. Onodera, On the symmetry in a heterogeneous overdetermined problem, Bull. Lond. Math. Soc., 47 (2015), 95–100. https://doi.org/10.1112/blms/bdu098 doi: 10.1112/blms/bdu098
    [30] M. Onodera, Dynamical approach to an overdetermined problem in potential theory, J. Math. Pure. Appl., 106 (2016), 768–796. https://doi.org/10.1016/j.matpur.2016.03.011 doi: 10.1016/j.matpur.2016.03.011
    [31] L. E. Payne, P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Method. Appl. Sci., 11 (1989), 805–819. https://doi.org/10.1002/mma.1670110606 doi: 10.1002/mma.1670110606
    [32] G. Pólya, Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math., 6 (1948), 267–277. https://doi.org/10.1090/QAM/26817 doi: 10.1090/QAM/26817
    [33] F. Schlenk, P. Sicbaldi, Bifurcating extremal domains for the first eigenvalue of the Laplacian, Adv. Math., 229 (2012), 602–632. https://doi.org/10.1016/j.aim.2011.10.001 doi: 10.1016/j.aim.2011.10.001
    [34] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. https://doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468
    [35] H. Shahgholian, Diversifications of Serrin's and related symmetry problems, Complex Var. Elliptic Equ., 57 (2012), 653–665. https://doi.org/10.1080/17476933.2010.504848 doi: 10.1080/17476933.2010.504848
    [36] P. Sicbaldi, New extremal domains for the first eigenvalue of the Laplacian in flat tori, Calc. Var., 37 (2010), 329–344. https://doi.org/10.1007/s00526-009-0264-z doi: 10.1007/s00526-009-0264-z
    [37] H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319–320. https://doi.org/10.1007/BF00250469 doi: 10.1007/BF00250469
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1918) PDF downloads(247) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog